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ABSTRACT 

Simulating two-phase flow and forced-convection boiling heat transfer constitute important 
aspects in performing nuclear power-reactor safety analysis. In this work, a transient 
thermalhydraulic code named ARTHUR (Advanced Routines of Thermal-Hydraulics for 
Unsteady-states Reactors) was developed and coupled to an existing neutronic code, 
DONJON-3. To this aim, the flow equations based on the drift-flux model were discretised 
using a second-order finite-difference for the space domain and a first-order fully implicit 
method for the time. The flow model has been validated by comparing the simulations with 
experimental boiling two-phase flow data obtained in uniformly heated tubes. Also, the heat 
transfer equations for the central pin were discretised using the same discretisation scheme 
and the model was validated by comparing the simulations with analytical solutions. Finally, 
coupled neutronic-thermalhydraulic simulations of a simplified CANDU four-channel reactor 
have been done for several transient conditions. 

I. INTRODUCTION 

The safety analysis of nuclear power plants requires coupled neutronic-thermalhydraulic 
calculations. For CANDU systems, coupled neutronic-thermalhydraulic simulations presently 
use a simplified model with up to 10 representative thermalhydraulic channels. It is elusive, 
from a logistical view point, to perform thermalhydraulic simulations of channels, without 
linking them to their neutronic counterparts. Therefore, in this work we achieve channel-by-
channel simulation in parallel to a neutronic code. The thermalhydraulic calculations are 
carried out for the central pin of all 12 contiguous 37-pin fuel bundles and it is assumed that 
for each axial location in the fuel channels, the flow conditions around are the same as those 
prevailing for the central pin. This consideration reduces the computational power required 
for transient calculations and permits us to explore feedback effects between the neutron flux 
distribution and the thermalhydraulic properties under such conditions. In a first step, we will 
describe the thermalhydraulic ARTHUR code. Both flow and thermal parts of the code are 
validated by comparing simulation results with experimental or analytical data. Then, the 
coupling of ARTHUR with the neutronic code DONJON-3 is described and the results of 
coupled transient simulations are presented. 

II. TWO-PHASE FLOWS MODEL 

We consider first two-phase flow conservation equations based on the drift-flux 
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model [1]; they are written as follows: 
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To complete the system of equations, we used Saha-Zuber [2] model to determine the 
flow quality and the void fraction in the subcooled boiling region, the Muller-Steinhaggen [3] 
correlation is used to determine two-phase frictional pressure losses while the Chexal-
Lellouche [4] correlation is applied in order to calculate the two-phase flow distribution 
coefficient and the drift velocity. The equations are written in numerical form by using a 
second-order finite-difference discretisation for the space domain and a first-order fully 
implicit discretisation for the time. The thermophysical properties the water (coolant) are 
calculated with the IAPWS-971F formulation [5]. 

This portion of the code (i.e., thermalhydraulic model alone) was validated by 
comparing the simulations with data obtained from experiments carried out in vertical round 
uniformly heated tubes [6]. Figure 1 shows the comparison of the simulations with single-
phase flow data. 
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Figure 1. Comparison of simulated vs. measured pressure drop 
under single-phase flow conditions [6]. 

2.5 

For an axial location of 2.16 m there is a very small difference that is due to the 
discretisation scheme. In fact, the total length of the tube is subdivided in N nodes while the 
measured data at 2.16 m corresponds to a location N+1. Despite this observation, the relative 
error is less than 1%. We have also compared the predictions of the code with single-phase 
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To complete the system of equations, we used Saha-Zuber [2] model to determine the 

flow quality and the void fraction in the subcooled boiling region, the Müller-Steinhaggen [3] 
correlation is used to determine two-phase frictional pressure losses while the Chexal-
Lellouche [4] correlation is applied in order to calculate the two-phase flow distribution 
coefficient and the drift velocity. The equations are written in numerical form by using a 
second-order finite-difference discretisation for the space domain and a first-order fully 
implicit discretisation for the time. The thermophysical properties the water (coolant) are 
calculated with the IAPWS-97IF formulation [5]. 

This portion of the code (i.e., thermalhydraulic model alone) was validated by 
comparing the simulations with data obtained from experiments carried out in vertical round 
uniformly heated tubes [6]. Figure 1 shows the comparison of the simulations with single-
phase flow data. 
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flow data obtained for a large range of flow conditions. In all the cases the code predicted the 
pressure within the experimental error band. 

In addition, the thermalhydraulic module of ARTHUR code was also validated against 
two-phase boiling water data. Figures 2 to 4 present two-phase flow simulations for a typical 
experiment given in [6]. It must be pointed out that the aforementioned validation procedure 
was carried out by covering a large range of experimental conditions; however, only one of 
these simulations is presented in the paper. 
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Figure 2: Axial void fraction distributions vs. data given in [6]. 
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Figure 3: Axial pressure drop profile vs. data given in [6]. 

