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Abstract 

As part of the Point Lepreau Refurbishment Project the Programmable Digital Comparators 
(PDCs) for both shutdown systems are being replaced. The overall PDC development life 
cycle together with a progress update was presented in a paper submitted last year. One of the 
key activities in the PDC development lifecycle is software testing. This paper briefly 
describes the progress made on the PDC development since last update and focuses on PDC 
software testing. The project has completed the software requirements specification as well as 
the software design and these have been formally reviewed/verified. Software testing for both 
shutdown systems is underway. The software test process for SDS1 is described in this paper. 

1. Introduction 

Two completely independent shutdown systems, SDS1 and SDS2, are used in CANDU®1
(CANada Deuterium Uranium) reactors. Each system contains three independent safety channels 
arranged in a 2-out-of-3 voting system. Channelized instrumentation is used to monitor a 
number of plant neutronic and process variables. If variables in any two channels of a single 
system are outside pre-determined envelopes, a shutdown is initiated. 

At the Point Lepreau Generating Station (PLGS) the logic for most of the process-related reactor 
trip coverage is implemented in trip computers, commonly referred as Programmable Digital 
Comparators (PDCs). This allows optimization of trip functions for various operating conditions 
using power conditioning logic and power dependent setpoints, etc. The PDCs also implement 
self-checking and equipment monitoring functions to improve availability and decrease the 
maintenance and testing work load on the station staff. 

As part of the Point Lepreau Refurbishment Project the PDCs for both shutdown systems are 
being replaced in order to ensure safe and reliable operation of the plant for a further 25-30 
years. 

The PDC platform selection/qualification and overall software development lifecycle are 
described in [1]. The adopted software lifecycle (shown in Figure 1) consists of a distinct set of 
activities that forms an integral part of the engineering of the PDCs. The intent of the software 
lifecycle is to achieve the required outputs through a comprehensive sequence of development, 
verification and validation steps. Software development for the PDCs consists of three phases, 

1 CANDU® is a registered trademark of Atomic Energy of Canada Limited (AECL). 
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the software requirements specification (SRS) which is derived from the design input 
documentation (DID), the software design description (SDD), and coding. 

Verification is performed to ensure that each phase of the design implements correctly the 
requirements in the previous phase. The verification activities consist of SRS review, SDD 
review and verification, code review and verification (for SDS2), and software testing. Unit and 
integration software testing are used to test the code against the SDD and SRS. Each verification 
activity is performed independently and rigorously following applicable procedures with 
findings documented in a review/verification report. 

The software hazards analysis is used to identify potential hazards in the software design and 
code. This process can lead to changes that make the software more robust and resistant to 
failures. Finally, validation and reliability qualification check the PDCs against the DID 
requirements. 

This paper provides an update on the progress of PDC replacement and focuses on one of the 
PDC software verification activities - PDC software test (for SDS1). 

2. Progress update on PDC replacement 

The project has undergone the second pass of the PDC software development and verification 
phase. The second pass was initiated to implement a number of design changes (i.e., added trip 
parameters). Two independent teams (each consisting of independent developers and verifiers) 
are dedicated to SDS1 and SDS2, respectively, and both are progressing at nearly the same pace 
for the software development and verification activities. The PDC replacement status for each 
activity in the PDC lifecycle (Figure 1) is summarized below. 

• Software Requirements Specification and Review 
The SRSs for both SDS1 and SDS2 have been revised and formally issued. Formal 
reviews on the revised SRSs have been completed with review results documented in 
the revised SRS review reports. 

• Software Design Description, Design Review and Verification 
The SDDs (for both SDS1 and SDS2) have been revised and formally issued. Formal 
SDD reviews and SDD verifications have been repeated with review/verification results 
documented in the revised SDD review reports and SDD verification reports, 
respectively. For SDS1, code is generated automatically from the SDD, which eliminates 
the manual coding stage. For SDS2, manual coding has been completed, which was 
followed by a formal code review and verification. 

• Hazard Analysis 
The impact of the design changes (i.e., added trip parameters) on the hazards analysis 
reports (for SDS1 and SDS2) has been assessed and documented in the updated hazards 
analysis reports for SDS1 and SDS2, respectively. 

