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Abstract 

A team of professors and students at Carleton University have been working on a 
designing an S-CO2 PCS in collaboration with Natural Resources Canada. An important 
consideration when designing such a cycle is the level of purity of the S-CO2 working 
fluid, including the effects of impurities on the critical temperature and pressure. This 
paper will present an investigation of the influence of impurities on several aspects of 
cycle petformance. For example, it has been found that using low grade commercial CO2
can produce a cycle thermal efficiency loss in of approximately 5%. The examination was 
performed using simple analytical techniques and by using HYSYS plant simulation 
software. 

1. Background 

The use of supercritical CO2 (S-0O2) as the working fluid for next generation power 
conversion systems (PCS) has many advantages compared to the traditional steam Rakine 
Cycle PCSs that are in wide spread use today. Most prominent being the large reduction 
in component size relative to the traditional steam and helium PCSs due to S-CO2 fluid 
properties, while retaining high cycle thermal efficiencies. This can cut capital costs and 
construction times significantly. The goal is to take advantage of the high compressibility 
of the fluid on or near the critical point. In other words when the fluid is near the critical 
point, little compression work is needed to increase the fluid stream pressure. However, 
the fluid properties in this region vary in a highly non-linear fashion, making design of 
such a cycle a challenging endeavor. 

Since 2000, professors and students at Carleton University have been working in 
collaboration with professionals from Natural Resources Canada on projects under the 
heading of Zero-Emissions Gas Turbines. Work began on designing a test 100 MW 
power plant in 2005. The plant specifications were for an externally fired (in-direct) 
power conversion system (PCS) in which the working fluid would be CO2 in the 
supercritical regime. Initial examinations would find that the maximum advantage in 
terms of cycle thermal efficiency for a CO2 powered gas turbine arrangement would be 
for systems with turbine inlet temperatures in the range of 550°C - 950°C. This places 
next generation (or GEN IV) nuclear power plants, as the most realistic source for such 
high temperature production. 
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The cycle design adopted by the team at Carleton University is a simple close loop 
Brayton cycle with recuperation (Figure 1). The key components of the cycle are: the 
compressor, the recuperator, the main heat exchanger, the turbine and the precooler. It 
operates using a supercritical CO2 working fluid and specified to produce 100 MW of 
electrical power. In its current form it is designed as an indirect PCS so that it can be 
applicable to a wider variety of heat sources. 

2. Introduction 

Much of the design work and modeling of the cycle has relied upon the assumption 
that the working fluid is 100% pure CO2, and using the associated fluid properties that 
can be obtained using this assumption. In most modeling cases this assumption would be 
perfectly valid. However, the current cycle has regions in which the fluid will pass close 
to the critical point (i.e. compressor inlet) this leaves room for further investigation of 
fluid impurity effects. Fluid properties in the critical region vary in a highly non-linear 
fashion; this results in significant performance variations as well. 

This paper examines the possible effects on cycle performance of impurities. The 
investigation began by contacting an industrial supplier to obtain information on the 
levels of carbon dioxide (CO2) purity that could be commercially obtained. Using the 
information obtained a simple model was setup in HYSYS software to analyze the effects 
of the impurities. 

Recuperator 
19  9 

Compressor 

Main Heat Exchanger 
• 

12 11 

Precooler 

4( 11L.Gearbox 

Turbine 

Generator 

100 MW 

Figure 1 Cycle developed by the Carleton Raven Gas Turbine Team. 

3. Best and worst case CO2 

The first step in the analysis was to identify the sources of any working fluid 
contaminants and the associated concentrations. For this investigation only two sources 
of contaminants were considered. The first source of contamination that was considered 
was impurities in the CO2 purchased from a commercial distributor. The second was 
possible contamination due to cracked pipes or improperly sealed connections allowing 
air and other contaminants to enter the fluid stream. However, it was later deemed that 
the latter case was improbable as the system pressure would be higher than that of the 
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ambient plant atmosphere, and as such any leaks that occurred would be towards the 
atmosphere and not vice versa. 

Information was requested from an industrial supplier of CO2 gas (Praxair) on the types 
and concentrations of impurities that are typically found in their CO2 products. This 
information was used to formulate a "best" and a "worst" case scenario for analysis. 

