
28th Annual CNS Conference & 31st CNS/CNA Student Conference
June 3 - 6, 2007 Saint John, New Brunswick, Canada

Point Lepreau Refurbishment Project
Programmable Digital Comparator (PDC) Replacement

Software Unit and Integration Test

A. Xingl, A. Condors, G. Raiskumsl, and D. Dickson
1Atomic Energy of Canada Limited, Mississauga, Ontario, Canada

2 NB Power Nuclear, Point Lepreau Generating Station, New Brunswick, Canada

Abstract

As part of the Point Lepreau Refurbishment Project the Programmable Digital Comparators
(PDCs) for both shutdown systems are being replaced. The overall PDC development life
cycle together with a progress update was presented in a paper submitted last year. One of the
key activities in the PDC development lifecycle is software testing. This paper briefly
describes the progress made on the PDC development since last update and focuses on PDC
software testing. The project has completed the software requirements specification as well as
the software design and these have been formally reviewed/verified. Software testing for both
shutdown systems is underway. The software test process for SDS1 is described in this paper.

1. Introduction

Two completely independent shutdown systems, SDS1 and SDS2, are used in CANDU®1
(CANada Deuterium Uranium) reactors. Each system contains three independent safety channels
arranged in a 2-out-of-3 voting system. Channelized instrumentation is used to monitor a
number of plant neutronic and process variables. If variables in any two channels of a single
system are outside pre-determined envelopes, a shutdown is initiated.

At the Point Lepreau Generating Station (PLGS) the logic for most of the process-related reactor
trip coverage is implemented in trip computers, commonly referred as Programmable Digital
Comparators (PDCs). This allows optimization of trip functions for various operating conditions
using power conditioning logic and power dependent setpoints, etc. The PDCs also implement
self-checking and equipment monitoring functions to improve availability and decrease the
maintenance and testing work load on the station staff.

As part of the Point Lepreau Refurbishment Project the PDCs for both shutdown systems are
being replaced in order to ensure safe and reliable operation of the plant for a further 25-30
years.

The PDC platform selection/qualification and overall software development lifecycle are
described in [1]. The adopted software lifecycle (shown in Figure 1) consists of a distinct set of
activities that forms an integral part of the engineering of the PDCs. The intent of the software
lifecycle is to achieve the required outputs through a comprehensive sequence of development,
verification and validation steps. Software development for the PDCs consists of three phases,

1 CANDU® is a registered trademark of Atomic Energy of Canada Limited (AECL).

1 of 11

Point Lepreau Refurbishment Project
Programmable Digital Comparator (PDC) Replacement

Software Unit and Integration Test

A. Xing1, A. Condor1, G. Raiskums1, and D. Dickson2
1Atomic Energy of Canada Limited, Mississauga, Ontario, Canada

2 NB Power Nuclear, Point Lepreau Generating Station, New Brunswick, Canada

Abstract

As part of the Point Lepreau Refurbishment Project the Programmable Digital Comparators
(PDCs) for both shutdown systems are being replaced. The overall PDC development life
cycle together with a progress update was presented in a paper submitted last year. One of the
key activities in the PDC development lifecycle is software testing. This paper briefly
describes the progress made on the PDC development since last update and focuses on PDC
software testing. The project has completed the software requirements specification as well as
the software design and these have been formally reviewed/verified. Software testing for both
shutdown systems is underway. The software test process for SDS1 is described in this paper.

1. Introduction

Two completely independent shutdown systems, SDS1 and SDS2, are used in CANDU®1
(CANada Deuterium Uranium) reactors. Each system contains three independent safety channels
arranged in a 2-out-of-3 voting system. Channelized instrumentation is used to monitor a
number of plant neutronic and process variables. If variables in any two channels of a single
system are outside pre-determined envelopes, a shutdown is initiated.

At the Point Lepreau Generating Station (PLGS) the logic for most of the process-related reactor
trip coverage is implemented in trip computers, commonly referred as Programmable Digital
Comparators (PDCs). This allows optimization of trip functions for various operating conditions
using power conditioning logic and power dependent setpoints, etc. The PDCs also implement
self-checking and equipment monitoring functions to improve availability and decrease the
maintenance and testing work load on the station staff.

As part of the Point Lepreau Refurbishment Project the PDCs for both shutdown systems are
being replaced in order to ensure safe and reliable operation of the plant for a further 25-30
years.