• Hardware Procurement 
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The Maintenance And Diagnostic (MAD) systems for SDS1 and SDS2 were delivered to 
AECL in November 2006 and January 2007, respectively. The PDCs for SDS1 and 
SDS2 have passed the factory acceptance testing and were delivered to AECL in March 
2007. 

• Software Test 
PDC software test activities for SDS1 and SDS2 have started. PDC software test includes 
software unit test and software integration test. 

The engineering of the PDCs for bothe SDS1 and SDS2 is on track with schedule and quality 
objectives. This paper will focus on one of the verification activities - software testing, and 
provide details on software test strategy for SDS1. 

3. The SDS1 PDC application software overview 

Different development processes are used for SDS1 and SDS2. SDS1 uses the Integrated 
Approach (IA), which is a formal methodology, developed by AECL for the design and 
verification of safety-critical software. It proceeds from the design input documentation through 
the entire software development cycle. The software requirements are specified in function 
block diagrams, which are further refined to produce the software design. A major characteristic 
of the IA is the use of a mathematically precise function block language to specify the software 
requirements and design, and to automatically generate executable code from the software 
design. The function block language used for PLR is defined in the IEC 61131-3 standard [2]. 

The application software is organized in a hierarchical presentation which optimizes the ease of 
software review by reviewers from different disciplines. The system overview diagram, at the 
top level of the hierarchical presentation, contains all the trip loops and the data flow links 
between them. Each trip parameter is typically implemented as a program at the intermediate 
level using the Function Block Diagram (FBD) language. A program may contain multiple 
sheets. A sheet within a program may implement input signal rationality check logic, signal 
correction logic, or the parameter trip logic. Commonly used logic, such as spread check logic, 
power conditioning logic, is implemented as user-defined function blocks (at the bottom level of 
the hierarchy) which are re-used in trip application software in the same way as the basic IEC 
61131-3 blocks. After exhaustively tested and qualified, user-defined function blocks can be re-
used for reliable software design by eliminating potential coding errors. User-defined function 
blocks can be part of the application software or can be contained in a user-defined library and 
exported for use in other applications. 

4. Test of software implemented using FBD 

The overall objectives of software testing are to find faults in the software and problems in the 
requirements. Software testing includes unit test and integration test which are described in the 
following sections. Unit test and integration test are intended to establish a high degree of 
confidence that the PDC software is error free and performs as intended. Software testing 
includes the following activities: 
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• defining a complete set of test cases following applicable software test procedure, 
• documenting the test cases in the Unit and Integration test plan, 
• conducting unit and integration testing (on the target hardware with pre-developed 

software), and 
• documenting the test results in the testing report. 

For applications implemented in FBD, unit and integration testing (described in Section 5 and 
Section 6, respectively) can be combined because of the following reasons. 

• the unit test cases are executed in the same environment as the integration test cases (i.e., 
both unit test and integration test are performed on the actual PDC hardware platform), 

• both SDD and SRS are specified using function block diagrams and the structure of the 
SDD diagrams is similar to the structure of the SRS functions (there is not a significant 
increase in complexity or added functionality between the SRS and SDD) and hence, the 
limited possibility of further errors does not warrant a separate layer of testing, 

• program sequence control logic is encapsulated within function blocks that are 
exhaustively tested and qualified as part of the platform qualification; testing all possible 
condition/decision outcomes (in unit testing) is a subset of testing each functional 
requirement (in integration testing). 

Given the repetitive and time consuming nature of test execution, testing of the PDC is 
automated as much as possible using a custom test facility and scripting tool. Manual tests are 
performed in cases where it is not suitable to automate, as in some integration tests.. Automated 
test cases cover unit tests, integration tests and response time tests. Manual test cases include 
functional timing tests and selected response time tests, etc. 

5. PDC software unit test 

The objectives of unit testing are: 

• to find faults in the translation from source code to executable code, 
• to test that the executable code of each program/module behaves as specified in the SDD, 
• to test that the executable code of each program/module does not perform unintended 

functions, and 
• to find faults in the program interfaces. 

