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Abstract 

The random number generator in MCNP and most other Monte Carlo codes for particle transport 
(e.g, RCP, RACER, MORSE, KENO, VIM, MCPP) is based on algorithms called linear 
congruential random number generators(LCGs). However, all LCGs have a defect that cannot be 
removed by adjusting their parameters. The problem lies in the "crystalline" nature of LCGs. This 
article presents the improved linear congruential random number generators (ILCGs), which 
preserve the advantage of rapidity, and the statistical tests indicate that the statistical qualities have 
been obviously improved. 

1. Introduction 

A random number sequence is essential for solving neutron transport by Monte Carlo method. To 
generate such a sequence, there are three generators which are physical random number generators, 
random number table and mathematic random number generators. Compare with the first two, the 
mathematic method has a simple, efficient and repeatable character. Although the sequence 
generated by the mathematic method is pseudorandom, it can be used in the same way if the 
sequence passes the randomness tests as the real random numbers. 

According to the choice of the recursion formula, there are many random number generators, such 
as linear congruential random number generators (LCGs), quadratic congruential random number 
generators and additive generators [1]. By far, the LCGs which are introduced by D.H. Lehmer in 
1949, are the most popular random number generators. They are adopted by many Monte Carlo 
codes for particle transport (e.g, MCNP, RCP, PACER, MORSE, KENO, VIM, and MCPP). This 
article is introducing these generators and discussing the improvement for them. 

2. Linear congruential random number generators (LCGs) 

The recursion formula for LCGs is as follows, 

xn= axn-1± c 
fl = xn /M 

(mod M) 
n>_1 (1) 
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where, 

M, the modulus; M > 0. 

a, the multiplier; 0 a <M. 

c, the increment; 0 c < M. 

xo, the initial seed; 0 xo < M. 

fl , the random number; 0 < 1. 

On how to select the parameters, many papers have given the detailed description. Especially, sets 
of parameters for LCGs of different sizes and good performance with respect to the spectral test are 
presented in References 2 and 3 .The form LCGs(M, a, c, xo) is used to denote the generator, so that 
the traditional MCNP generator is LCGs(248, 519, 0, 519)E21. 

3. Improved linear congruential random number generators (ILCGs) 

Although LCGs are simple and effective and have successfully applied for various problems, all 
LCGs have a defect that cannot be removed by adjusting their parameters. The problem lies in the 
"crystalline" nature of LCGs[41. And each random number in the sequence by LCGs is decided by 
the former, so the randomness is doubtful. Thereby, randomizing by shuffling are presented and two 
algorithms are introduced in the reference 1 as follows, 

Algorithm 1: Generate two sequences < n > and < ,,' > from two different LCGs. Use an auxiliary 

table V[0], V[1], •••, V[k-1], where k is some number chosen for convenience, and fill the V-table 
with the first k values of the -sequence. 

Al. Set and ,,' equal to the next members of the sequences < n > and <,,' >, respectively. 

A2. Set j <— Lg:11; that is ,j is a random value, 0 j < k, determined by ,,' . 

A3. Output V[j] and then set V[j] <— . 

Algorithm 2: Generate a sequence < > from a given LCGs. Use an auxiliary table V[0], V[1], • •., 

V[k-1] as in Algorithm 1. Fill the V-table with the first k values of the -sequence and set an 

auxiliary variable Y equal to the (k+l)st value. 
Al. Set j <—LkYli; that is ,j is a random value, 0 j < k, determined by Y. 

A2. Set Y <— V[j], output Y, and then set v[j] to the next number of the sequence < n > 

From the two algorithms, it is obvious that the key of randomizing by shuffling is how to obtain the 
variable j. Considering the computing rapidity, the second is better than the first. Still, it is 
significative to discuss if there are more effective approaches for the variable j. 

In order to enhance the performance of LCGs, its modulus is usually equal to 2s. In this case, the 
first expression of the formulas (1) can be replaced by bit manipulations. Likewise, can the variable 
j be obtained by bit manipulations? It is possible. Before introducing the algorithm, let's review the 
storage format of an integer in the binary computer, see figure 1. 
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table V[0], V[1], …, V[k-1], where k is some number chosen for convenience, and fill the V-table 
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⎣ ⎦
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A3. Output V[j] and then set [ ] nV j ξ← . 

Algorithm 2: Generate a sequence < nξ > from a given LCGs. Use an auxiliary table V[0], V[1], …, 
V[k-1] as in Algorithm 1. Fill the V-table with the first k values of the nξ -sequence and set an 
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From the two algorithms, it is obvious that the key of randomizing by shuffling is how to obtain the 
variable j. Considering the computing rapidity, the second is better than the first. Still, it is 
significative to discuss if there are more effective approaches for the variable j. 