3.1 Best case 

Based on information received from Praxair the best case scenario was determined. 
Table 1 shows the assumed best case scenario composition. 

Compound Mass fraction (kg/lkg of mixture) 
CO2 0.99998 
N2 lx10-5
02 6x10-6

CI-I4 2x10-6
H2O 1x10-6
CO 5x10-7
H2 5x10-7

Table 1 Best case working fluid composition. 

3.2 Worst case 

For the worst case scenario only the percentage of CO2 was available. Since it is 
relatively inexpensive industrial suppliers rarely test this type of gas for the content of 
impurities. A simple scaling up of the best case components, while keeping the same 
ratios of concentration was performed (Table 2). 

Compound Mass fraction (kg/lkg of mixture) 
CO2 0.995 
N2 2.5x10-3
02 1.5x10-3

CH4 5.0X10-4

H2O 2.5X10-4

CO 1.25X10-4

H2 1.25X10-4

Table 2 Worst case working fluid composition. 

1 For the best case you have 20mg of impurities compared to 0.99998kg of CO2 (lkg — 20mg = 0.99998kg). 
From this conclusion, the worst case scenario is approximated as lkg — 0.995kg which leaves 5g of 
impurities. To get the scaling factor 5g was divided by 20mg to obtain 250. 
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3.3 Conversion to Mole Fractions 

For input into HYSYS it is easiest to have the compositions defined as mole fractions and 
so a conversion was performed. Using the mass fractions in Tables 1 and 2 the moles of 
each component was determined with equation 1. 

mi 
ni = 

MM 
(1) 

Where ni is the moles of the element, mi is the mass, and MM; is the molar mass obtained 
from [1]. The mole fraction was then calculated using equation 2. 

ni 
Yi = 

ntot 
(2) 

Where yi is the mole fraction of the element and ntot is the sum of the moles of each of the 
components. This method gave the mole fractions that were input into HYSYS to define 
the mixture stream and they can be found in Tables 3 and 4. 

Compound Mole Fraction 
CO2 z1 
N2 1.6x10-5
02 8.2x10-6

CI-I4 5.5x10-6
H2O 2.4x10-6
CO 7.8x10-7
H2 1.0x10-5

Table 3 Best case working fluid mole fractions. 

Compound Mole Fraction 
CO2 0.989 
N2 3.9x10-3
02 2.0x10-3

CH4 1.4x10-3
H2O 6.1X10-4

CO 1.9X10-4

H2 2.6x10-3
Table 4 Worst case working fluid mole fractions. 

4. Investigation of cycle performance in HYSYS 

The following section will describe the inputs used in the HYSYS model as well as the 
results obtained for the best case and worst case scenarios. 
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4.1 HYSYS model used 

In order to perform this investigation a simplified model of the cycle was developed 
using HYSYS software. Figure 2 shows the overall layout of the cycle in HYSYS based 
on the current iteration of the Raven Gas Turbine. The cycle remains a closed loop 
indirect Brayton cycle. The major components of the cycle include: the compressor, the 
turbine, the pre-cooler, the main heat exchanger and the recuperator. To be able to 
perform the necessary calculations the model must be in a fully defined state. This means 
that the minimum number of inputs to solve for all state points must be defined. The 
inputs used to define the model used in this analysis can be found in Table 5 and are 
based upon the design best design data available at the time of this investigation. 
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Figure 2 HYSYS model used for the investigation. 

Compressor Turbine 
Inlet pressure 78 bar Inlet temperature 1023 K 
Inlet temperature 308 K Isentropic efficiency 0.89 
Pressure ratio 2.86 Precooler 
Isentropic efficiency 0.89 Pressure loss 2% of inlet pressure 

Recuperator Piping Losses 
Heat sink pressure loss 2% of inlet pressure Compressor to recuperator 0.00281 bar 
Cold sink pressure loss 2% of inlet pressure Recuperator to main heat 

exchanger 
0 bar 

Effectiveness 0.8 Main heat exchanger turbine 0.235 bar 
Main Heat Exchanger Turbine to recuperator 0.6 bar 

Pressure loss 2% of inlet pressure Recuperator to precooler 0.055 bar 
Precooler to compressor 0.2 bar 

Table 5 List of inputs into HYSYS model. 