The PDC platform selection/qualification and overall software development lifecycle are
described in [1]. The adopted software lifecycle (shown in Figure 1) consists of a distinct set of
activities that forms an integral part of the engineering of the PDCs. The intent of the software
lifecycle is to achieve the required outputs through a comprehensive sequence of development,
verification and validation steps. Software development for the PDCs consists of three phases,

1 CANDU® is a registered trademark of Atomic Energy of Canada Limited (AECL).

28th Annual CNS Conference & 31st CNS/CNA Student Conference
June 3 - 6, 2007 Saint John, New Brunswick, Canada

1 of 11

28th Annual CNS Conference & 31st CNS/CNA Student Conference
June 3 - 6, 2007 Saint John, New Brunswick, Canada

Validation
Testing

SRS
Review

DID Reliability
Demonstration
Testing

SRS

Mathematical
Verification

SD

Subsystem
Testing

Unit
Testing

SDD Review

DEFINITIONS:
DID = Design Input Documentation

Mathematica
Verification

SRS = Software Requirements • I

Specification
SDD = Software Design Code 1

Description Review

Hazards

Figure 1 PDC Software Lifecycle

2 of 11

Figure 1 PDC Software Lifecycle

DID

SRS

SDD

CODE
DEFINITIONS:
DID = Design Input Documentation
SRS = Software Requirements
 Specification
SDD = Software Design
 Description

SDD Review

Code
Review

SRS
Review

Mathematical
Verification

Mathematical
Verification

Validation
Testing

Subsystem
Testing

Unit
Testing

Software
Hazards

Reliability
Demonstration
Testing

28th Annual CNS Conference & 31st CNS/CNA Student Conference
June 3 - 6, 2007 Saint John, New Brunswick, Canada

2 of 11

28th Annual CNS Conference & 31st CNS/CNA Student Conference
June 3 - 6, 2007 Saint John, New Brunswick, Canada

the software requirements specification (SRS) which is derived from the design input
documentation (DID), the software design description (SDD), and coding.

Verification is performed to ensure that each phase of the design implements correctly the
requirements in the previous phase. The verification activities consist of SRS review, SDD
review and verification, code review and verification (for SDS2), and software testing. Unit and
integration software testing are used to test the code against the SDD and SRS. Each verification
activity is performed independently and rigorously following applicable procedures with
findings documented in a review/verification report.

The software hazards analysis is used to identify potential hazards in the software design and
code. This process can lead to changes that make the software more robust and resistant to
failures. Finally, validation and reliability qualification check the PDCs against the DID
requirements.

This paper provides an update on the progress of PDC replacement and focuses on one of the
PDC software verification activities - PDC software test (for SDS1).

2. Progress update on PDC replacement

The project has undergone the second pass of the PDC software development and verification
phase. The second pass was initiated to implement a number of design changes (i.e., added trip
parameters). Two independent teams (each consisting of independent developers and verifiers)
are dedicated to SDS1 and SDS2, respectively, and both are progressing at nearly the same pace
for the software development and verification activities. The PDC replacement status for each
activity in the PDC lifecycle (Figure 1) is summarized below.

• Software Requirements Specification and Review
The SRSs for both SDS1 and SDS2 have been revised and formally issued. Formal
reviews on the revised SRSs have been completed with review results documented in
the revised SRS review reports.

• Software Design Description, Design Review and Verification
The SDDs (for both SDS1 and SDS2) have been revised and formally issued. Formal
SDD reviews and SDD verifications have been repeated with review/verification results
documented in the revised SDD review reports and SDD verification reports,
respectively. For SDS1, code is generated automatically from the SDD, which eliminates
the manual coding stage. For SDS2, manual coding has been completed, which was
followed by a formal code review and verification.

• Hazard Analysis
The impact of the design changes (i.e., added trip parameters) on the hazards analysis
reports (for SDS1 and SDS2) has been assessed and documented in the updated hazards
analysis reports for SDS1 and SDS2, respectively.

• Hardware Procurement

3 of 11

the software requirements specification (SRS) which is derived from the design input
documentation (DID), the software design description (SDD), and coding.

Verification is performed to ensure that each phase of the design implements correctly the
requirements in the previous phase. The verification activities consist of SRS review, SDD
review and verification, code review and verification (for SDS2), and software testing. Unit and
integration software testing are used to test the code against the SDD and SRS. Each verification
activity is performed independently and rigorously following applicable procedures with
findings documented in a review/verification report.

The software hazards analysis is used to identify potential hazards in the software design and
code. This process can lead to changes that make the software more robust and resistant to
failures. Finally, validation and reliability qualification check the PDCs against the DID
requirements.

