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Abstract: The nuclear industry has attempted to use the condition-based instrument 

maintenance strategy to overcome the drawbacks of the traditional maintenance practice. 

In the new strategy, the instrument channels are monitored using advanced on-line 

monitoring (OLM) techniques during operation. Principal Component Analysis (PCA), 

Autoassociative Neural Networks (AANN) and Multivariate State Estimation Technique 

(MSET) are three well-known OLM techniques. In this paper, a technical review of these 

three techniques and their applications in Nuclear Power Plants (NPPs) is presented. 

1. Introduction 

Traditionally, the instrument channels in a Nuclear Power Plant are manually 

calibrated periodically [1]. However, this practice is not optimal. Faulty instruments 

cannot be detected promptly and they may continue to operate in malfunction until the 

next calibration. The erroneous signals may lead to deteriorated NPP monitoring 

accuracy, incorrect control actions or even worse consequences. In the Three Mile Island 

(TMI) accident, instrument failures played a significant role. On the other hand, the 

unnecessary calibrations of healthy instrument channels may potentially affect their 

availability and reliability. The unnecessary instrument channel maintenance is also 

expensive in terms of human resources, staff radiation exposure and prolonged plant 

outage [2]. 

To overcome these drawbacks, the nuclear industry has attempted to use condition-

based calibration strategies by monitoring the NPP instrument channels using advanced 

OLM techniques. Progress has been made around the world and applications to real NPP 

data also rendered promising results [2-9]. The U. S. Nuclear Regulatory Commission 

(NRC) has concluded that the generic concept of on-line monitoring for tracking 

instrument performance is acceptable and it is beneficial for NPP safety and economy, 

although some requirements have to be met before the OLM techniques can be used for 

instrument calibration reduction [2]. 
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Successful applications of various OLM techniques in NPPs for instrument channel 

monitoring have been reported. A technical review of three popular OLM techniques is 

presented in this paper. These techniques are (1) Principal Component Analysis, (2) 

Autoassociative Neural Networks, and (3) Multivariate State Estimation Technique. 

The paper is organized as follows: the general principle of NPP instrument channel 

OLM is presented in Section 2. Technical reviews of the three OLM techniques are given 

in Section 3. Some practical applications of OLM techniques in NPPs have been 

described in Section 4 and the conclusion is drawn in Section 5. 

2. Principle of On-Line Monitoring of Instrument Channels 

The general principle of instrument channel OLM is shown in Fig. 1. n correlated 

NPP instrument channel outputs y1, y2 ,..., yn are acquired during operation. For 

convenience, they will be compactly shown as an output vector y = (y1 y2 ... MT • 

OLM techniques are then applied to y so that each output in y can be predicted from 

the other correlated outputs. The predicted instrument channel outputs will be denoted as 

Si = (5 Si2 ••• yn )T • The conditions of the instrument channels can be monitored by 

analyzing the prediction residuals r= y-5, . So the central task of instrument channel 

OLM is to predict the instrument channel outputs from their correlated signals using 

OLM techniques. Even minor instrument faults can be detected swiftly when the 

predicted output of an instrument is not consistent with the measured value. 
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Figure 1: Principle of instrument OLM 

Generally, existing OLM techniques can be classified into two categories: (1) model-

based methods and (2) data-driven methods as summarized in Fig. 2 [10-19]. Although 
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the model-based techniques are extensively applied in many fields for instrument fault 

detection and diagnosis, data-driven models are mostly used in the reported NPP 

instrument channel OLM systems. Therefore, only three popular data-driven OLM 

techniques will be reviewed in this paper. 

On-line monitoring 

Model-based methods Data-driven methods 

State Parameter Parity Multivariate Kernel based Neural networks 
estimation estimation equations statistics (e.g. MSET) (e.g. AANN) 
(e.g. DOS) (e.g. PCA) 

Figure 2: Summary of OLM techniques 

3. Technical Reviews of Selected OLM Techniques 

3.1 Principal Component Analysis (PCA) 

In PCA, the prediction of the instrument channel outputs from the other correlated 

outputs is carried out as 

s., = y ppT (1) 

where P is a matrix composed of the so-called loadings that will be explained later. 