In addition it should be noted that the Peng-Robinson equation of state (EOS) was used to 
model the fluid properties. The selection of this EOS was influenced by the functionality 
of the EOS with certain utilities within the software necessary for the analysis. 
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4.2 Reference case 

To benchmark the results of the best and worst case CO2 scenarios they were compared to 
a reference case. For this investigation the reference case was a model in which the fluid 
stream was composed solely of CO2, in other words 100% pure CO2. The following 
results were obtained for the benchmark case. 

Tc= 304 K 
pc= 7.37 MPa 
Specific Power = 121.2 kJ/kg 
Cycle Thermal Efficiency = 40.3% 

Where Tc is the critical temperature and pc is the critical pressure. 

4.3 Results of "worst case" analysis 

Using mole fractions of the worst case CO2 composition as described earlier in this paper, 
the following results were obtained from HYSYS. 

Tc= 303.0 K 
pc= 7.35 MPa 
Specific Power = 119.5 kJ/kg 
Cycle Thermal Efficiency = 35.6% 

The relatively small amount of impurities (0.5% total) has caused a one degree shift in 
the critical point which reduced the cycle thermal efficiency from 40.3% to 35.6%. This 
could be due the fact that the compressor, which operates at an inlet temperature of 308 
K, is now one degree further away from the critical point and uses more power to 
compress the fluid. 

4.3 Results of "best case" analysis 

When the best case scenario was run in the HYSYS model the new critical properties 
were obtained. The results were: 

Tc= 304 K 
pc= 7.37 MPa 
Specific Power = 121.2 kJ/kg 
Cycle Thermal Efficiency = 40.3% 

These results were identical to the 100% CO2 reference case. This was expected due to 
the extremely low concentration of impurities in the fluid stream. 
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5. Analytical check of results 

The results of the HYSYS investigations were reasonable however, there was no way of 
verifying the math procedures that HYSYS uses directly; the method by which the 
software calculates the mixture's critical properties was not available. Therefore a simple 
verification using an independent analytical method was performed to confirm the results. 
Using the worst case scenario a check was performed using Kay's Rule [1]. This rule 
defines the critical temperature and pressure of a mixture as: 

= E(yi •Td) 

PC =DY • Pci) 

(3) 

(4)

Where Tc is the critical temperature, pc is the critical pressure and yi is the mole fraction 
of a component in the fluid. In essence, Kay's Rule is simply the weighted average of the 
critical properties of a fluid stream's components. Tc and pc of the mixture were obtained 
using the mole fractions calculated and the critical properties of each individual 
component from as listed in [1]. The results of this check were: 

Worst case: 
Tc= 302.8 K 
pc= 7.37 MPa 

Best case: 
Tc= 304.1 K 
Pc= 7.39 MPa 

The worst case results using Kay's Rule represented a decrease in the listed properties of 
CO2 from [1] (Tc= 304.1 K, pc= 7.39 MPa) and supports the conclusions reached by the 
HYSYS investigation. Some discrepancy can be attributed to the different pure fluid 
critical point definitions. Where [1] defines the critical point of CO2 as Tc= 304.1 K, pc= 
7.39 MPa and HYSYS defines it as Tc= 304 K, pc= 7.37 MPa. A comparison between the 
HYSYS and analytical results can be seen in figure 3. 

6. Conclusions and recommendations 

A study was performed on the effect of impurities on Carleton S-CO2 cycle performance. 
This study showed that even at 99.5% pure CO2, this was enough to shift the critical point 
of the fluid away from the operating point by approximately 1 K and 0.02 MPa. This lead 
to a 4.7% drop in cycle thermal efficiency which is significant. As it has been determined 
that impurities have a large impact on cycle performance, it is recommended that this area 
be investigated further, such as, which impurities will affect the system the most. Also, 
the affects of cost and quantity of CO2 required and initial charging of the cycle after 
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commissioning and maintenance outages can have a profound effect on performance and 
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