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Abstract 

State space models for determination of the optimal test frequencies for k-out-of-n multi 

channel systems are developed in this paper. The analytic solutions for the optimal surveillance 

test frequencies are derived using the Markov process technique. The solutions show that an 

optimal test frequency which maximizes the target probability can be determined by 

decomposing the system states to 3 states based on the system configuration and success criteria. 

Examples of quantification of the state probabilities and the optimal test frequencies of a three-

channel system and a four-channel system with different success criteria are presented. The 

strategy for finding the optimal test frequency developed in this paper can generally be 

applicable to any k-out-of-n multi-channel standby systems that involve complex testing 

schemes. 

1. Introduction 

Multi-channel voting logics are generally applied to the systems of nuclear power plants 

to increase reliability and testability. Such multi-channel design also reduces spurious operations 

of the systems which cause undesirable states of the plants. The special safety systems in 

Canadian Deuterium Uranium (CANDU) power plants are incorporated with the multi-channel 

voting logic design feature. The reactor protection systems (RPS) and the engineered safety 

feature actuation systems (ESFSAS) of pressurized water reactor (PWR) plants are also equipped 

with the multi-channel voting logics. 

The special safety systems and the RPS/ESFAS are standby systems which are not 

supposed to activate during the normal plant operation. Therefore, failures cannot be revealed 

before they are called upon to function. Therefore, the surveillance tests during normal operation 

for insuring the proper functioning of the systems have to be carried out. Various fault tree 

models are introduced and used in the industry to quantify the unavailability and to confirm 

satisfaction of the unavailability target of the systems [1] [2][3] [4]. Fault tree techniques are most 
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useful in the analysis of complex systems. The technique assumes instantaneous test and 

recovery, which ignores the effects of the test duration. This assumption leads to inaccuracies in 

quantifying the unavailability. The inaccuracy increases when the test frequency increases. 

Availability models and reliability models can be found in the literature which propose new 

techniques to overcome the drawback of the classical fault tree methods [5] [ 6] [7] [ 8] [9]. 

However, these models cannot directly be applicable to evaluate the test effect on reliability and 

availability of the system. To determine self-checking intervals for power transmission line 

protection systems, Markov process models are also introduced suggesting different test 

strategies [10] [11][12]. A dynamic fault tree model of shutdown system number 1 (SDS1) was 

proposed to derive the test duration effect on the unavailability [13]. A Markov process model to 

overcome the inaccuracy of the fault tree model of SDS1 was also proposed in the previous 

research [14]. The Markov process model can quantify the test effect on the unavailability and 

the spurious trip probability which are essential information for determination of the surveillance 

test interval. The proposed dynamic fault tree model and the Markov model are only applicable 

to the SDS1 channel logics having 2-out-of-3 voting logics. 

In this paper, a new strategy for determination of the surveillance test interval of k-out-

of-n systems is proposed. The strategy using analytical model can generally be applicable to the 

reparable systems designed with identical multi-channel sub-systems. The strategy can be 

applicable to optimize the test frequencies of multi-channel systems in the operating nuclear 

power plants as well as to design the initial test frequencies of multi-channel systems in the 

newly designing CANDU plants. Examples for determination of the surveillance test intervals 

using the proposed method are also presented. 

2. Optimal test frequency for reparable multi-channel systems 

Using the Markov process and state space representation of the probability of a reparable 

system, a new strategy for finding the optimal test frequency is developed. The notations used in 

this paper are presented below and the state space model for developing the optimal test 

frequency follows. 