Figure 2 shows that in general the code is able to predict the axial void fraction 
distributions quite well. Further, Figure 4 shows predicted thermodynamic and flow qualities. 
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A comparison between Figures 2 and 4 clearly indicates that the flow quality profile confirms 
the void fraction trends, i.e., a void fraction inflection is observed to occur at a distance of 
about 1.3 m that corresponds to the location where the flow quality starts increasing. Even 
though the void fraction seems to be correctly predicted, the same cannot be said with respect 
to the pressure drop. Figure 3 shows that the thermalhydraulic model tends to overestimate 
the pressure drop. This behaviour has been observed in several experiments we have 
simulated. In particular, for the case shown in Figure 3, a relative error of 8% between 
predicted and measured values is observed. This error, nevertheless, is still quite small for a 
thennalhydraulic calculation. The comparisons carried out for a large range of flow conditions 
permitted us to validate the proposed model to handle two-phase flows under both subcooled 
and saturated boiling flow conditions. 
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Figure 4: Calculated thermodynamic and flow qualities. 

The use of one-dimensional two-phase flow equations, however, revealed a major 
incoherence in the drift-flux model itself. Figure 5 shows the results obtained from the energy 
conservation equation. This figure clearly indicates that for a given pressure condition the 
enthalpy of the liquid phase, calculated according to its definition, can be higher than the 
enthalpy of the saturated liquid at the same pressure. It is quite possible that this incongruence 
is caused by the fact that the flow quality, and consequently the void fraction, based on the 
definition to the flow enthalpy does not necessarily corresponds to the value calculated from 
the empirical correlations used as a closure relationship. In other terms, the flow quality is 
obtained from an arbitrary function while it should be given by a model that must rigorously 
satisfy the actual form of the energy conservation equation. It must be pointed out that this 
problem has been also observed by other authors [7] who suggest using a modified form of 
the mass conservation equation to calculate a velocity field that counterbalance this major 
drawback. However, the proposed equations are not useful for solving transient two-phase 
flow problems. To partially circumvent this difficulty, in the present work the enthalpy of the 
liquid phase is used until saturation is reached, afterwards saturation conditions are assumed. 
It must be mentioned that this assumption does not necessary satisfy the conditions under 
which most subcooled boiling models were developed. As a matter of fact, in most of the 
cases researchers suggest using liquid under saturation even though the local liquid 
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temperature is much lower. 

8.8 

8.6 

-6; 

Tti 
1§ 8.2 
w 

7.8 

7.60 

  Mixture enthalpy 
— Liquid enthalpy 
  Flow enthalpy 
— Saturated liquid enthalpy 

P= 1.4 MPa 
11= 454.1 K 
G= 9923 kg/m1/s 
q1= 2008 WV& 

--------

0.5 
Position (m) 

5 

Figure 5: Flow and mixture enthalpy. 

111. HEAT TRANSFER MODEL 

2.5 

A radial heat-transfer model for the cladding and fuel pellets was also included in the 
code. This model permits the temperature distribution in the pins to be determined. The heat 
transfer equation is written as: 

apCpT k a (an
+q.

at r ar ar 
(4) 

This equation is discretised by applying the same scheme used for coding the two-phase 
flow model discussed above. In order to close the system of equations, we have included the 
following relationships: Markoczy [8] and Chen [9] correlations are used for calculating the 
forced convection heat-transfer coefficient between cladding and the coolant for single- and 
two-phase flow respectively. Furthermore, the heat-transfer across the gap between fuel and 
clad is modeled as: 

k 
aT 

c ar 
h —T) , gap f  • 

r 
(5) 

Where a constant thermal conductance of 10 kW/Km2 is assumed. Furthermore, the 
validation of the heat transfer across the fuel pin was validated against a simplified analytical 
solution of a pin of a typical 37-element bundle under the conditions specified in Table 1. The 
comparison of the simulations with the analytical solution of the heat transfer equation is 
shown in Figure 6. The difference between the two solutions is quite possible due to the 
relatively coarse discretisation we have applied to the cladding. However, the overall error is 
lower than 2% therefore we consider that the proposed modelling approach is acceptable for 
treating more complex cases, i.e., fuel pin subjected to axial heat flux distributions. To treat 
such a case, and considering that the thermal conductivities are affected by the local fuel 
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temperature, the thermophysical properties for both the cladding and the Uranium oxide are 
calculated using the equations recommended by the IAEA [10]. 

Table 1. Conditions used for obtaining the analytical heat 
transfer solution . 

Uniform power density (GW/m3) 0.3 

Fuel radius (mm) 5.6 

Internal clad radius (mm) 6.14 

External clad radius (mm) 6.52 

Thermal conductivity of the fuel (W/mK) 5.0 

Thermal conductivity of the clad (W/mK) 10.0 

Heat transfer coefficient in the gap (kW/m2K) 10.0 

Temperature at the surface of the clad (K) 541.8 
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Figure 6. Radial temperature distribution in a typical fuel pin. 