This paper provides an update on the progress of PDC replacement and focuses on one of the
PDC software verification activities - PDC software test (for SDS1).

2. Progress update on PDC replacement

The project has undergone the second pass of the PDC software development and verification
phase. The second pass was initiated to implement a number of design changes (i.e., added trip
parameters). Two independent teams (each consisting of independent developers and verifiers)
are dedicated to SDS1 and SDS2, respectively, and both are progressing at nearly the same pace
for the software development and verification activities. The PDC replacement status for each
activity in the PDC lifecycle (Figure 1) is summarized below.

• Software Requirements Specification and Review
The SRSs for both SDS1 and SDS2 have been revised and formally issued. Formal
reviews on the revised SRSs have been completed with review results documented in
the revised SRS review reports.

• Software Design Description, Design Review and Verification

The SDDs (for both SDS1 and SDS2) have been revised and formally issued. Formal
SDD reviews and SDD verifications have been repeated with review/verification results
documented in the revised SDD review reports and SDD verification reports,
respectively. For SDS1, code is generated automatically from the SDD, which eliminates
the manual coding stage. For SDS2, manual coding has been completed, which was
followed by a formal code review and verification.

• Hazard Analysis

The impact of the design changes (i.e., added trip parameters) on the hazards analysis
reports (for SDS1 and SDS2) has been assessed and documented in the updated hazards
analysis reports for SDS1 and SDS2, respectively.

• Hardware Procurement

28th Annual CNS Conference & 31st CNS/CNA Student Conference
June 3 - 6, 2007 Saint John, New Brunswick, Canada

3 of 11

28th Annual CNS Conference & 31st CNS/CNA Student Conference
June 3 - 6, 2007 Saint John, New Brunswick, Canada

The Maintenance And Diagnostic (MAD) systems for SDS1 and SDS2 were delivered to
AECL in November 2006 and January 2007, respectively. The PDCs for SDS1 and
SDS2 have passed the factory acceptance testing and were delivered to AECL in March
2007.

• Software Test
PDC software test activities for SDS1 and SDS2 have started. PDC software test includes
software unit test and software integration test.

The engineering of the PDCs for bothe SDS1 and SDS2 is on track with schedule and quality
objectives. This paper will focus on one of the verification activities - software testing, and
provide details on software test strategy for SDS1.

3. The SDS1 PDC application software overview

Different development processes are used for SDS1 and SDS2. SDS1 uses the Integrated
Approach (IA), which is a formal methodology, developed by AECL for the design and
verification of safety-critical software. It proceeds from the design input documentation through
the entire software development cycle. The software requirements are specified in function
block diagrams, which are further refined to produce the software design. A major characteristic
of the IA is the use of a mathematically precise function block language to specify the software
requirements and design, and to automatically generate executable code from the software
design. The function block language used for PLR is defined in the IEC 61131-3 standard [2].

The application software is organized in a hierarchical presentation which optimizes the ease of
software review by reviewers from different disciplines. The system overview diagram, at the
top level of the hierarchical presentation, contains all the trip loops and the data flow links
between them. Each trip parameter is typically implemented as a program at the intermediate
level using the Function Block Diagram (FBD) language. A program may contain multiple
sheets. A sheet within a program may implement input signal rationality check logic, signal
correction logic, or the parameter trip logic. Commonly used logic, such as spread check logic,
power conditioning logic, is implemented as user-defined function blocks (at the bottom level of
the hierarchy) which are re-used in trip application software in the same way as the basic IEC
61131-3 blocks. After exhaustively tested and qualified, user-defined function blocks can be re-
used for reliable software design by eliminating potential coding errors. User-defined function
blocks can be part of the application software or can be contained in a user-defined library and
exported for use in other applications.

4. Test of software implemented using FBD

The overall objectives of software testing are to find faults in the software and problems in the
requirements. Software testing includes unit test and integration test which are described in the
following sections. Unit test and integration test are intended to establish a high degree of
confidence that the PDC software is error free and performs as intended. Software testing
includes the following activities:

4 of 11

The Maintenance And Diagnostic (MAD) systems for SDS1 and SDS2 were delivered to
AECL in November 2006 and January 2007, respectively. The PDCs for SDS1 and
SDS2 have passed the factory acceptance testing and were delivered to AECL in March
2007.

• Software Test

PDC software test activities for SDS1 and SDS2 have started. PDC software test includes
software unit test and software integration test.