Notations 

: Discrete variable for indicating state i 

n : The total number of state 

S : A Set of all the state spaces, S = S„ S2 S3 • • 'Sp, 

SD : A Set of the desired state space 
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ST : A Set of the test state space 

S, : A Set of the failure state space 

P R (A): The steady state probability of an event A occurring 

PD : The steady state probability of residing in the desirable states, 

P,, : The steady state probability of residing in the test states 

ID,: The steady state probability of residing in the failure states 

p m, : State transition rate by the test 

pm : State transition rate by the recovery 

ylf : State transition rate by component failures 

2.1 State classification (desired, failed, and test state) 

Let the set S =1S„S2,..., S, } of all possible states of a k-out-of-n system be grouped into 

three sub-sets: 5D , 5, , and 5, , where 5D represents the desired state space that can be controlled 

by adjusting the test state space (ST ), and SF represents the set of all the failure states of the 

system. Let PL, denote the steady state probability of residing in the desirable states (S ,), 

PT denote the steady state probability of residing in the test state (ST ), and P, denote the steady 

state probability of residing in the failure state (5F ). Then, the system is assumed to be in one of 

the subset state Si„ 4, or S,, in any point of time so that p, + P, + PT =1. If the state transitions 

are assumed to follow memory-less, stationary characteristics, the state residing probability can 

be quantified using so called the Markov process analysis. 

PTF 

PTF 

SD 
Desirable 

State 

SF 
Undetected 

Failure State 

PTD 

ST 
Test 
State 

Figure 2-a: 3-States Diagram of a Repairable System 

Let's consider the state space diagram representing states of a k-out-of-n system shown 

in Figure 2-a. The state transition rate by component failures, the state transition rate by the test, 

and the state transition rate by the recovery are shown as well. Here, the desired state space, SD , 

depends on the success criteria of the system. For example, SD can represent the system states 
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that are in the moment at which no channel failure event has occurred or one channel failure 

event has occurred in a system of 2-out-of-3 success criteria. Let's assume that the state 

transition rate by the test, and the state transition rate by the recovery can be controlled, however, 

that of component failures is given and cannot be independently controlled even though one can 

replace the components with more reliable parts to reduce the component failure rate. Then, the 

optimal test frequency which achieves the maximum PD can be determined by controlling the 

PT of residing in the test state Si. . 

2.2 Determination of the optimal test frequency 

Let V denote the stochastic transition probability matrix of the three-state model in 

Figure 2-a. The steady state probability of the system can be described [15] 

[PD PF PT1V=[PD PF PT],
where 

V = 

1— (.1 f+ p,) f

0 1— ,a„ 
pm, 1 
117F 

P7D 0 1 - Pm] 

Expanding Eq. (2-1) with Eq. (2-2) and using the summation of the probability 

PD +PF +PT =1 

The steady-state probability can be obtained as 

P =  PTFPTD 

D TF + if)(PTD + P TF) 

PF = 
111PTD 

(1-1 TF + 111)(P TD + P TF) 

(2-1) 

(2-2) 

(2-3) 

(2-4a) 

(2-4b) 

P TF (P ) TF + 1  f P = (2-4c) 
T (P TF + f)(11773 ± 117F ). 

As the objective of the surveillance test is to get maximum probability of residing in the desired 

state of the system, the optimal test rate can be decided to the value of 0, which brings the 

maximum probability ofPD . Differentiating PD with respect to using Eq. (2-4a) gives 

dPD  —  PTD(A P TD PT F) 

TF + 1)2 (PTD + P TF)2

Equating Eq. (2-5) to zero gives the test frequency which results in Max (PD ) such that 

I  = -\1117Pm 

(2-5) 

(2-6) 
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⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−

+−
=

TDTD

TFTF

TFfTFf

V
μμ

μμ
μλμλ

10
10

)(1
.   (2-2) 
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1=++ TFD PPP       (2-3) 

The steady-state probability can be obtained as  

))(( TFTDfTF

TDTF
DP

μμλμ
μμ

++
=     (2-4a) 

))(( TFTDfTF

TDf
FP

μμλμ
μλ

++
=     (2-4b) 

))((
)(

TFTDfTF

fTFTF
TP

μμλμ
λμμ
++

+
= .    (2-4c) 

As the objective of the surveillance test is to get maximum probability of residing in the desired 
state of the system, the optimal test rate can be decided to the value of TFμ  which brings the 
maximum probability of DP . Differentiating DP with respect to TFμ  using Eq. (2-4a) gives 

