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Abstract 

For broad classes of safety analysis problems, one needs to make decisions when faced with 
randomly varying quantities which are also subject to errors. The means for doing this involves a 
statistical approach which takes into account the nature of the physical problems, and the statistical 
constraints they impose. The paper describes the methodology for doing this which has been de-
veloped at Nuclear Safety Solutions, and draws some comparisons to other methods which are 
commonly used in Canada and internationally. Our methodology has the advantages of being ro-
bust and accurate and compares favourably to other best estimate methods. 

Introduction 

The objective of this paper is to present a discussion on how statistical inference is used to 
deal with common classes of safety analysis and compliance problems. The approach is based on 
demonstrating the statistical basis for reaching decisions for two classes of problems where uncer-
tainty and variability are present. The paper is presented in two parts. Part I develops the statistics 
needed to deal with a situation in which the source of uncertainty is due to the random nature of 
the computational or the measurement error (sometimes referred to as epistemic errors). In Part II, 
this is extended to the more complex situation where random behaviour arises not only from com-
putational error but also within the variables themselves. In each of these situations we provide the 
statistical foundations needed to make cogent decisions. 

The types of safety analysis problems considered, and where these sort of decisions need 
to be made, fall into two complementary groups. In the first group, one tries to demonstrate that 
the maximum value of a variable, or the appropriate proportion of its distribution, is less than a 
specified limit to within a specified confidence. In the second group, one tries to demonstrate that 
the minimum value of a variable, or the appropriate proportion of its distribution, is computed to 
within a specified confidence. 

In the course of the discussion, the unique features of our approach are also pointed out, 
e.g., Monte Carlo simulation is used to estimate the error in the output variable. Comparisons are 
made to other commonly used statistical approaches for dealing with these problems. A feature of 
particular interest in our approach is the utilization of reactor operating history to provide a natural 
random sample to do our estimation. This contrasts with other approaches which produce such a 
random sample from postulated probability distributions. 
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PART I: STATISTICAL ANALYSIS FOR A FIXED VARIABLE 

Let x = [x1, x2, x3, ..., xm] be a fixed vector of variables that are non-random and deter-
mine another variable y whose value is of interest in a particular safety analysis. We denote this 
relationship by 

Y = F(x), (1) 

where .Frepresents the relationship in the physical model. (For example, y may represent fuel tem-
perature following a postulated LOCA. x represents initial channel powers, pressure drops and all 
the other variables that are involved in predicting y .) For the sake of simplicity it is assumed that 
the model 9 is "perfect" in a sense that if x were true (i.e., known without error) then y would be 
the true value of the variable of interest. 

Let X be the computed or measured value of x with an error 8 = [81, 82, ..., 8m] , that is, 

X = x + . 
The corresponding Y is 

(2) 

Y = F(X), 

and the error, E , in using Y in place of y is given by 

= Y— y = F(X)— F(x). 
Therefore, 

= F(X + 8) — F(X), 

(3) 

(4) 

(5) 

X is assumed to be a random variable which arises either as a measurement or a value of 
an imperfect code. Hence, both [81, 82, 83, ..., 8m] and Y are also random variables. We refer to 
X and Y as best estimates. 

1. Statement of the statistical problem 

Using X, Y and 8 defined above, find an upper (A), or lower (B) confidence limit for 
y . That is, for a given 13 (such as 13 = 0.95), let 

Or, 

Problem (A): 

Problem (B): 

P[Y = [3, 

P[Yr3 = R. 
(P [E] denotes the probability of an event E.) The choice of the above problems depends on the 
the physical nature of the situation of interest - examples of both are presented further on. 