In order to enhance the performance of LCGs, its modulus is usually equal to 2S. In this case, the 
first expression of the formulas (1) can be replaced by bit manipulations. Likewise, can the variable 
j be obtained by bit manipulations? It is possible. Before introducing the algorithm, let’s review the 
storage format of an integer in the binary computer, see figure 1. 
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Figure 1 The sketch map of the storage format of an integer in the binary computer. 

Looking back on the recursion formula of LCGs, two integers, ax, .j and x,„ will be obtained before 
each random number . Certainly, they will be kept in the computer according to the format of 

figure 1. So, a new approach of randomizing by shuffling can be adopted. 

Algorithm 3: Generate a sequence <,,> from a given LCGs. Use an auxiliary table V[0], V[1], 

Y[k-1] as in Algorithms 1 and 2, and set L 1-Log2 (k)il . Fill the V-table with the first k values of 

the -sequence. 

Al. Generate the next numbers ax„_], x„ and s by the recursion formula. 
L-1 

A2. Set j E4.4.21, where, the meaning of is shown in the figure 1, and the integer x in the 
14 

figure 1 is equal to azc,i or Ifj_k, set j j- k . 

A3. Output Y[j] and then set Y[j] 

In the same way as M=28 in the LCGs, the parameter k is always equal to 2L. Then the second step 
L-1 

of the algorithm 3 can be simplified, and changed into `A2. Set j E/w4.21 '.That is, the 
14 

inequation j<k is always satisfied, so the following judgement can be omitted. And what's more, the 
process A2 can be implemented by bit manipulations, so the effect for the efficiency is very small, 
which has been verified by the testing result in section 4.1. 

Similarly, the form ILCGs(M, a, c, xa, W, L, 7) is used to denote the improved generators, where 
T=1 indicates x=x,, and T=2 indicates x=oac„_i in the step A2. It is vital that the step A2 can be 
completed by bit manipulations, so the ILCGs are as fast as the LCGs, which is testified by the 
testing results. 

About the choice of the parameters W and L, there are some qualitative conclusions. If W is too 
small, it is not suitable because of the periodicity of the number composed of the several low bits of 
the integer x,[1]. Considering the required memory spaces of V-table, it is advisable that L is not 
larger than 10. Finally, it is necessary to carry out some special statistical tests for a choice of the 
two parameters plus another parameter T. 

4. Testing 

To testify the capability of ILCGs, comparison tests have been processed for LCGs and ILCGs. 
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4.1 Traditional MCNP LCGs(248, 519, 0, 519) VS ILCGs(248, 519, 0, 519, 27, 3, 1) 

To generate 109 random numbers, the two generators consume 76.1 seconds and 76.2 seconds, 
respectively. 

Marsaglia's DIEHARD test suite for random number generators [51 was applied to the given LCGs 
and ILCGs. This test suite involves running over 200 variations on the statistical tests listed in Table 
1. Reference 2 refers that for 3 tests, the overlapping pairs sparse occupancy, the overlapping 
quadruples sparse occupancy test and the DNA test, the traditional MCNP generator failed when the 
10-12 bits of the random numbers were used for testing. Whereas, the ILCGs above passes all tests. 

4.2 LCGs(232, 2891336453, 1, 1) from reference 3 VS ILCGs(232, 2891336453, 1, 1, 51, 9, 2) 

Although this ILCG is a 32-bit generator, the product ci.x,i_i is a 64-bit integer. Because the last 

parameter of the ILCG is equal to 2, it is reasonable to set the W equal to 51. Results of statistical 
tests by DIEHARD are listed on the following table. 

DIEHARD Statistical Tests LCG ILCG 
Birthday spacings test FAILED PASSED 
Overlapping 5-permutation test PASSED PASSED 
Binary rank test for 31x31 matrices PASSED PASSED 
Binary rank test for 32x32 matrices PASSED PASSED 
Binary rank test for 6x8 matrices FAILED FAILED 

Bitstream test (Repeat twenty times) 
10 times 8 times 
PASSED PASSED 

Overlapping pairs sparse occupancy FAILED IMPROVED 
Overlapping quadruples sparse occupancy FAILED PASSED 
DNA test FAILED PASSED 
Count the 1's in a stream of bytes FAILED PASSED 
Count the 1's for specific bytes FAILED PASSED 
Parking lot test PASSED PASSED 
Minimum distance test PASSED PASSED 
3D spheres test PASSED PASSED 
Squeeze test PASSED PASSED 
Overlapping sums test PASSED PASSED 
Runs test PASSED PASSED 
Craps test PASSED PASSED 

Table 1 Results of statistical tests by DIEHARD. 

5. Conclusion 

As a result of the above testing, we believe that ILCGs are reliable methods of producing 
independent and uncorrelated random streams, which will exceed LCGs', although the adopted 
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approach seems very simple. Moreover, compared with the combination of random number 
generators, ILCGs preserve the advantage of rapidity, almost the same as the traditional LCGs. 
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