22

2

)()(
)(

TFTDfTF

TFTDfTD

TF

D

d
dP

μμλμ
μμλμ

μ ++
−

=     (2-5) 

Equating Eq. (2-5) to zero gives the test frequency which results in Max ( DP ) such that 

TDfopt μλμ =       (2-6) 

28th Annual CNS Conference & 31st CNS/CNA Student Conference
June 3 - 6, 2007 Saint John, New Brunswick, Canada

4 of 14



28th Annual CNS Conference & 31st CNS/CNA Student Conference 
June 3- 6, 2007 Saint John, New Brunswick, Canada 

23 Profile of the steady state probability 

The profiles of the steady state probability of residing in each state of a repairable 

system are generated using Eq. (2-4), Eq. (2-6) and shown in Figure 2-b, Figure 2-c, and Figure 

2-d. The probabilities are quantified with various component failure rates and test frequencies. In 

Figure 2-b, it can be seen that the optimal test frequency should be increased if higher 

component failure rate is found. However, in the same component failure rate, performing more 

surveillance tests over the optimum test frequency will only reduce the probability of residing in 

the desired state. 

The unavailability can be referred from Figure 2-c. The unavailability can be reduced by 

performing more tests and repairing the failed channel more often as it can be seen in the figure. 

The unavailability is monotonously decreasing as increasing the test frequency. Figure 2-d shows 

the combined probabilities of residing in the desired state and residing in the test state. The 

online test states are considered as the states that are still functioning. Therefore, to get the 

availability information, one has to refer Figure 2-d. It can be noted that the availability will be 

increased by performing more tests and recovering the failed components in the figure. The 

availability is monotonously increasing as the test frequency increases. The availability or 

unavailability profile does not bring the information of the optimal test frequency as they are 

monotonous functions with respect to the test frequency. This is why one needs to propose 

analyzing the desired state probability profile as a function of the test frequency. 
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Figure 2-b: Probability of residing in the desired state of a repairable system 
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3. Optimal test frequency of three identical channel systems 

3.1 (1-out-of-3) success criteria 

The transition diagram of a three identical channel system is shown in Figure 3-a with 5 

state spaces, together with the state transition rates of the component failures, the tests, and the 

recovery. If the success criteria of the system is 1-out-of-3, the state transition diagram can be 
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reduced to a diagram having 3 state spaces as shown in Figure 3-b. In the 3 states 

representation, the state transition caused by a component failure can be rewritten as 

= f + .12f + .13f (3-1) 

Subsequently, the stochastic transition probability matrix V can be composed 

V = 

1— (2 +3p,F) A 3p, 

0 1— PTF P7F 

Pm 0 1 — P m  _I 

(3-2) 

Solving Eq. (2-1) with Eq. (2-3) and Eq. (3-2), the steady-state probability can be obtained as 

PTFPTD 
PD = 

(ATF 3• PT2P F 2PTD PTDPTF) 

APTD 
PF = 

(ATF 3• PT2P F APTD PTDPTF) 

PTF ± 31-1TF) 
PT = 

(APTF 3• PT2F AP TD PTDPTF) 
Differentiating the PD with respect to fc,.F using Eq. (3-3a) gives 

dPD PTD( 3PT2F APTD) 
I 9 

CIPTF (APTF 4-1TF + "f TD PTDPTF)2

Then, the optimal test frequency of the system can be derived to 

1 1 11.1 1 
P opt — 3TD ,A =Af +A2f + j

3.2 (2-out-of-3) success criteria 

(3-3 a) 

(3-3b) 

(3-3 c) 

(3-4) 

(3-5) 

The 5-states transition diagram of a three identical channel system shown in Figure 3-a 

can be reduced to a 3-states diagram as shown in Figure 3-d, if the success criteria of the system 

is 2-out-of-3. The state transition caused by the component failure can be rewritten 

A = A3 + 42,2 + 22, f f f 

Then, the stochastic transition probability matrix V can be written 

V = 

1—(A +2p,F) A 2p7,. 