2. Solution 

For a given 13 , find an uncertainty u = u( [3) such that 

Y = Y — u (6) 

PART I: STATISTICAL ANALYSIS FOR A FIXED VARIABLE

Let be a fixed vector of variables that are non-random and deter-
mine another variable whose value is of interest in a particular safety analysis. We denote this
relationship by

, (1)

where represents the relationship in the physical model. (For example, may represent fuel tem-
perature following a postulated LOCA. represents initial channel powers, pressure drops and all
the other variables that are involved in predicting .) For the sake of simplicity it is assumed that
the model is “perfect” in a sense that if were true (i.e., known without error) then would be
the true value of the variable of interest.

Let be the computed or measured value of with an error , that is,

. (2)
The corresponding  is

, (3)

and the error, , in using  in place of  is given by

. (4)
Therefore,

, (5)

is assumed to be a random variable which arises either as a measurement or a value of
an imperfect code. Hence, both and are also random variables. We refer to

 and  as best estimates.

1.    Statement of the statistical problem

Using , and defined above, find an upper (A), or lower (B) confidence limit for
. That is, for a given  (such as  = 0.95), let

Problem (A): ,
or,

Problem (B): .

( denotes the probability of an event E.) The choice of the above problems depends on the
the physical nature of the situation of interest - examples of both are presented further on.

2.    Solution

For a given , find an uncertainty  such that

(6)

x x1 x2 x3 … xM, , , ,[ ]=
y

y F x( )=
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solves the above problems. u = u (13) is determined as a percentage point of the pdf(e) - the prob-
ability distribution function for E in (5). By definition, for 0 « 13 < 1, the upper 1 00 13 percentage 
point ep is given by 

P[e ep] = 13, 

while the lower 1 00( 1 - 13 ) percentage point ei _ p is given by 

P[e = 1 - 13. 

Thus, for problem (A), we have, 

13 = P[Yp = P[Y—u = P[Y — u] = P[e u] = 1 —P[e u]. 

Therefore, 
P[e z.t] = 1 - 13, 

and hence, 

For problem (B), we have 

and hence 
13 = P[Y = P[E 14], 

U = £p . 

(7) 

(8) 

If the pdf(e) were symmetric about zero then el _ p = - Ep and the uncertainties for both 
problems (A) and (B) would be of the same magnitude with opposite signs. However, in general, 
for many safety analysis problems, pdfie) is not symmetric about zero. Typically, errors, such as 
8 , are symmetric about zero, but the result of a possibly non-linear computation in (5), are neither 
centered about zero nor symmetric. In particular, if F involved maxima or minima then E would 
necessarily have a skewed distribution as discussed later in this paper. 

3. Relationship between the statistical problem and a physical problem 

The above two problems (A) and (B) represent typical problems encountered in safety re-
lated analyses. An example of Problem (A) would be the following. Let L be a prescribed licence 
limit to define a safe operating envelope, then the condition on a particular variable y (such as a 
maximum reactor channel power) that defines such an envelope is 

y<L. 

To satisfy this condition at any reactor state using the computed value Y (i.e., the best es-
timate) it is natural to consider the null and alternate hypothesis [1], respectively, to be 

}10: 

HA: y < L . 

If the significance level for the test of these hypotheses is required to be at most 1— 13 then the 
appropriate test statistic is provided by (6) and (7). That is, 
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Y = Y - 13 1 - 13 • 
Therefore, if Yp < L , or 

Y < L + ei _ p , (9) 

then we reject the null hypothesis, Ho, in favour of the alternative HA, that is, we can conclude 
y < L . It should be noted that in most cases e _ p is negative and hence the alternative hypothesis 
will be accepted if the measured value Yis sufficiently less than the target L. Nonetheless, it is pos-
sible for e _ p to be positive and this leads to a decision rule that, while appearing to be counter-
intuitive, is correct. For instance, if the error E is such that Y greatly over-estimates y then this 
would be the case. 