IV. COUPLED NEUIRONIC/IDERMALHYDRAULIC SIMULATIONS 

A four-channel CANDU-6 nuclear core is simulated under transient conditions. Figure 
7 shows the algorithm used to solve the thermalhydraulic and the heat transfer models. 
Herewith, a single convergence criterion of 10-6 is used for conducting all the simulations 
presented in this paper. To simulate transient conditions the following flow parameters were 
sequentially varied: inlet channel mass flow rate, coolant inlet subcooling and outlet pressure. 
The simulations are carried out by considering nominal reactor operation values as initial 
conditions; they are summarized in Table 2, and the transient conditions used to perform each 
simulation are given in Table 3. 

The thermalhydraulic and heat transfer models were coupled to the neutronics code 
DONJON-3 [11,12,13,14]. Figure 8 shows the algorithm used for carrying out coupled 
calculations. A convergence criterion of 104 is used to perform neutronic calculations. The 
cross-sections of the pellets and the coolant are evaluated as a function of the local 
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temperature by using the FeedBack Model [15]. It is obvious that the effects of coolant 
density changes (i.e., void fraction) are implicitly taken into account. 
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Figure 7. ARTHUR's thermal calculation algorithm. 

Table 2. Four-channel CANDU-6 nominal operation 
conditions. 
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Inlet coolant temperature (K) 535.5 

Outlet coolant pressure (MPa) 11.2 
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Figure 8. Coupled neutronic/thermalhydraulic calculation algorithm. 
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Table 3: Thermalhydraulic transient conditions. 

Case 1 : Variation rate of the inlet mass flux -4.3%/min 

Case 2 : Variation rate of the inlet coolant temperature 0.6%/min 

Case 3 : Variation rate of the outlet pressure -5.0%/min 

The simulations of the effects of a decrease in the inlet mass flow rate are shown in 
Figure 9. It is obvious that the bulk coolant temperature increases and the coolant density 
decreases with decreasing the inlet mass flow rate. The increase in the coolant temperature 
provokes an increase on the average fuel temperature. The combined effect of these variations 
causes a positive reactivity change (i.e., strong positive reactivity due to a lower coolant 
density which is not compensated by a possible minor negative reactivity associated with the 
increase on the fuel and coolant temperatures) that triggers an increase on power. The results 
given in Figure 9 clearly show that the neutronic feedback, i.e., the nuclear power increase 
caused by the positive reactivity, somewhat tends to amplify the variations of 
thermalhydraulic variables that in turn contribute to accentuate the positive feedback process. 
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Figure 9. Transient simulations for a decrease of the inlet mass flow rate. 

Figure 10 shows the effect of a decrease on the inlet subcooling. Increasing the inlet 
coolant temperature brings about an increase of the average fuel temperature and a decrease 
on the coolant density. Similar to the former case, these thermalhydraulic variations provoke a 
positive reactivity change, i.e., the power increases. It is once again observed that feedback 
effects tend to destabilize the reactor (i.e., there is a net thermalhydraulic/neutronic positive 
feedback). 

Finally, Figure 11 shows the results obtained when the outlet pressure is forced to 
decrease. Such a decrease causes both the bulk coolant temperature and density to decrease. 
These thermalhydraulic variations bring about an increase of the average fuel temperature 
because there is a strong positive reactivity variation. In turn, this change in reactivity 
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provokes an increase in the power causing the fuel average temperature to increase. This 
result is in opposition to what it should be expected. Thus, coupling thermalhydraulics with 
neutronics calculations clearly shows that the combined effects of fuel and coolant 
temperature, and density may bring about coupled feedback modes that are not necessarily 
intuitive. 
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Figure 11. Transient simulations for a decrease of the inlet subcooling. 
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It must be pointed out, however, that the present model does not include critical heat 
flux evaluation procedures; therefore, it is assumed that the thermahydraulic changes do not 
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affect the heat transfer conditions to the coolant other than those due to the variation of fluid 
properties in the convection heat transfer relationships. 

As expected, the analysis presented in this section show that coolant density has a 
higher impact on reactivity than the coolant and fuel temperatures. Even though a rigorous 
analysis necessitates the study of the behaviour of the cross-sections as function of 
temperatures, these simulations indicate that both the reactor power and average fuel 
temperature are mostly determined by the coolant density conditions prevailing in the 
channel. 

V. CONCLUSIONS 

In this work, a thermalhydraulic code, ARTHUR was developed based on the idea that 
the flow conditions at each axial location in a channel can be determined as a function of the 
conditions prevailing in a central pin of the bundle. The thermalhydraulic calculations were 
validated against experimental data obtained in vertical uniformly heated tubes. The heat 
transfer model was validated by comparing the results with simplified analytical solutions. 
The use of dimensional conservation equations, however, revealed that the drift-flux model is 
not able to completely respect the conservation of energy. Coupling calculations using 
ARTHUR with the neutronic code DONJON-3 permitted important feedback effects to be 
observed. In particular, it seems that the reactivity is affected by coolant density changes 
rather than by temperature effects. 
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