The engineering of the PDCs for bothe SDS1 and SDS2 is on track with schedule and quality
objectives. This paper will focus on one of the verification activities - software testing, and
provide details on software test strategy for SDS1.

3. The SDS1 PDC application software overview

Different development processes are used for SDS1 and SDS2. SDS1 uses the Integrated
Approach (IA), which is a formal methodology, developed by AECL for the design and
verification of safety-critical software. It proceeds from the design input documentation through
the entire software development cycle. The software requirements are specified in function
block diagrams, which are further refined to produce the software design. A major characteristic
of the IA is the use of a mathematically precise function block language to specify the software
requirements and design, and to automatically generate executable code from the software
design. The function block language used for PLR is defined in the IEC 61131-3 standard [2].

The application software is organized in a hierarchical presentation which optimizes the ease of
software review by reviewers from different disciplines. The system overview diagram, at the
top level of the hierarchical presentation, contains all the trip loops and the data flow links
between them. Each trip parameter is typically implemented as a program at the intermediate
level using the Function Block Diagram (FBD) language. A program may contain multiple
sheets. A sheet within a program may implement input signal rationality check logic, signal
correction logic, or the parameter trip logic. Commonly used logic, such as spread check logic,
power conditioning logic, is implemented as user-defined function blocks (at the bottom level of
the hierarchy) which are re-used in trip application software in the same way as the basic IEC
61131-3 blocks. After exhaustively tested and qualified, user-defined function blocks can be re-
used for reliable software design by eliminating potential coding errors. User-defined function
blocks can be part of the application software or can be contained in a user-defined library and
exported for use in other applications.

4. Test of software implemented using FBD

The overall objectives of software testing are to find faults in the software and problems in the
requirements. Software testing includes unit test and integration test which are described in the
following sections. Unit test and integration test are intended to establish a high degree of
confidence that the PDC software is error free and performs as intended. Software testing
includes the following activities:

28th Annual CNS Conference & 31st CNS/CNA Student Conference
June 3 - 6, 2007 Saint John, New Brunswick, Canada

4 of 11

28th Annual CNS Conference & 31st CNS/CNA Student Conference
June 3 - 6, 2007 Saint John, New Brunswick, Canada

• defining a complete set of test cases following applicable software test procedure,
• documenting the test cases in the Unit and Integration test plan,
• conducting unit and integration testing (on the target hardware with pre-developed

software), and
• documenting the test results in the testing report.

For applications implemented in FBD, unit and integration testing (described in Section 5 and
Section 6, respectively) can be combined because of the following reasons.

• the unit test cases are executed in the same environment as the integration test cases (i.e.,
both unit test and integration test are performed on the actual PDC hardware platform),

• both SDD and SRS are specified using function block diagrams and the structure of the
SDD diagrams is similar to the structure of the SRS functions (there is not a significant
increase in complexity or added functionality between the SRS and SDD) and hence, the
limited possibility of further errors does not warrant a separate layer of testing,

• program sequence control logic is encapsulated within function blocks that are
exhaustively tested and qualified as part of the platform qualification; testing all possible
condition/decision outcomes (in unit testing) is a subset of testing each functional
requirement (in integration testing).

Given the repetitive and time consuming nature of test execution, testing of the PDC is
automated as much as possible using a custom test facility and scripting tool. Manual tests are
performed in cases where it is not suitable to automate, as in some integration tests.. Automated
test cases cover unit tests, integration tests and response time tests. Manual test cases include
functional timing tests and selected response time tests, etc.

5. PDC software unit test

The objectives of unit testing are:

• to find faults in the translation from source code to executable code,
• to test that the executable code of each program/module behaves as specified in the SDD,
• to test that the executable code of each program/module does not perform unintended

functions, and
• to find faults in the program interfaces.

5.1 Unit test methodology

For application implemented in FBD, each page (sheet) of diagram or each user defined function
block is considered a unit. A sample unit (a page of diagram) is shown in Figure 2.

5 of 11

• defining a complete set of test cases following applicable software test procedure,
• documenting the test cases in the Unit and Integration test plan,
• conducting unit and integration testing (on the target hardware with pre-developed

software), and
• documenting the test results in the testing report.

For applications implemented in FBD, unit and integration testing (described in Section 5 and
Section 6, respectively) can be combined because of the following reasons.