The second problem (B) may represent components of a reactor special safety system. For 
example, the design intent of a regional, or, neutron over-power trip set-point for a CANDU reactor 
is to provide a high level of assurance that the reactor will trip prior to the onset of dry-out during 
a loss of regulation event. Thus, if y represents the true neutron power for which the dry-out would 
actually occur, then Yp in (B) given by (6) and (8), i.e., 

Y = Y - R 

would be the appropriate trip set-point to be installed. The required "high level of assurance" is 
expressed by 13 in (B). Y, the best estimate, is the computed trip set-point under specified reactor 
conditions using data at a given reactor state [2], [3]. 

We observe that the statistical test (9) to test the above null hypothesis Ho is unusual in sta-
tistical practice, in that it is based on a single observation Y rather than a sample of observations 
and that pdf(e ) is not known. In order to be able to perform this statistical test, one needs to have 
the ability to estimate pdf(e) in (5). How to do this is shown in the next section. 

4. Estimation of the error in the best estimate 

The error E in the best estimate Yis given by (5). Since, in general, the (true) input variable 
x cannot be known to us, it is impossible to use (5) to compute E . As argued in [4], or [5], essen-
tially the only way to estimate E is to use "surrogate" true values instead of x. These, of course, 
are given by X in (2). In order for this method to work we need to assume that F in (1) does not 
change rapidly in the neighbourhood of x defined by the error 8 . In the actual computation, the 
physical model 9 is represented by a mathematical formulation, say . A fundamental assump-
tion is that, phenomenologically, 9 is a good representation of F. This assumption is noted in [4], 
or [6]. Using the surrogate values X and the known errors 8 we obtain the estimated error E using 

= #-(X + 8) - #-(X). (10) 

The interpretation of the above assumptions on F and is that pdf pdf(e) , or, that the dif-
ferences between corresponding percentage points for pdf(e) and pdf , respectively, are neg-
ligible. 

.

Therefore, if , or

, (9)
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In principle, for given X, the probability density function, pdf , can easily be obtained 
by a Monte Carlo simulation. That is, randomly sample the known distribution for 8 = [ 81 , 82 , 
om] to obtain a random sample for E using (10). This random sample then defines pdf . Since 
the convergence of a Monte Carlo algorithm is rather slow (the error of the approximation behaves 
like 0(1V-112) where N is the number of simulations), at least 10000 simulations are needed to get 
reasonable results. 

If evaluation of is significantly computationally intensive then the Monte Carlo algo-
rithm may not be practical. In this case we may use the response surface approach [7] in which 9 
is replaced by a "simpler" function in the neighborhood of X which is easy to evaluate making the 
Monte Carlo simulation feasible. Alternatively, one could use the non-parametric order-statistics 
approach to estimate e _ p or ep (used elsewhere in best estimate and uncertainty analyses -
BEAU, such as a GRS method [8]). 

5. Comparison to existing methods 

In order to compute Yp to solve either a problem (A) or (B), we need to be able to estimate 
- see (6), (7), (8) and (10). To the best of our knowledge, no other work in the area of BEAU 

analyses estimates the error in the best estimate in order to provide rigorously defined statistical 
confidence limits on the desired variable y. 

Traditional uncertainty analyses using a Monte Carlo simulation are based on a heuristic 
approach to estimate the required confidence limits [9]. Using our terminology, the approach is 
based on a Monte Carlo simulation to obtain a probability distribution for a variable U, given by 

U = #-(X + 8) (11) 

for a given X. For a desired 13 , an upper, or lower, percentage point Up is computed, i.e., 

P[U Up] = [3, (12) 
or, 

P[Up U] = [3, (13) 

depending on the nature of the underlying physical problem that is required to be solved. 

