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Abstract 

The kinetics of cathodic oxygen reduction is important to the evolution of crevice corrosion of 
Ni-Cr-Mo (W) alloys in high temperature brines. Various electrochemical and surface analytical 
techniques are being employed to investigate these kinetics on oxide-covered Alloy 22 surfaces and 
the film properties. Potential step experiments demonstrate that steady state currents depend on 
temperature and applied potential. The oxygen reduction currents were significantly suppressed by the 
growth of a passive film. Cyclic voltammetric experiments were conducted on surfaces pre-oxidized at 
different potentials throughout the passive region (-0.6 V to 0.6 V vs. Ag/AgC1) and temperatures 
(30°C - 90°C) in 5 mol L-1 NaC1 solution. The data demonstrate that the kinetics of oxygen reduction 
depend on both temperature and pre-oxidation potential. Oxygen reduction currents are strongly 
suppressed in the passive region, but revived as the potential approaches the transpassive region (> 0.4 
V). With increasing temperature, the passive current increases suggesting a decrease in film resistance. 
TOF-SINS depth profiles show a two-layer structure for the oxide film, with an inner region enriched 
in Cr2O3, NiO, MoO2, W02, and an outer region of Cr(OH)3, Ni(OH)2, MoO3, and W03. The thickness 
of the film increases with applied potential. EIS measurements show the film resistance reaches a 
maximum value in the passive region. 
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1. Introduction 

Because of its exceptional corrosion resistance, a Ni-Cr-Mo (W) alloy, Alloy 22 
(Ni-22Cr-13Mo-4Fe-3W) has been chosen as the reference material for fabrication of the outer barrier 
of the double-wall nuclear waste package for the Yucca Mountain repository in the U.S.A. In the 
development of corrosion models [1] to predict damage from the propagation of crevice corrosion, the 
kinetics of cathodic oxygen reduction are essential in determining passive corrosion rates, 
susceptibilities to localized corrosion, and propagation rates of localized corrosion processes. Despite 
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their importance, the kinetics of this reaction have not been extensively studied on oxide-covered 
Ni-Cr-Mo (W) alloys. 

It has been firmly established that in aqueous (neutral and alkaline) solutions, the cathodic 
reduction of 0 2 proceeds along one, or both, of the following two pathways [2]: 

(a) Direct four-electron transfer process 

0 2 + 21120 + 4e" —> 4011" EsHe= 0.401V (1) 
Two consecutive two-electron transfer processes involving 
the intermediate production of hydrogen peroxide 
0 2 + 21120 + 2e" —> 1120 2 +2011" EsHe= - 0.065V (2) 

(b) 

The influence of passive films on 0 2 reduction kinetics is known to be complex [3]. The kinetics of 
0 2 reduction have only been explored on "bare" Alloy 22 over wide ranges of pH and temperature 
[4]. A diffusion limiting current was found for high cathodic potentials at pH 4. The limiting 
current density increased over the temperature range from 20°C to 70°C, but decreased with a further 
temperature increase to 95°C. A dual-wave polarization curve, indicating two consecutive 
two-electron transfer processes and the formation of the intermediate, H20 2, was observed only at 70 
and 95°C. Recently, it was found that increased 0 2 concentrations resulted in increased corrosion 
potentials and corrosion rates of Alloy 625 (Ni-23Cr-10Mo-5Nb) in ammoniacal sulfate solution from 
25 to 200°C [5]. The corrosion rate became increasingly diffusion controlled as temperature and 
oxygen partial pressure were increased, reportedly as the barrier layer thickness and resistance 
decreased with temperature. 

Despite these efforts, the influence of the oxide film on Alloy 22, and similar Ni-Cr-Mo (W) 
alloys, on 0 2 reduction is poorly characterized. Various electrochemical techniques are being 
employed to investigate the kinetics of 0 2 reduction on Alloy 22, at temperatures up to 90°C in saline 
solutions similar to those anticipated within the Yucca Mountain repository site. Surface analysis 
techniques, are being employed to characterize the passive film and to determine the key film 
properties controlling 0 2 reduction kinetics. 

2. Experimental 

2.1. Electrochemical Experimental Setup 

A standard three-electrode, glass electrochemical cell was used for all experiments. The cell contains 
a working electrode, a pure platinum (99.95% purity) counter electrode and an in-house fabricated 
silver/silver chloride (Ag/AgC1) reference electrode in saturated KC1 solution (199mV vs. SHE at 
25°C). The cell has an outer jacket through which water is circulated from a thermostatic bath to 
maintain the temperature of the solution to within 1°C. 