PT is the transpose of P . 

The prediction residuals can be calculated as 

r = y — S, = y(I — PPT ) (2) 

where / e Rn" is a unity matrix. The instrument channels can be monitored by 

analysis of r [15-16] [20]. 

P in Eq. 1 is calculated using fault-free training data obtained from the instrument 

channels to be monitored. The training data are collected into a data matrix YE R mxn , 

where m is the size of the available training data and n is the number of correlated 

variables. After the data matrix Y is mean-centered and unit variance scaled, the 

correlation matrix of Y will be calculated as 

cov(Y) — 
yTy 

m —1 
(3) 
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The eigenvalues and eigenvectors of the correlation matrix are calculated as 

cov(Y)p, = (4) 

where is the ith largest eigenvalues and pi is the eigenvector corresponding to . 

The eigenvectors pi are called loadings and they contain the information on how the n 

variables in Y are correlated to each other. 

The data matrix Y can be decomposed into n components as 

Y = E YpipT 

But most of the information contained in Y can be captured by the first k (k< n) 

Principal Components (PCs) as 

Y = E YpipT + E YpipT =YPPT +E 
i=1 i=k+1 

(5) 

(6) 

where P is composed of the first k principal loadings P =[P1 p 2 ... P k and E 

k I n 

is a residual matrix. The number k is determined so that E A.,, E is larger than 
i=i i=i 

certain percentage, for example 90%, which means at least 90% of the information 

contained in the measurement data is captured by the first k PCs. 

Once P is obtained, it can be used to predict the values of new measurement data 

using Eq. 1, which can be computed on-line easily. 

PCA is very simple and flexible for practical applications. Training a PCA model is 

easy. The relationships among the correlated variables can also be easily interpreted. It is 

extensively used in many industrial fields for process monitoring fault diagnosis and so 

on. However, PCA has a major limitation: it is linear in nature and it cannot accurately 

monitor a process where profound nonlinear effects exist. 

3.2 Autoassociative Neural Networks (AANN) 

AANN was originally developed as an extension to PCA for nonlinear applications 

by combining PCA with feedforward neural networks [17-18]. As shown in Fig. 3, an 

AANN has five layers: input layer, mapping layer, bottleneck layer, demapping layer, 

and output layer. The bottleneck layer has the lowest dimension so that information 

compression can be achieved. The outputs of an AANN are the predicted values of the 
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inputs. An AANN can be trained as an ordinary neural network using fault-free training 

data obtained from the processes to be monitored. 

When applied for instrument channel monitoring in NPPs, the inputs of an AANN 

will be the n correlated instrument channel outputs y and the outputs of the AANN are 

just the predicted values of the instrument channel outputs Si . The instrument channels 

can be monitored by analysis of the prediction residuals r = y— Si . 

Input layer Mapping Bottleneck Demapping Output layer 
layer layer layer 

Figure 3: Structure of AANN 

Nonlinear functions can be used when mapping from one layer to its subsequent 

layer. Therefore, AANN can deal with nonlinear effects and it can monitor the instrument 

channels more accurately when they are correlated nonlinearly. However, it is much more 

difficult to train an AANN than PCA, not only in terms of computation load but also in 

terms of choosing the proper model architecture. 

3.3 Multivariate State Estimation Technique (MSET) 

MSET was originally developed by the U. S. Argonne National Laboratory (ANL) for 

OLM applications in NPPs. It is an advanced nonlinear kernel based pattern recognition 

technique [8] [19]. 