• the unit test cases are executed in the same environment as the integration test cases (i.e.,
both unit test and integration test are performed on the actual PDC hardware platform),

• both SDD and SRS are specified using function block diagrams and the structure of the
SDD diagrams is similar to the structure of the SRS functions (there is not a significant
increase in complexity or added functionality between the SRS and SDD) and hence, the
limited possibility of further errors does not warrant a separate layer of testing,

• program sequence control logic is encapsulated within function blocks that are
exhaustively tested and qualified as part of the platform qualification; testing all possible
condition/decision outcomes (in unit testing) is a subset of testing each functional
requirement (in integration testing).

Given the repetitive and time consuming nature of test execution, testing of the PDC is
automated as much as possible using a custom test facility and scripting tool. Manual tests are
performed in cases where it is not suitable to automate, as in some integration tests.. Automated
test cases cover unit tests, integration tests and response time tests. Manual test cases include
functional timing tests and selected response time tests, etc.

5. PDC software unit test

The objectives of unit testing are:

• to find faults in the translation from source code to executable code,
• to test that the executable code of each program/module behaves as specified in the SDD,
• to test that the executable code of each program/module does not perform unintended

functions, and
• to find faults in the program interfaces.

5.1 Unit test methodology

For application implemented in FBD, each page (sheet) of diagram or each user defined function
block is considered a unit. A sample unit (a page of diagram) is shown in Figure 2.

28th Annual CNS Conference & 31st CNS/CNA Student Conference
June 3 - 6, 2007 Saint John, New Brunswick, Canada

5 of 11

28th Annual CNS Conference & 31st CNS/CNA Student Conference
June 3 - 6, 2007 Saint John, New Brunswick, Canada

LogPowIrrChk

m_LogPower

XHiLoIrrCheck
Sig

1,41

k_LogPhi HUM,

k_LogPlo
 LLim

k AlarmHys Hy0
F. DUMMY

001 I

▪ k LogPloCalMV

Use the upper or lower calibration
limit if the log power is beyond the
calibration limits (but within the
rationality limits)

▪ k LogPhiCalMV

Log power in mV

k AlloLim
I - k AOloCalLim
s- k AlhiLim

k_AOhiLim

MEDSEL

003

LININT

, 00

YO

X1

005

If the log power NI is
irrational, use the default
value instead.

Log power in
mA for output

k LogPDflt

SEL

INO

IN1

004

If the log power NI is irrational
low or high, set the output to
the bottom or top of the scale.

kAOloLim

INO

IN1

006 I

SEL

SEL

INO

INI

007 I

Figure 2 A Sample Software Unit (in Function Block Diagram)

NOT

coo I

v_LogPirr

c LogPirr I

v_LogNPower

 c_LogNPowerDisp

6 of 11

Figure 2 A Sample Software Unit (in Function Block Diagram)

28th Annual CNS Conference & 31st CNS/CNA Student Conference
June 3 - 6, 2007 Saint John, New Brunswick, Canada

6 of 11

28th Annual CNS Conference & 31st CNS/CNA Student Conference
June 3 - 6, 2007 Saint John, New Brunswick, Canada

The following characteristics of the PDC platform facilitate the use of intrusive test for unit
testing.

• Any internal variables can be read during unit test without disturbing the software logic,
• Any internal or input variable can be written with test values during testing by making

trivial changes to the software that have no effect on program sequence, program logic or
other side-effects.

Note that this intrusive testing mode is necessary to test any functions that cannot be tested via
monitored variables.

The test PC is connected to the target via Ethernet link and the test tool communicate with the
target using the DDE/OPC communication protocols (Figure 3).

PDC Target

Processor Communication I/O
Modules Module Modules • • •

Ethernet Link

DDE/OPC
Test Tool Test PC

Figure 3 Unit Test Configuration

The intrusive unit test is automated using an in-house developed test tool. Test cases are
defined in ASCII text files (also referred to as test scripts) and are executed automatically by
the test tool running on the test PC.

5.2 Unit test cases definition

Test cases are selected to provide the following coverage requirements.

• all possible decision outcomes,
• tests on each boundary and values on each side of each boundary for each input (the test

values are determined using boundary value analysis and equivalence partitioning),
• tests based on postulated coding implementation errors.

In FBD language, decision outcomes are typically implemented using selection blocks (e.g., SEL
and MUX as shown in Figure 4) whose output depends on the value of a decision variable (either

7 of 11

The following characteristics of the PDC platform facilitate the use of intrusive test for unit
testing.

• Any internal variables can be read during unit test without disturbing the software logic,
• Any internal or input variable can be written with test values during testing by making

trivial changes to the software that have no effect on program sequence, program logic or
other side-effects.