We suggest that problems (A) and (B) are statistically rigorous representations of these un-
derlying physical problems, while (12) and (13) are only heuristic or "intuitive" representations of 
such problems. The latter appears to be predicated on identifying U with y in (12) or (13) and an 
assumption that the underlying distributions are all symmetric. (This is only an attempt to under-
stand the reasoning behind the traditional approach.) While U in (11) is an approximation toy in 
(1), it certainly is not y. We will show that, in general, the rigorous and heuristic problems are sig-
nificantly different by showing that Yp in (6) is different from Up in the corresponding problem 
(12) or (13). In fact, we will show that the two are the same only in a very special case when the 
probability distribution for E in (5) is symmetric about zero. While the distributions for the errors 
8 = [ S1 , 82 , öm] could very well be symmetric about zero, E will be symmetric about zero 
only if, in addition, F can reasonably be represented by a linear function in the 8 -neighborhood 
of x. For a very important class of problems in safety analyses where F includes maximization (or 
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minimization) over a region of the reactor core, 8 possesses an extreme value probability distribu-
tion. Such a distribution is not symmetric and has a non-zero mean [10]. We will also show that 
U is a conservative solution in that it bounds Y R 

Using (10), (11) and (3), the estimate E of the error 8 is 

= U - Y , 
or, 

Y = U - . 

(Clearly, the best estimate Yin (3) can only be obtained with ," .) For problem (A) we have 

Y = Y-8 = 13 1 —13 1 —13 

from (6) and (7). Hence, 
U = Yp -Fe-Fei _ p . 

Substituting this into (12), the definition of Up for problem (A), we get 

13 = P[Up U] = P[Up Yp+ e+Ei_p] = Pr g Up- Yp-ei _p] 

Therefore, Up - Yp - ei _ p is an upper 10013 percentage point of E , i.e., 

U - Y = R R -  1- R R 
Or, 

U - Y = R R R 1 -13' 

Based on our fundamental assumption, the percentage points for E and 8 are nearly the same and 
hence 

U - Y = 813+81_1. 

For 

R R i-R .

For problem (B) we get the same result. For, 

p = P[up u] = P[up Yp ±e±Ep] = P[g Up — Yp — gp] 

= 1 — P[g Up — Yp - ep]. 

Therefore, 
P[e Up- Yp -e p] = 1 -13, 

which is a definition of the lower 100(1-(3 ) percentage point. Thus, 

Up — Yp — £p = ei _ . 

leading to the same result as in (14) 

Clearly, if 8 were symmetric about zero then, by definition, 

and hence, 
Ep = 

U = Y R 

(14) 
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Thus, the interpretation that problems (12) and (13) solve problems (A) and (B), respectively, can 
be made only under the assumption that the error in estimating the required variable is symmetric 
with a zero mean. In general, ep + el _ p is not zero and the "traditional" approach will necessarily 
produce different solutions from the ones we are proposing. 

There is an important class of safety analysis problems for which the function 5" involves 
taking extreme values over a portion of the reactor core. Our earlier two examples (channel power 
compliance problem and trip set-point calculation) are of this nature. We will show that for such 
class of problems, the traditional BEAU approach produces conservative solutions. 

A problem, such as channel power compliance with the licence limit, which requires max-
imization over a portion of the reactor core would, typically, require a solution of the form charac-
terized by problem (A). The error 8 in (10) is obtained from the (parental) errors 8 and involves 
maximization (based on the form of 5). Therefore, it must possess extreme value distribution with 
a positive mean [5]. Moreover it is also positively skewed (see Figure below). This means that 

£p > —81 _p, 

or, 

ep + 81 _ p > 0. 

Problem (A): Probability Density Function for 

1- R 

—e SR
—13 0 1 —13 

Using this inequality in (14), it is evident that 

U > R Y1. 

In conjunction with problem (A), this result means that 

P[Up y] >13, 

Thus, the interpretation that problems (12) and (13) solve problems (A) and (B), respectively, can
be made only under the assumption that the error in estimating the required variable is symmetric
with a zero mean. In general, is not zero and the “traditional” approach will necessarily
produce different solutions from the ones we are proposing.

There is an important class of safety analysis problems for which the function involves
taking extreme values over a portion of the reactor core. Our earlier two examples (channel power
compliance problem and trip set-point calculation) are of this nature. We will show that for such
class of problems, the traditional BEAU approach produces conservative solutions.