MSET predicts the instrument channel outputs as 

Si = D• (DT 0 Dil • (DT E• y) (7) 

where DE R" is a process memory matrix containing fault free data obtained from 

the instrument channels to be monitored; n is the number of the correlated instrument 

channel outputs, and m is the size of the process memory data set. 

kernel operator, for example a Hermitian kernel. 

Ci is a nonlinear 
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The health of the instrument channels can be monitored by analyzing the prediction 

residuals, r = y — Si = y — a (DT E• D)-1 • (DT e• y) , usually using the Sequential 

Probability Ratio Test (SPRT) technique. 

Practical applications of MSET have rendered good results. It is claimed that MSET 

"possesses significant advantages in sensitivity, reliability, flexibility and computational 

efficiency over alternative process surveillance approaches currently available" [21]. 

However, some theoretical aspects of MSET, such as the proper choice of the kernel 

operator, are not well understood. Investigations have been carried out with certain 

success to avoid poor MSET performance by proper regularizations [7] [22]. 

4. Applications of OLM in NPPs 

4.1 OLM applications of PCA in NPPs 

PCA is among the mostly used process monitoring techniques. Successful 

applications of PCA for NPP OLM are also reported. 

In [23], PCA is applied to the monitoring of a typical U-tube Steam Generator 

(UTSG) in a typical PWR. Measurements of sixteen variables related to the UTSG are 

monitored using PCA. Six single device faults are simulated and five of them can be 

successfully detected and isolated. The water level sensor drift is not detected because 

there is no measurement that is highly correlated with that variable. In [24], it is 

demonstrated again using a UTSG system that PCA is a robust and flexible technique for 

FDI applications in NPPs. 

In [25], PCA is applied to the OLM of redundant instruments in NPPs. The scheme is 

successfully validated using real NPP measurement data from three set of redundant 

instrument channels: three pressurizer level channels, five pressurizer pressure channels, 

and three Steam Generator (SG) pressure channels. In that research, a 0.33% drift in one 

of the five pressurizer pressure channels is detectable to PCA. 

4.2 OLM applications of AANN in NPPs 

In [26], AANN is applied to the monitoring of 22 critical plant sensors at the Crystal 

River-3 NPP and 56 sensors at the Oak Ridge National Laboratory (ORNL) High Flux 

Isotope Reactor (HFIR). It is shown in both cases that generally "sensor drifts are 
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detectable at a nominal level of 0.5% of the instrument's full scale range." Also, the 

faulty sensors' outputs can be replaced from the other correlated fault free measurements. 

AANN is the key monitoring technique of the Process Evaluation and Analysis by 

Neural Operators (PEANO) system developed by the OECD Halden Reactor Project [5]. 

In PEANO, measurements from the instrument channels of a plant are first classified into 

correlated clusters and the channels in each cluster are monitored by an AANN. In 1997, 

PEANO was tested using fourteen process signals of a 900MW PWR in different 

operating conditions provided by Electricite De France (EDF). Failures were put into the 

signals by EDF and they were successfully detected by PEANO. PEANO was also 

installed and ran in real time at the Halden Boiling Water Reactor (HBWR) for OLM. 

Since no instrument failed during on-line operation, drift to the measured steam flow was 

artificially added and this failure was monitored. A number of tests of PEANO using real 

measurement data from several U. S. NPPs were also successfully carried out. In one 

application, PEANO detected a span drift of a steam flow sensor one month earlier before 

the plant actually did. 

4.3 OLM applications of MSET in NPPs 

MSET attracts the most interest for OLM in U. S. NPPs. Venturi flow meters are 

usually used to measure the SG feedwater flow rates, however, the fouling of the venturi 

flow meters will result in overestimation of the actual flow rates, which will eventually 

cause an up to 3% reactor power derating. In [8], MSET is applied to the monitoring of 

the venturi flow meters at the Crystal River-3 NPP. 29 diagnostic sensors in loop A are 

monitored by a MSET model. It is shown that when the size of the process memory 

matrix D is 500, the rms error between the MSET predicted feedwater flow rate and the 

measured flow rate of the fouling free venturi flow meter is only 0.13%. 240 days later 

after the start of a new cycle, the measured feedwater flow rate exceeded the MSET 

prediction by about 1.1%, which was due to venturi flow meter fouling. MSET can 

predict the true feedwater flow rate more accurately, and it can, "in principle, be used to 

provide an improved estimate of the reactor power and hence avoid the revenue loss 

associated with derating the reactor based on a faulty feedwater flow rate indication." 