0 1— 2p„ 2p„ 

0 1—pm] 

(3-6) 

(3-7) 

Solving Eq. (2-1) with Eq. (2-3) and Eq. (3-7), the steady-state probability can be obtained as 
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⎥
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⎦
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⎣
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−
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V
μμ

μμ
μλμλ

10
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)3( 2
TFTDTDTFTF

TDTF
DP

μμλμμλμ
μμ

+++
=   (3-3a) 

)3( 2
TFTDTDTFTF

TD
FP

μμλμμλμ
λμ

+++
=   (3-3b) 

)3(
)3(

2
TFTDTDTFTF

TFTF
TP

μμλμμλμ
μλμ

+++
+

=   (3-3c) 

Differentiating the DP with respect to TFμ  using Eq. (3-3a) gives 

22

2

)3(
)3(

TFTDTDTFTF

TDTFTD

TF

D

d
dP

μμλμμλμ
λμμμ

μ +++
+−

=  (3-4) 

Then, the optimal test frequency of the system can be derived to 

3
TD

opt
λμμ = , 32

fff λλλλ ++=    (3-5) 

 
3.2 (2-out-of-3) success criteria 
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fff λλλλ 24 23 ++=      (3-6) 

Then, the stochastic transition probability matrix V can be written 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−

+−
=

TDTD

TFTF

TFTF

V
μμ
μμ
μλμλ

10
2210
2)2(1

   (3-7) 

Solving Eq. (2-1) with Eq. (2-3) and Eq. (3-7), the steady-state probability can be obtained as  
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out-of-3 success criteria than the 1-out-of-3 success criteria in the same 3-channel system having 

the same component failure rate. However, under the same success criteria and the same 

hardware condition, performing more surveillance tests over the optimum test frequency will 

only reduce the probability of residing in the desired state. 

Figure 3-e shows the combined probabilities of residing in the desired state and residing 

in the test state. The probabilities are obtained under the two different success criteria of the 

three channel system. It can be seen that the 1-out-of-3 success criterion leads to higher 

availability than the 2-out-of-success criterion. The unavailability of the 3-channel system can be 

referred from Figure 3-e. The unavailability can be reduced by performing the test and 

recovering the failed channel as indicated in Figure 3-f. The figure also shows that the 1-out-of-3 

success criterion brings lower unavailability than the 2-out-of-success criterion as expected. But, 

the optimal test frequency information cannot be derived from the unavailability or availability 

profile as mentioned in Section 2.3. 
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4. Optimal test frequency for four-identical-channel systems 

The state transition diagram of a four-identical-channel system is shown in Figure 4-a 

with 6 state spaces. The state transition rates of the component failures, the tests, and the 

recovery are also shown in the figure. The diagram can be simplified based on the required 

success criteria. In this section, examples of deriving the optimal test frequency for the 1-out-of-

4 and 2-out-of-4 success criteria are presented. 

4.1 (1-out-of-4) success criteria 

If the success criteria requirement of the system is 1-out-of-4, then the state transition 

diagram can be reduced to the diagram having 3 state spaces as shown in Figure 4-b. After the 

state reduction to the 3 states representation, the state transition caused by the component failure 

can be rewritten 

= + (4-1) 

Thus, the stochastic transition probability matrix V is 

1—(A +4p,F ) A 4p m. 

V = 0 1— P7F /17F (4-2) 

P7D 0 1 — p m  _I 

Solving Eq. (2-1) with Eq. (2-3) and Eq. (4-2), the steady-state probability can be obtained as 

PTFA1TD 
PD 

TF + 4 14 + TD P TDP TF) 

TD 
PF 

( 2 1 1 TF + 414F +2 f'~TD P TDP TF) 

(4-3 a) 

(4-3b) 
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diagram can be reduced to the diagram having 3 state spaces as shown in Figure 4-b.  After the 
state reduction to the 3 states representation, the state transition caused by the component failure 
can be rewritten 

ff λλλ += 4      (4-1) 