5M NaCl solutions were used in all experiments. Prior to starting each experiment, the electrolyte 
solution was sparged for at least one hour in either Grade 4.4 oxygen or UHP argon (Praxair), and 
sparging was continued throughout the experiment. The solutions were maintained at pH 7.0 ± 0.2. 
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Electrodes were cylindrical specimens with a diameter of 1 cm and a height of 0.5-1 cm cut from 
plate materials. Each specimen was encased in a heat-resistant epoxy resin, and connected to a rotating 
disc assembly. A rotation rate of 23.3 Hz was used in experiments. Before each experiment, the 
working electrode (WE ) was polished using 320, 600, 800, 1000 and 1200 grade silicon carbide paper 
in sequence, and then ultrasonically cleaned for ten minutes in methanol and finally in deionized water. 

2.2. Electrochemical Experiments 

Figure 1 is a schematic of the potential profile used in potential step experiments to determine the 
polarization curves in both 0 2-sparged and Ar-sparged solutions. Figure 2 shows the potential profile 
used in potentiostatic and cyclic voltammetry (CV) experiments. 
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Figure 1. Schematic of potential profile used Figure 2. Schematic of potential profile used 

in potential step experiments in potentiostatic and CV experiments 

2.3. Surface Analysis 

An ION-TOF time of flight secondary ion mass spectrometer (TOF SIMS IV) was used to obtain the 
depth profiles of passive films grown potentiostatically on a cathodically cleaned Alloy 22 specimen. 
Electrochemical impedance spectroscopic (EIS) measurements were carried out with a 
Solartron1287/1255B system controlled by CORRWARE and ZPLOT Software programs. 

3. Results and Discussion 

3.1. Polarization curves 

Figure 3 compares the polarization curves recorded for Alloy 22 in 0 2-sparged and Ar-sparged 
solutions at various temperatures. Three distinct potential regions, but no active region, were observed: 
a cathodic reduction region, a passive region, and a transpassive region. The passive region was wider 
under 0 2 free conditions (-0.6V to 0.4V) than when 0 2 was present (-0.3V to 0.4V), indicating that 0 2
reduction was not completely suppressed by the defective oxide film until potentials > -0.3V were 
reached. Comparison of the cathodic reduction currents in these solutions, shows that oxygen 
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reduction accounts for the high cathodic current density on the forward scan in 0 2-sparged solution, 
whereas H2O reduction occurs when E < -0.7V. H2O reduction currents show a consistent temperature 
dependence, whereas the temperature dependence of 0 2 reduction currents is complex. This is most 
probably caused by the competition between an increase in the mass transfer rate with increasing 
temperature and a considerable decrease in oxygen concentration in the bulk solution at high 
temperatures, as observed by Macdonald et al [4]. 
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Figure 3. Polarization curves for Alloy 22 in 5M NaCl solution at 30°C, 50°C, 70°C, and 90°C: 
(a) in Ar-sparged solutions; (b) in 0 2-sparged solutions. 
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Figure 3.  Polarization curves for Alloy 22 in 5M NaCl solution at 300C, 500C, 700C, and 900C:  
          (a) in Ar-sparged solutions; (b) in O2-sparged solutions.  
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The reverse scans show that the cathodic current densities for both 0 2 and H2O reduction were 
significantly suppressed when compared to the forward scan. This suppression is attributed to the 
formation of the passive oxide at positive potentials. Behavior in the passive and transpassive regions 
was insensitive to the presence of 02. 

3.2. Potentiostatic and Cyclic Voltammetry (CV) Experiments 

Figure 4 shows current transients measured at 0 V at various temperatures in Ar-sparged solutions. It 
clearly shows that, at an applied potential of 0 V, the current was anodic and decreased substantially 
with time, indicating that passive film growth lead to the complete suppression of 0 2 reduction. The 
passive current increases with temperature, suggesting a decrease in film resistance at high 
temperatures. The current transients in 0 2-sparged solutions showed the similar behaviour. 
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Figure 4. Current-time behaviour for oxide film growth at 0 V at various temperatures 
in Ar-sparged solutions. 