A problem, such as channel power compliance with the licence limit, which requires max-
imization over a portion of the reactor core would, typically, require a solution of the form charac-
terized by problem (A). The error in (10) is obtained from the (parental) errors and involves
maximization (based on the form of ). Therefore, it must possess extreme value distribution with
a positive mean [5]. Moreover it is also positively skewed (see Figure below). This means that
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Problem (A): Probability Density Function for
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showing that Up is a conservative solution because it exceeds y with a probability that is larger 
than what is required. 

Another problem, such as the computation of the neutron over-power trip-setpoint which 
requires minimization of the margin to dry-out over a portion of the reactor core would, typically, 
require a solution of the form characterized by problem (B). For this problem, the definition of the 
error E in (10) involves minimization. Therefore, it must possess extreme value distribution with 
a negative mean and is negatively skewed (see Figure below). This means that el _ p < - 8p , or, 
ep + E1 _ p < 0 . Using this inequality in (14), we see that Up < Y. . In conjunction with problem 
(s), this means that 

P[U y] >13. 

This shows that U is a conservative solution because it is smaller than y with a probability that 
is larger than what is required. 

Problem (B): Probability Density Function for 

PART II: STATISTICAL ANALYSIS FOR A RANDOM VARIABLE 

The previous analysis for Problem (A) is extended to a situation where y is itself a random 
variable with a probability density function g(y) . Since, in principle, y covers the whole real line, 
or, at least all positive numbers, we need to identify a percentage point, say yy  ,, for some (positive) 
number y < 1. y signifies the proportion of all y of interest. (See figure below). For example, y 
may represent (true) fuel sheath temperature under LOCA. Since there are variations in LOCA out-
come due to variations in the normal reactor operating states, there is a variation of associated fuel 

showing that is a conservative solution because it exceeds y with a probability that is larger
than what is required.

Another problem, such as the computation of the neutron over-power trip-setpoint which
requires minimization of the margin to dry-out over a portion of the reactor core would, typically,
require a solution of the form characterized by problem (B). For this problem, the definition of the
error in (10) involves minimization. Therefore, it must possess extreme value distribution with
a negative mean and is negatively skewed (see Figure below). This means that , or,
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may represent (true) fuel sheath temperature under LOCA. Since there are variations in LOCA out-
come due to variations in the normal reactor operating states, there is a variation of associated fuel
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sheath temperatures y . This variation is represented by the probability density function g(y). We 
are also given a fraction y (such as 0.95 or 0.99) where 1— y represents the fraction of LOCAs for 
which a fuel channel failure would be tolerated. If L represents a temperature at which the fuel 
sheath fails (or is considered failed) then, naturally, we would like 

yy L . 

The extension of Problem (A) is to find an upper tolerance limit, say Yy  p , such that 

P EYY 131 = P ,

(15) 

(16) 

for some given (large) 13 < 1, such as 0.95. The above probability is related to the (cumulative) 
probability function for the estimate Yy, . If the computed value of Y p happens to be less than 
L then we postulate that y proportion of y lies below the limit L at the safety level (y, 13 ). This 
notion of safety level is presented in [6]. 

g(y) 

Yy 

If we had a random sample of y values and, say, g(y) were normal, we could use [11] to 
compute the tolerance limit Yy  p . Alternatively, one could use a non-parametric (distribution-free) 
order statistics approach [12] to estimate Yy  pi . However, in reality, it is not possible to know y 
and therefore we need to obtain the tolerance limit Y p based on the observed (computed) random 
sample from Y. We will refer to equations (1) through (5), where the input variable x = [x1 , x2 , 
x3 , xm ] will now be a vector valued random variable and, as a result, y in (1) will be a random 
variable. Of course, this will make X in (2), Y in (3) and E in (5) random variables with much 
richer structures than the corresponding ones in the previous Section. 