5.1 Unit test methodology 

For application implemented in FBD, each page (sheet) of diagram or each user defined function 
block is considered a unit. A sample unit (a page of diagram) is shown in Figure 2. 
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The following characteristics of the PDC platform facilitate the use of intrusive test for unit 
testing. 

• Any internal variables can be read during unit test without disturbing the software logic, 
• Any internal or input variable can be written with test values during testing by making 

trivial changes to the software that have no effect on program sequence, program logic or 
other side-effects. 

Note that this intrusive testing mode is necessary to test any functions that cannot be tested via 
monitored variables. 

The test PC is connected to the target via Ethernet link and the test tool communicate with the 
target using the DDE/OPC communication protocols (Figure 3). 

PDC Target 

Processor Communication I/O 
Modules Module Modules • • • 

Ethernet Link 

DDE/OPC 
Test Tool Test PC 

Figure 3 Unit Test Configuration 

The intrusive unit test is automated using an in-house developed test tool. Test cases are 
defined in ASCII text files (also referred to as test scripts) and are executed automatically by 
the test tool running on the test PC. 

5.2 Unit test cases definition 

Test cases are selected to provide the following coverage requirements. 

• all possible decision outcomes, 
• tests on each boundary and values on each side of each boundary for each input (the test 

values are determined using boundary value analysis and equivalence partitioning), 
• tests based on postulated coding implementation errors. 

In FBD language, decision outcomes are typically implemented using selection blocks (e.g., SEL 
and MUX as shown in Figure 4) whose output depends on the value of a decision variable (either 
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a Boolean variable G (= false or true) as in the case of SEL or an integer variable K (= 0, 1, ..., 
n-1) as in the case of MUX). Testing all possible decision outcomes requires exercising all 
corresponding values of the decision variable. 
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Figure 4 Example Selection Blocks 

Output 

The domain of an analog input variable is typically divided into several regions (e.g., rational, 
irrational low and irrational high regions) as a result of equivalence partitioning. Boundary value 
analysis can then be applied to select input test values (typically at their minimum, just above the 
minimum, a nominal value, just below their maximum and at their maximum). 

In general, each test case specifies one or more input values to be written to the target and the 
expected output values. For the example function block diagram unit shown in Figure 2, a 
sample unit test script is presented in Figure 5. 

The majority of test cases are defined in the test script using the "TEST_TABLE ... 
END_ TABLE" construct. As shown in Figure 5, the first line defines the variable names for 
read and write. Variables listed after SET (and before TEST) are input variables to be written 
with specified input values; variables listed after TEST are those to be tested. Test cases are 
listed in subsequent lines. The first column is the test case numbers and the rest columns are the 
input values and expected output values corresponding to each variable name specified in the 
first line. 

When a test script file is executed or interpreted by the test tool, each input value is written to the 
target by the test tool; the corresponding output values are read back from the target and 
compared with the expected values specified in the test scripts to determine test case failure or 
success. The test tool saves all test results in a test log file. To increase test capability and test 
cases reviewability, the test tool also supports other commands such as WAIT, DEFINE, etc. 

Unit test cases based on the latest SDD have been fully developed following the applicable test 
procedure and documented in the test plan. Unit test is performed on the target PDC and test 
results will be documented in the test report. 
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# Log Power 

# Conditions tested: 

# - rational (and greater than LCalibLim) 

# - irrational high 

# - rational and <= LCalibLim 

# - irrational and <= LCalibLim 

# - irrational low 
# Notes: 

# - HCalib limit corresponds to irrational HLim, however the LCalib limit does 

# not correspond to the irrational LLim 

# o_LogNPowerDisp = (4095-819)/(5000-0) * (v_LogPowerAI - 0 ) + 819 (if rational) 

# o_LogNPowerDisp = k_AOhiLim (4095, if irrational high) 

# o_LogNPowerDisp = k_AOloLim (0, if irrational low) 

define HLim 4588.0 
define LLim 200.0 
define Default 4520.7 
define LCalibLim 1000.0 
define Hys 50.0 
define M 3.5 

TEST_TABLE 
SET m_LogPower TEST o_LogPirr_I v_LogPirr v_LogNPower o_LogNPowerDisp 
1 2500.0 1 0 2500.0 
2 
3 