After oxide film growth at constant potentials, the electrode potential was scanned from the holding 
potential to the cathodic limit of -1 V (forward scan) and back (reverse scan) (Figure 2) to measure the 
current for 0 2 reduction on the oxide film. Figure 5 shows a series of CVs performed at 70°C. The 
currents are shown offset to illustrate the differences. When the electrode was oxidized at low 
potentials (E < 0 V), reversible current-potential behaviour was observed and no 0 2 reduction wave. 
This suggests the oxide film grown even at low potentials effectively eliminated or suppressed the 0 2
reduction current on the forward scan. After oxidation at high potentials (0.4 V and 0.6 V), 0 2
reduction was revived on the forward scan and a well-defined 0 2 reduction wave was observed in 
0 2-sparged solutions, or a large film reoxidation peak on the reverse scan in Ar-sparged solutions. 
The size of the reoxidation peak observed in the absence of 0 2 increases with the preoxidation 
potential, indicating the formation of a thicker, more oxidized (i.e., containing metal cations in 
higher oxidation states) and, hence, more defective oxide film. In 0 2-sparged solutions, this leads to 
a revival of the 0 2 reduction current. 
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Figure 5. CVs recorded after film growth at various potentials at 70°C in 

(a) 0 2-sparged solutions; (b) Ar-sparged solutions. 

3.3. Surface Analyses 

Figure 6 shows TOF-SIMS depth profiles for the passive film on Alloy 22 grown at 0 V and 30°C 
in Ar-sparged solutions. While these profiles are not quantitative, the relative distributions of the 
various elements and their compounds can be determined. The profiles for Ni, Cr, Mo and W, clearly 
show the presence of a two-layer structure for the oxide film, with an inner region enriched in Cr2O3, 
NiO, MoO2, W02, and an outer region of Cr(OH)3, Ni(OH)2, MoO3, and W03. By comparison, after 
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Figure 5.  CVs recorded after film growth at various potentials at 700C in  
(a) O2-sparged solutions; (b) Ar-sparged solutions. 
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oxidation at 0.6 V, the TOF-SINS profiles show more Mo and W oxide present in the film, especially 
in higher oxidation states. Also, the Cr (OH)3 and Ni(OH)2 content of the film increases. Both effects 
lead to a thickening of the oxide layer. 
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Figure 6. TOF-SIMS depth profiles for Alloy 22 after oxidation at 0 V and 30°C 
in Ar-sparged solution. 

The overall film resistances (from EIS measurements) as a function of film-growth potential and 
temperature are shown in Figure 7. The resistance shows three regions similar to those observed in 
electrochemical experiments and by other researchers on Ni-Cr alloys [6]. The maximum resistance 
of the film is observed in the range —0.4 V< E < 0.3 V; i.e., in the potential region where passive 
behaviour is observed. At lower potentials, the resistance increases with increasing potential, consist 
with defect annealing in the oxide. At potentials above 0.2 V, the resistance decreases with increasing 
potential, which indicates the onset of transpassive dissolution with higher oxidation states of film 
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Figure 7. Film resistances as a function of film-growth potential and temperature 
in Ar-sparged solutions 

applied potential. Three distinct regions were observed in the polarization curve for Alloy 
22. The cathodic currents for both 02 reduction and H2O reduction were significantly 
suppressed by the growth of a passive film. 0 2 reduction only occurs when the film is defective. 
While H2O reduction currents show a consistent temperature dependence, the dependence of 
0 2 reduction currents on temperature is complicated. 

(3) Cyclic voltammetric experiments were conducted on surfaces pre-oxidized at different potentials. 
The data demonstrate that the kinetics of oxygen reduction depend on both temperature and 
pre-oxidation potential. Oxygen reduction currents are strongly suppressed in the passive region, 
but revived as the potential approaches the transpassive region (E > 0.4 V). 

(4) TOF-SIMS depth profiles show a two-layer structure for the oxide film, with an inner region 
enriched in Cr2O3, NiO, MoO2, W02, and an outer region of Cr(OH)3, Ni(OH)2, MoO3, and 
W03. The thickness of the film increases with applied potential. EIS measurements show the 
film resistance reaches a maximum value in the passive region, consistent with the small 
passive currents observed in this region in electrochemical experiments. The resistance 
decreases in the transpassive region, in agreement with the film transformation to more soluble 
states containing higher oxidation states and hydroxides. 
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(3)  Cyclic voltammetric experiments were conducted on surfaces pre-oxidized at different potentials. 
The data demonstrate that the kinetics of oxygen reduction depend on both temperature and 
pre-oxidation potential. Oxygen reduction currents are strongly suppressed in the passive region, 
but revived as the potential approaches the transpassive region (E > 0.4 V).  

 
(4)  TOF-SIMS depth profiles show a two-layer structure for the oxide film, with an inner region 

enriched in Cr2O3, NiO, MoO2, WO2, and an outer region of Cr(OH)3, Ni(OH)2, MoO3, and 
WO3. The thickness of the film increases with applied potential. EIS measurements show the 
film resistance reaches a maximum value in the passive region, consistent with the small 
passive currents observed in this region in electrochemical experiments. The resistance 
decreases in the transpassive region, in agreement with the film transformation to more soluble 
states containing higher oxidation states and hydroxides.  
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