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Abstract 

A transport code analysis using the Monte Carlo code, MCNPX, has been used to propagate an 
extrapolated particle spectrum based on GOES satellite measurements through the atmosphere to 
estimate aircrew radiation exposure due to solar particle events. Neutron monitor count rate data 
from ground stations around the world were used to benchmark the model calculations during 
several Ground Level Events (GLEs). In addition, a comparison was made between the model 
predictions and actual flight measurements made by some European investigators with various 
types of instruments used to measure the mixed radiation field during GLE 60 and 65. A 
computer-code has been further developed to implement the model for routine analysis. 

1. Introduction 

In 1990, the International Commission on Radiological Protection (ICRP) recognized the 
occupational exposure of aircrew to cosmic radiation. [11 In Canada, a Commercial and Business 
Aviation Advisory Circular (CBAAC) was issued by Transport Canada suggesting that action 
should be taken to manage such exposure. [2] In anticipation of possible regulations on exposure 
of Canadian-based aircrew in the near future, an extensive study was carried out at RMC by the 
Nuclear Research Group to estimate the radiation absorbed during flights. 

The radiation exposure to aircrew is a result of a complex mixed-radiation field resulting from 
Galactic Cosmic Rays (GCRs) and Solar Energetic Particles (SEPs). Supernova explosions and 
active galactic nuclei are responsible for GCRs which consist of 90% protons, 9% alpha 
particles, and 1% heavy nuclei. [31 While they have a fairly constant fluence rate, their interaction 
with the solar magnetic field of the Earth varies throughout the solar cycles, which has a period 
of approximately 11 years. The radiation dose absorbed on airplanes due to GCR has been 
thoroughly studied and the empirical-based PC-AIRE code developed at RMC can predict the 
radiation dose with good accuracy. 

SEPs are highly sporadic events that are associated with solar flares and coronal mass ejections. 
While contributing less than 1% to the overall career exposure, this type of exposure may be of 
concern to certain aircrew members, such as pregnant flight crew, where the annual effective 
dose is limited to 1 mSv over the remainder of the pregnancy. [4] The composition of SEPs is 
very similar to GCRs, in that they consist of mostly protons, some alpha particles and a few 
heavy nuclei, but with a different energy spectrum. 
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To estimate the additional exposure due to solar flares, a model was developed using a transport 
code analysis with MCNPX; a Monte-Carlo radiation transport code. The model transports an 
extrapolated flux spectrum through the atmosphere using the MCNPX analysis. This code 
produces the estimated flux at a specific altitude where ICRP conversion rates are applied to 
convert the particle flux into an ambient dose equivalent. Transporting the flux through the 
atmosphere to ground level enables calculations of expected neutron-monitor count rates, which 
can be compared against NM data obtained from stations all around the world. 

2. Model Development 

2.1 Solar Flare Particle Spectrum 

The particle spectrum resulting from a solar flare is highly variable and sporadic. Satellite 
measurements provide near real-time data; one specific instrument is the Space Environment 
Monitor (SEM) on the Geostationary Operational Environmental Satellites (GOES). The SEM is 
capable of measuring the flux of solar and galactic particles and X-rays. The proton flux 
measurements necessary for our model are provided by energetic particle sensors (EPS) and the 
high-energy proton and alpha detector (HEPAD), which operate over a large range of energies 
(Table 1). 

In order to transport the particle spectrum through the atmosphere the GOES measurements must 
be extrapolated to a high energy of 10 GeV, which is accomplished by fitting the GOES data to a 
power-law equation for the differential flux using: 

f0(E) = 7)3 
Ro 

The particle rigidity R (in MV) is related to its energy E (in MeV) by the relation: 

(1) 

R = V E(E +2E o ) (2) 

2 
where E0 = moc2 is the rest mass energy of the particle (in MeV) and 13 = RI (R + E02 )1/2 is the 
particle velocity v normalized by the speed of light c. The parameter Ro = 239 MV in (1) 
corresponds to a particle energy of E = 30 MeV. 
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Figure 1 — High-Energy extrapolation of differential proton energy data from the GOES satellite 
for GLE 60. 

2.2 MCNPX Analysis 

The MCNPX code (version 2.5) was used to determine the particle production and transport in 
the atmosphere. Although secondary particles are produced by interaction of primary cosmic ray 
particles with atmospheric nuclei, only the production of neutrons and protons were considered. 
The atmosphere was divided into 36 concentric shells using an average air density for a given 
shell thickness. Secondary particle energy spectra produced from an incident mono-energetic 
source particle was tracked in the analysis. L51 Combined particle spectra (at a given altitude) 
were therefore obtained by summing the secondary particle spectra derived from each mono-
energetic primary particle based on the initial proton spectrum and helium spectrum. Dose 
conversion factors as well as neutron monitor response functions have been incorporated with 
the MCNPX results for a specific altitude. [61