6. Algorithm for computing Yy, p 

Let us assume that we have an independent sample x1 , x2 , x3 , xn of the input vari-
ables. Such a random sample may be derived from a set of operating reactor states where an appro-
priate input variable for state k is xk . As a result, we have random samples {yk} , { Xk } , { Yk} 
and { E(xk) } , given by, respectively, 

Yk = F(Xk), 

X k = Xk +8, 

sheath temperatures . This variation is represented by the probability density function . We
are also given a fraction (such as 0.95 or 0.99) where represents the fraction of LOCAs for
which a fuel channel failure would be tolerated. If represents a temperature at which the fuel
sheath fails (or is considered failed) then, naturally, we would like

. (15)

The extension of Problem (A) is to find an upper tolerance limit, say , such that

, (16)

for some given (large) < 1, such as 0.95. The above probability is related to the (cumulative)
probability function for the estimate . If the computed value of happens to be less than

then we postulate that proportion of lies below the limit at the safety level ( ). This
notion of safety level is presented in [6].

If we had a random sample of values and, say, were normal, we could use [11] to
compute the tolerance limit . Alternatively, one could use a non-parametric (distribution-free)
order statistics approach [12] to estimate . However, in reality, it is not possible to know
and therefore we need to obtain the tolerance limit based on the observed (computed) random
sample from . We will refer to equations (1) through (5), where the input variable = [ , ,

, ..., ] will now be a vector valued random variable and, as a result, in (1) will be a random
variable. Of course, this will make in (2), in (3) and in (5) random variables with much
richer structures than the corresponding ones in the previous Section.

6.    Algorithm for computing

Let us assume that we have an independent sample , , , ..., of the input vari-
ables. Such a random sample may be derived from a set of operating reactor states where an appro-
priate input variable for state k is . As a result, we have random samples , ,
and , given by, respectively,
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Y γ β,

P yγ Y γ β,≤[ ] β=

β
Y γ β, Y γ β,

L γ y L γ β,

g y( )

yLyγ

γ

y g y( )
Y γ β,
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Yk = F( X /c) 

E(xk) = F(xk + 8) — F(xk). 

Note that an estimate of E(xk) can be obtained similarly as in (10) by taking surrogate values X 
= X k for each reactor state. 

From the Monte Carlo simulations, which allow us to obtain the pdfs for E(xk) for all re-
actor states, we can obtain samples {1.4} and { ak} , defined by, 

Nk = E[e(x k)] , 

2 
(5k = Var[E(X/c)], 

respectively. For a given y and 13 , we define a sample of uncertainties 

uk = + qa k , 

for some q = q(y, (3) . (q is the same for every state and is chosen in a way shown below.) 

Following the prescription in (6), we define 

Yy, p, k = Yk — Uk 

for every reactor state k. The required tolerance limit Yy  p in (16) is obtained from 

Yy, p = upper 100y percentile of the sample { Yy  . 

7. Determination of q = q(y, 13) 

(17) 

The tolerance limit YY R in (17) above will satisfy (16) only if q = q(y, (3) is appropri-
ately chosen. In order to find such an appropriate q = q(y, (3) , we will seek to express Yy, p 

in the form 

1 
Y = yY + h0 (rY' 

n 
q) + —,h(rv, q)z, (18) 

where z is the standard normal variate, i.e., z N(0, 1). n is the sample size and h0 = ho(ry, q) , 
h = h(ry, q) > 0 are some suitable functions of ry and q . ry is defined as 

y — E[y] 
r, 

Var[y] 

(Functions h0 and h > 0 in (18) can be shown to exist for some practical problems of interest under 
the assumption that the sample size n is sufficiently large so that the central limit theorem [1] can 
be used to approximate the average values.) 

Substituting (18) into (16), we get, 

PLyy yy + ho(r q)+ h(r q)zi= (3 , 
AIT7 

,

.