HLim-M 
HLim+M 

1 
0 

0 
1 

HLim-M 
Default 34095

4 5000.0 0 1 Default 4095

5 5300.0 0 1 Default 4095
6 HLim 0 1 Default 4095
7 HLim-Hys+M 0 1 Default 4095

8 HLim-Hys-M 1 0 HLim-Hys-M 3790 
9 LCalibLim+50.0 1 0 LCalibLim+50.0 1507
10 LCalibLim-50.0 1 0 LCalibLim 1441 
11 LLim+M 1 0 LCalibLim 952 
12 LLim-M 0 1 Default 0 
13 0.0 0 1 Default 0 
14 LLim 0 1 Default 0 
15 LLim+Hys-M 0 1 Default 0 
16 LLim+Hys+M 1 0 LCalibLim 985 
17 LCalibLim-50.0 1 0 LCalibLim 1441 
18 LCalibLim 1 0 LCalibLim 1474 
19 LCalibLim+50 0 1 0 LCalibLim+50.0 1507
END TABLE 

Figure 5 A Sample Unit Test Script 

6. Integration test 

The objectives of the integration testing are: 

• to test that the software modules integrated together and with the target hardware and 
pre-developed software meets the requirements specified in the SRS, 

• to find errors in the software, hardware, and pre-developed software interfaces, and 
• to find errors in handling stress conditions, timing, fail-safe features, error conditions, 

and error recovery 
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# 
define HLim 4588.0 
define LLim 200.0 
define Default 4520.7 
define LCalibLim 1000.0  
define Hys 50.0  
define M 3.5 
# 
TEST_TABLE 
SET    m_LogPower    TEST o_LogPirr_I   v_LogPirr       v_LogNPower       o_LogNPowerDisp 
1           2500.0            1            0                 2500.0               2457 
2           HLim-M            1            0                 HLim-M               3823 
3           HLim+M            0            1                 Default              4095 
4           5000.0            0            1                 Default              4095 
5           5300.0            0            1                 Default              4095 
6           HLim              0            1                 Default              4095 
7           HLim-Hys+M        0            1                 Default              4095 
8           HLim-Hys-M        1            0                 HLim-Hys-M           3790 
9           LCalibLim+50.0    1            0                 LCalibLim+50.0       1507 
10          LCalibLim-50.0    1            0                 LCalibLim            1441  
11          LLim+M            1            0                 LCalibLim            952  
12          LLim-M            0            1                 Default              0  
13          0.0               0            1                 Default              0  
14          LLim              0            1                 Default              0  
15          LLim+Hys-M        0            1                 Default              0  
16          LLim+Hys+M        1            0                 LCalibLim            985  
17          LCalibLim-50.0    1            0                 LCalibLim            1441  
18          LCalibLim         1            0                 LCalibLim            1474  
19          LCalibLim+50.0    1            0                 LCalibLim+50.0       1507  
END_TABLE 
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6.1 Integration test methodology 

Integration test is performed at the I/O electrical level (i.e., non-intrusive testing) using a test 
facility. The PDC software is integrated with the PDC hardware, system software and I/O sub 
system, and the PDC software is tested on the PDC target without modifications. The test facility 
has its own CPU and is connected to the PDC target via I/O terminal blocks. The test facility 
writes values to the PDC monitored variables via its output modules and reads PDC controlled 
variables from its input modules (Figure 6). 

Depending on the capability of the test facility, integration test cases can be either developed and 
executed directly on the test facility processor or performed by an external test PC connected to 
the test facility as in the case for unit test. For PLR SDS1 PDCs, integration test is performed 
using an external test PC. 

4 DI DO 

1 

 Test Facility 
DO  

DDE/OPC DI 
1 

Test Tool Ethernet Processor AI AO 
Link 1 

Test PC AO AI 

Figure 6 Integration Test Configuration 

6.2 Integration test cases definition 

PDC 
Processors 

Integration test cases are selected to provide the following coverage requirements 

• Define test cases to test each functional requirement in the SRS. 
• Define test cases to test the performance requirements specified in the SRS. 
• Identify all resources used by the subsystem software and define test cases which test the 

subsystem under conditions that attempt to overload these resources in order to determine 
if the functional and performance requirements defined in the SRS are met. 