Again at the Crystal River-3 NPP, MSET's ability to detect loss of time response 

capabilities of Rosemount pressure transmitters is verified. A loss of time response 
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failure of the pressurizer level sensory system was identified by MSET about three 

months earlier than the plant operators [21]. 

Based on the MSET algorithm, the SmartSignal Inc. developed their commercial 

equipment condition monitoring software SmartSignal eCMTM and the Expert 

Microsystems Inc. produced their product SureSense [4]. Currently, the Limerick, Salem, 

Sequoyah, TMI, and VC Summer NPPs are using the system produced by Expert 

Microsystems Inc. for on-line monitoring and calibration of process instrumentation. And 

the Harris and Palo Verde NPPs are using the system developed by SmartSignal Inc. for 

the same purposes [4]. 

4.4 Applications of other OLM techniques in NPPs 

Many more OLM techniques have been applied in NPPs with generally good results. 

The OLM applications of the relatively new Support Vector Machines (SVM) technique 

in NPPs also show promising results [27-28]. The Nonlinear Partial Least Squares 

(NLPLS) technique [29] and Autoassociative Kernel Regression (AAKR) technique [30] 

also have good testing results with real NPP data. In [31] and [32], applications of the 

model based OLM techniques in NPPs are reported. 

5. Conclusion 

Much progress has been made to monitor the NPP instrument channels using 

advanced OLM techniques to overcome the drawbacks of the traditional practice. In the 

new strategy, advanced OLM techniques are used to predict the output of an instrument 

channel from other correlated measurements. The prediction residuals can be analyzed to 

monitor the instrument channels. Three OLM techniques are reviewed in this paper. Their 

applications in real NPPs have rendered promising results, which imply great benefits in 

terms of NPP safety and economy. 
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failure of the pressurizer level sensory system was identified by MSET about three 

months earlier than the plant operators [21].  

Based on the MSET algorithm, the SmartSignal Inc. developed their commercial 

equipment condition monitoring software SmartSignal TMeCM  and the Expert 

Microsystems Inc. produced their product SureSense [4]. Currently, the Limerick, Salem, 

Sequoyah, TMI, and VC Summer NPPs are using the system produced by Expert 

Microsystems Inc. for on-line monitoring and calibration of process instrumentation. And 

the Harris and Palo Verde NPPs are using the system developed by SmartSignal Inc. for 

the same purposes [4]. 

4.4 Applications of other OLM techniques in NPPs 

Many more OLM techniques have been applied in NPPs with generally good results. 

The OLM applications of the relatively new Support Vector Machines (SVM) technique 

in NPPs also show promising results [27-28]. The Nonlinear Partial Least Squares 

(NLPLS) technique [29] and Autoassociative Kernel Regression (AAKR) technique [30] 

also have good testing results with real NPP data. In [31] and [32], applications of the 

model based OLM techniques in NPPs are reported. 

5. Conclusion 

Much progress has been made to monitor the NPP instrument channels using 

advanced OLM techniques to overcome the drawbacks of the traditional practice. In the 

new strategy, advanced OLM techniques are used to predict the output of an instrument 

channel from other correlated measurements. The prediction residuals can be analyzed to 

monitor the instrument channels. Three OLM techniques are reviewed in this paper. Their 

applications in real NPPs have rendered promising results, which imply great benefits in 

terms of NPP safety and economy. 
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