Note that an estimate of can be obtained similarly as in (10) by taking surrogate values
=  for each reactor state.

From the Monte Carlo simulations, which allow us to obtain the pdfs for for all re-
actor states, we can obtain samples  and , defined by,

,

,

respectively. For a given  and , we define a sample of uncertainties

,

for some . (q is the same for every state and is chosen in a way shown below.)

Following the prescription in (6), we define

for every reactor state k. The required tolerance limit  in (16) is obtained from

 = upper 100γ percentile of the sample . (17)

7.    Determination of

The tolerance limit in (17) above will satisfy (16) only if is appropri-
ately chosen. In order to find such an appropriate , we will seek to express
in the form

, (18)

where is the standard normal variate, i.e., . n is the sample size and ,
 are some suitable functions of  and .  is defined as

.

(Functions and in (18) can be shown to exist for some practical problems of interest under
the assumption that the sample size n is sufficiently large so that the central limit theorem [1] can
be used to approximate the average values.)

Substituting (18) into (16), we get,

,

Y k F X k( )=

ε xk( ) F xk δ+( ) F xk( )–=

ε xk( ) X
X k

ε xk( )
μk{ } σk{ }

μk E ε xk( )[ ]=

σk
2

Var ε xk( )[ ]=

γ β

uk μk qσk+=

q q γ β,( )=
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Y γ β,

Y γ β, Y γ β k, ,{ }
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q q γ β,( )= Y γ β,

Y γ β, yγ h0 rγ q,( ) 1
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and hence 
- z> ho(r y, q) p

L h(r y, q) 
Or, 

p r z  < h o(r y, q) 411 p

L h(r y, q) 

The percentage point z 1 _ p is defined as P[z zi _ p] = 1— p and by symmetry z i _ p = 

Hence, 
ho(rv, q) = 

h(r y, q)
 4 n z R

or, 

h o(r y, q)4ii — zph(r y, q) = 0 . 

Equation (19) is to be solved for q. 

We note that for the solution q = q(y, 13) , we have 

h o(r y, q) = y, q)

Therefore, the expression for Yy  p in (18) becomes 

Y
Y, R = yY n 

+ h(rv, q)(z + Zp) 

(19) 

For a sufficiently large number of reactor states and certain assumptions on the size of some 
parameters (which hold for some practical problems of interest, such as the compliance with max-
imum channel power licence limit alluded to in the previous Section) it is possible to derive q = 
q(y, (3) explicitly. Since the derivation is rather involved we will only give a solution for the sake 
of interest. Namely, it can be shown that the solution to (19) is 

where, 

q  
Zp 

41 + x2 + A 

2 
2 r -1(

4 

1 ± 1C ± 
1 +

2 1 + .K2 ' 

K = n  ✓Var[y] 

La k 
Note that all the above terms in the above formulae can be readily approximated. 

and hence

,

or,

.

The percentage point is defined as and by symmetry .
Hence,

,

or,

. (19)

Equation (19) is to be solved for q.

We note that for the solution , we have

.

Therefore, the expression for  in (18) becomes

,

For a sufficiently large number of reactor states and certain assumptions on the size of some
parameters (which hold for some practical problems of interest, such as the compliance with max-
imum channel power licence limit alluded to in the previous Section) it is possible to derive =

explicitly. Since the derivation is rather involved we will only give a solution for the sake
of interest. Namely, it can be shown that the solution to (19) is

,

where,

.

Note that all the above terms in the above formulae can be readily approximated.
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8. Conclusion 

We have described a methodology which provides a rigorous statistical treatment applica-
ble to a variety of safety analysis problems. This treatment has been applied successfully to deci-
sion making using a BEAU approach. Historical reactor operational history provides a natural 
random sample leading to accurate results. In our approach, Monte Carlo simulation is used to de-
rive the error separately to obtain any desired confidence limit for the best estimate. 
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