• Define test cases to exercise any interfaces between: 
o The software and the target hardware, 
o The software and pre-developed software, 
o The software modules themselves, 

• Define test cases to show that the subsystem meets its requirements under each hardware 
configuration and operation option. 

• Define test cases to test the ability of the subsystem to respond as indicated in the SRS to 
software, hardware and data errors. 

10 of 11 

6.1 Integration test methodology 
 
Integration test is performed at the I/O electrical level (i.e., non-intrusive testing) using a test 
facility. The PDC software is integrated with the PDC hardware, system software and I/O sub 
system, and the PDC software is tested on the PDC target without modifications. The test facility 
has its own CPU and is connected to the PDC target via I/O terminal blocks.  The test facility 
writes values to the PDC monitored variables via its output modules and reads PDC controlled 
variables from its input modules (Figure 6).   
 
Depending on the capability of the test facility, integration test cases can be either developed and 
executed directly on the test facility processor or performed by an external test PC connected to 
the test facility as in the case for unit test.  For PLR SDS1 PDCs, integration test is performed 
using an external test PC. 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 6  Integration Test Configuration 

 
 
6.2 Integration test cases definition 
 
Integration test cases are selected to provide the following coverage requirements   
 

• Define test cases to test each functional requirement in the SRS. 
• Define test cases to test the performance requirements specified in the SRS. 
• Identify all resources used by the subsystem software and define test cases which test the 

subsystem under conditions that attempt to overload these resources in order to determine 
if the functional and performance requirements defined in the SRS are met. 

• Define test cases to exercise any interfaces between: 
o The software and the target hardware, 
o The software and pre-developed software, 
o The software modules themselves, 

• Define test cases to show that the subsystem meets its requirements under each hardware 
configuration and operation option. 

• Define test cases to test the ability of the subsystem to respond as indicated in the SRS to 
software, hardware and data errors. 

Ethernet 
Link 

 
 
 

  Test Facility 
    Processor 

DI 

DO 

AI 

AO 

 
 

 PDC 
   Processors 

DO 

DI 

AO 

AI 

DDE/OPC 
 Test Tool 

Test PC 

28th Annual CNS Conference & 31st CNS/CNA Student Conference
June 3 - 6, 2007 Saint John, New Brunswick, Canada

10 of 11



28th Annual CNS Conference & 31st CNS/CNA Student Conference 
June 3 - 6, 2007 Saint John, New Brunswick, Canada 

• Define test cases which attempt to subvert any existing safety or security mechanisms. 

Integration test scripts are defined in the same scripting language as in unit testing and are 
executed using the same test tool. Integration test scripts have been developed and referenced in 
the test plan. Integration test is performed using the test facility and test results will be 
documented in the test report. 

7. Test tools and facilities 

To automate PDC application software testing, a test script interpreter has been developed using 
Visual Basic. The scripting tool executes test scripts and logs test results automatically. It also 
displays input values written to the target and output values read from the target. Test scripts 
can be executed separately or can be contained in a single file to be executed one after another 
automatically. The scripting tool communicates with the target using DDE/OPC protocols. Any 
global variables with the READ or WRITE attribute in the target can be accessed by the test tool 
using DDE/OPC. This intrusive test method is used for unit test of the PLR PDC software. 

A PLC has been selected as the test facility for integration test. Test cases are applied via signals 
at the I/O terminal block. The selected test facility supports communication with external 
systems through a standard communication protocol (e.g., DDE/OPC). 

8. Concluding remarks 

The PLR SDS1 PDCs use the Integrated Approach (IA), which is a formal methodology 
developed by AECL for the design and verification of safety-critical software. A major 
characteristic of the IA is the use of a graphical programming language. The function block 
language used for PLR is defined in the IEC 61131-3 standard. Testing of software implemented 
in FBD language is automated to a great extent. To support automated software test, a 
customized test scripting tool and test facility have been developed. PDC software test activities 
for SDS1 and SDS2 have started and are expected to finish within a month. The engineering of 
the SDS1/SDS2 PDCs is on track with schedule and quality objectives. 

9. References 
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