Thus, the stochastic transition probability matrix V is 

⎥
⎥
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⎦

⎤

⎢
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⎣

⎡

−
−

+−
=

TDTD
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Solving Eq. (2-1) with Eq. (2-3) and Eq. (4-2), the steady-state probability can be obtained as 

)4( 2
TFTDTDTFTF

TDTF
DP

μμλμμλμ
μμ

+++
=   (4-3a) 

)4( 2
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FP

μμλμμλμ
λμ
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Differentiating the PD with respect to 

PTF (2 + 414F) 
PT = 

TF 

(APTF 4PT2F 2PTD PTDPTF) 
using Eq.(4-3a) gives 

dPD PTD ( 414 APTD) 
„ 

2u
_L

CIP ATF (APTF —rfreTF  PTDPTF )2

Then, the optimal test frequency of the system is 

1121-1m 
Pop' = i1,4f + 

4 

4.2 (2-out-of-4) success criteria 

(4-3c) 

(4-4) 

(4-4) 

After the state reduction, the state transition caused by the component failure of the 3-

states model can be rewritten 

= 2,1f + ,12f + + .14f (4-5) 

The stochastic transition probability matrix V can be written 

V = 

1— (2 +3p„) 2 311771 
0 1-2p„ 2p„ 

Pm 0 1 —pm] 

(4-6) 

Solving Eq. (2-1) with Eq. (2-3) and Eq. (4-6), the steady-state probability can be obtained as 

2PTFUTD 
PD 2(z."1,../TF 6/./T2F 2PTDPTF) 

APTD 
PF 2

6PT2F 2PTD 2PTDPTF) 

21-1TF + 31-1TF 
PT = 2 (4-7c) 

6PT2F 2PTD 2PTDPTF) 

(4-7a) 

Differentiating the PD with respect to p m, using Eq.(4-7a) gives 

dPD 2PTD 6/4 APTD) 

dPTF (22PTF 6P4F APTD 2PTDPTF )2

Then, the optimal test frequency of the system is 

P opt =11211 6--„ , A = 2,17. + ,12f + 3.13f + .14f

(4-7b) 

(4-8) 

(4-9) 
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4.3 Examples of optimal test frequencies hi a four-Identical-channel system 

The profiles of the steady state probability of residing in each state of the 4-channel 

system are shown in Figure 4-d, Figure 4-e, and Figure 4-f. It can be seen that the maximum 

probabilities and the optimal test frequencies at each chosen component failure rate and two 

different success criteria developed in the previous sections. It can be seen from Figure 4-d that 

more tests are required for the 2-out-of-4 success criteria than the 1-out-of-4 success criteria in 

the same 4-channel system having the same component failure rate to achieve higher state 

residing probability of the desired state. However, in the same success criteria and in the same 

hardware condition, performing more surveillance tests over the optimum test frequency will 

only lower the probability of residing in the desired state. The unavailability of the 4-channel 

system can be referred from Figure 4-e. The figure shows that the 1-out-of-4 success criterion 

has lower unavailability than the 2-out-of-4 success criterion. Figure 4-f shows the probabilities 

of residing in the desired state or residing in the test state that has developed with the two 

different success criteria of the three channel system. It can be read that the 1-out-of-4 success 

criterion brings higher availability than the 2-out-of-4 success criterion in the same system. 
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A strategy for determination of the optimal test frequency for an identical multi-channel 

system is proposed in this paper. The strategy suggests decomposing all the states of a multi-

channel system to three sub-sets of states: the desired, the failed, and the test state, to get the 

optimal test frequency information. The strategy provides answers to how many surveillance 

tests should be performed to gain the maximal benefit in terms of the probability of staying in the 

desirable state. Based on the examples of analytic solutions for the optimal surveillance test 

interval of a k-out-of-n multi-channel reparable system, it can be concluded that the optimal 

surveillance test frequency is a function of the component failure rates and the test duration. It 

also depends on the success criteria requirements in the same hardware configuration. 
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