As a preliminary test, the interstellar GCR spectrum was used to predict neutron and proton 
spectra on the ground and at 17 km. These results were compared to those measured by 
Goldhagen and Gordon and were determined to be in reasonable agreement. [7-91 Based on this 
agreement, the MCNPX analysis was applied to the SEP particle spectrum. For the GCR 
spectrum, a spherical geometry was used, since galactic rays are assumed to be isotropic, 
arriving from any direction. For the solar flare code, planer source geometry was used. Figure 2 
illustrates both geometries for transporting particles through the Earth's atmosphere. 
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Figure 2 — Spherical and Planer geometry for MCNPX transport code 

2.3 Vertical Cut-off Rigidity 

The Earth's magnetic field acts as a shield to incoming particles and radiation. Particles that do 
not have sufficient energy to penetrate the Earth's field bounce off the magnetic shield back into 
space. Therefore, a model of the cutoff rigidity has to take into account the properties of the 
Earth's magnetic field as well as geographical position. 

During an SPE, the Earth is bombarded with energetic particles causing major disturbances in 
the field. Not only do the particles contribute largely to the already-existing radiation (due to 
GCR), the solar wind during a geomagnetic storm can squish the Earth's magnetic field thus 
lowering the cutoff rigidity. 

The effect of the cutoff rigidity is taken into consideration in the calculation by summing up only 
those particles with energies greater than the vertical cutoff rigidity R. A low pass energy filter 
was applied to match the NM data where primary protons with energy less than 430 MeV were 
ignored in the summation. This filter was chosen by matching predicted results to observed 
ground-level NM data (See Table 2 for NM characteristics). This filter accounts for the 
attenuation of the lower-energy particles from the GOES satellite to the top layer of the 
atmosphere, as well as possible anisotropic effects of the solar flare as it reaches the Earth. 
Figure 3 illustrates the prediction of the model using various cutoff filters, leading to the final 
choice of 1 GV. Figure 4 show a comparison between the predicted NM count rates against data 
from NM stations around the world for GLE 60. 
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Figure 3 — Observed count rate history (minus GCR background) versus model predictions for 
GLE 60. 

GLE60 Peak Count Rate 

1.E+04 

1.E+03 

73- 1.E+02 
r.) 

i
—....fr.

re 
t 
i  1.E+01 

 A 
A • 

• • • • s 

'•• • 
ca 

1.E+00

. • 
•• 

•• 

•• 
• 

100 

1.E-01 

• 
1000 •  A 'II 

• 

' • 

Effective Cutoff Rigidity (MV) 

- - - RMC Model Predictions (0 km) A Thule Oulu 
Cape Schmidt • Lomniky Slit A Magadan 

• Irkutsk • Alma Ata Apatity 
• Jungfraujoch Kiel Newark 
A Rome A Yakutsk RMC Model Predictions (3 km) 

South Pole 

Figure 4 — Comparison of the model calculations to the observed peak count rates for 
various NMs located around the world during GLE 60. (Circles represent NMs at an 
altitude of 3 km, triangles represent NMs at an altitude of 0 km) 
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3.0 Results and Analysis 

To test the validity of the model, it was necessary to perform the solar flare calculation on 
GLEs where actual flight measurements exist, allowing direct comparison. One such event is 
GLE 60, where flight measurements were taken as part of the DOSMAX project. The results are 
illustrated in Figures 5a and 5b. As seen in Figure 5 (a), for example, the solar flare contributed 
45% to the total cumulative dose of 54 p,Sv for the PRG-JFK route. 
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Figures 5 (a) Comparison of calculations and measurements of the ambient dose equivalent rates 
during GLE 60 for PRG-JFK flight and (b) FRA-DFW flight. 
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(b) 

Figures 5 (a) Comparison of calculations and measurements of the ambient dose equivalent rates 

during GLE 60 for PRG-JFK flight and (b) FRA-DFW flight.  
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Another GLE where actual measurements were taken was GLE65. The measurements were 
provided by Beck et al, and the comparison between our model and the data can be seen in 
Figure 6. In general, there is good agreement between the model predictions and the measured 
ambient dose equivalent rates for both GCR and the enhanced rates due to SPEs. 
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Figure 6 - Comparison of calculations and measurements of the ambient dose equivalent rates 
during GLE 65. 

4. Summary and Conclusions 

A transport code analysis using MCNPX was used to propagate an extrapolated particle 
spectrum based on GOES satellite measurements through the atmosphere to estimate aircrew 
radiation exposure due to solar flares. The calculation was benchmarked against actual flights 
measurements as well as neutron monitor data recorded on ground level. A computer code has 
been developed to implement the calculation with the possibility of including real-time 
monitoring in the near future. 
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Table 1: Energy channels for Protons, Alphas and Electrons for the GOES-11 
Satellite (EPS and HEPAD) 

Particle 
Type 

Channel 
number Energy range (MeV) 

Detector 
Assembly 

Particle Rigidity 

(MV) 
P1 0.8 - 4 Telescope 
P2 4 - 9 Telescope 
P3 9 - 15 Telescope 168 —130 
P4 15 - 40 Dome 277 — 168 
P5 40 - 80 Dome 396 — 277 

Proton P6 80 - 165 Dome 580 — 396 
P7 165 - 500 Dome 1090 — 580 
P8 350 - 420 HEPAD 982 — 883 
P9 420 - 510 HEPAD 1103 —982 

P10 510 - 700 HEPAD 1343 —1103 
Pll 700 HEPAD 

Al 4 — 10 Telescope 
A2 10 — 21 Telescope 
A3 21 — 60 Telescope 
A4 60 —150 Dome 

Alpha AS 150 — 250 Dome 
A6 300 — 500 Dome 
A7 2560 — 3400 HEPAD 
A8 3400 HEPAD 

El >0.6 Dome 

Electron E2 2.0 Dome 
E3 .4..0 Dome 
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Telescope 

Telescope 

Telescope 

Dome 

Dome 
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HEPAD 

HEPAD 
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E1 
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E3 
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≥2.0 
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Table 2: Details of Ground-Based Neutron Monitors around the World 

Station Latitude 
(deg) 

Longitude 
(deg) 

Altitude 
(m) 

Air 
De pth 

(g cm_2) 

Detector 
Type 

Vertical 
Cut-off 
Rigidity 

(GV) 
Alma-ata 
Apatity 
Athens 
Baksan 

Barensburg 
Calgary

Cape Shmidt 
Climax 
Erevan 

Fort-Smith 
Haleaka 
Herman 
Inuvik 
Irkustk 

Jungraujoch 
Kerguelen 

Kiel 
Larc 

Lomnicky 

43.25 
67.55 
37.98 
43.28 
78.12 
51.08 
68.55 
39.37 
40.5 
60 

20.72 
-34.42 
68.35 
52.47 
46.55 
-49.35 
54.3 
-62.2 
49.2 
-77.9 
55.47 
-67.6 
19.33 
56.6 
69.26 
54.48 
39.7 
65.06 

55 
41.9 

-71.67 
-90 

41.43 
-66.67 
76.6 
-19.2 
71.36 
62.01 

76.92 
33.33 
23.78 
42.69 
14.42 

-114.13 
180.32 
-106.18 
44.17 
-112 

-156.27 
19.23 

-133.72 
104.03 

7.98 
70.27 
10.1 

-58.96 
20.22 
166.6 
37.32 
62.88 
-99.2 
-61.7 
88.05 

83 
-75.7 
25.47 
-85 

12.52 
-2.85 

0 
44.48 

140.02 
-68.8 
17.58 

128.54 
129.43 

3340 
177 
260 

1700 
0 

1128 
0 

3400 
3250 

0 
3052 
26 
21 
435 

3475 
33 
54 
40 

2634 
48 
200 
0 

2274 
0 
0 

163 
50 
0 
0 

60 
856 

2820 
510 
45 
260 

1240 
0 

105 

675 
1000 
980 
820 

1000 
883 

1016 
672 
700 

1013.3 
830 

1035 
1033.3 

984 
655.7 

1019.7 
1026.5 
999.3 
761.7 
992.5 

1019.7 
1009.52 

794.4 
1033.3 
1024.8 
1014.6 
1033.3 
1019.7 
1033.3 
1028.9 
897.4 
693.4 
984 

1006.5 
1025.1 
897.4 

1019.7 
1019.7 

18NM64 
18NM64 
6NM64 
6NM64 
6NM64 

12NM64 
12NM64 

IGY 
18NM64 
18NM64 
18NM64 
12NM64 
18NM64 
18NM64 
3NM64 

IGY 
18NM64 
6NM64 

IGY 
18NM64 
24NM64 
18NM64 
6NM64 

18NM64 
18NM64 
24NM64 
9NM64 
9NM64 

18NM64 
17NM64 
6NM64 
3NM64 
18NM64 
9NM64 
9NM64 

18NM64 
18NM64 
18NM64 

6.61 
0.57 
8.53 
5.6 

0.05 
1.08 
0.45 
2.99 
7.58 

0 
13.3 
4.58 
0.17 
3.64 
4.54 
1.14 
2.36 

3 
3.98 

0 
2.43 
0.22 
9.53 

0 
0.58 
0.58 
2.87 
2.09 

7 
6.32 
0.86 
0.09 
6.73 
0.02 

0 
9.21 
0.48 
1.65 

McMurdo 
Moscow 
Mawson-
Antractica 

Mexico 
Nain 

Norilsk 
Novosibirsk 

Newark 
Oulu 

Peawanuck 
Rome 
Sanae 

South Pole 
Tbilisi 

Terre Adelie 
Thule-Greenland 

Tsumeb 
Tixie 

Yakutsk 
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