Note that this intrusive testing mode is necessary to test any functions that cannot be tested via
monitored variables.

The test PC is connected to the target via Ethernet link and the test tool communicate with the
target using the DDE/OPC communication protocols (Figure 3).

Figure 3 Unit Test Configuration

The intrusive unit test is automated using an in-house developed test tool. Test cases are
defined in ASCII text files (also referred to as test scripts) and are executed automatically by
the test tool running on the test PC.

5.2 Unit test cases definition

Test cases are selected to provide the following coverage requirements.

• all possible decision outcomes,
• tests on each boundary and values on each side of each boundary for each input (the test

values are determined using boundary value analysis and equivalence partitioning),
• tests based on postulated coding implementation errors.

In FBD language, decision outcomes are typically implemented using selection blocks (e.g., SEL
and MUX as shown in Figure 4) whose output depends on the value of a decision variable (either

Processor
Modules

Communication
Module

I/O
Modules

DDE/OPC
 Test Tool

Ethernet Link

PDC Target

Test PC

28th Annual CNS Conference & 31st CNS/CNA Student Conference
June 3 - 6, 2007 Saint John, New Brunswick, Canada

7 of 11

28th Annual CNS Conference & 31st CNS/CNA Student Conference
June 3 - 6, 2007 Saint John, New Brunswick, Canada

a Boolean variable G (= false or true) as in the case of SEL or an integer variable K (= 0, 1, ...,
n-1) as in the case of MUX). Testing all possible decision outcomes requires exercising all
corresponding values of the decision variable.

G

Inputo

Input'
SEL Output

K
Inputo

Input'

•

•

•

Input,'

MUX

Figure 4 Example Selection Blocks

Output

The domain of an analog input variable is typically divided into several regions (e.g., rational,
irrational low and irrational high regions) as a result of equivalence partitioning. Boundary value
analysis can then be applied to select input test values (typically at their minimum, just above the
minimum, a nominal value, just below their maximum and at their maximum).

In general, each test case specifies one or more input values to be written to the target and the
expected output values. For the example function block diagram unit shown in Figure 2, a
sample unit test script is presented in Figure 5.

The majority of test cases are defined in the test script using the "TEST_TABLE ...
END_ TABLE" construct. As shown in Figure 5, the first line defines the variable names for
read and write. Variables listed after SET (and before TEST) are input variables to be written
with specified input values; variables listed after TEST are those to be tested. Test cases are
listed in subsequent lines. The first column is the test case numbers and the rest columns are the
input values and expected output values corresponding to each variable name specified in the
first line.

When a test script file is executed or interpreted by the test tool, each input value is written to the
target by the test tool; the corresponding output values are read back from the target and
compared with the expected values specified in the test scripts to determine test case failure or
success. The test tool saves all test results in a test log file. To increase test capability and test
cases reviewability, the test tool also supports other commands such as WAIT, DEFINE, etc.

Unit test cases based on the latest SDD have been fully developed following the applicable test
procedure and documented in the test plan. Unit test is performed on the target PDC and test
results will be documented in the test report.

8 of 11

a Boolean variable G (= false or true) as in the case of SEL or an integer variable K (= 0, 1, …,
n-1) as in the case of MUX). Testing all possible decision outcomes requires exercising all
corresponding values of the decision variable.

Figure 4 Example Selection Blocks

The domain of an analog input variable is typically divided into several regions (e.g., rational,
irrational low and irrational high regions) as a result of equivalence partitioning. Boundary value
analysis can then be applied to select input test values (typically at their minimum, just above the
minimum, a nominal value, just below their maximum and at their maximum).

In general, each test case specifies one or more input values to be written to the target and the
expected output values. For the example function block diagram unit shown in Figure 2, a
sample unit test script is presented in Figure 5.

The majority of test cases are defined in the test script using the “TEST_TABLE …
END_TABLE” construct. As shown in Figure 5, the first line defines the variable names for
read and write. Variables listed after SET (and before TEST) are input variables to be written
with specified input values; variables listed after TEST are those to be tested. Test cases are
listed in subsequent lines. The first column is the test case numbers and the rest columns are the
input values and expected output values corresponding to each variable name specified in the
first line.

When a test script file is executed or interpreted by the test tool, each input value is written to the
target by the test tool; the corresponding output values are read back from the target and
compared with the expected values specified in the test scripts to determine test case failure or
success. The test tool saves all test results in a test log file. To increase test capability and test
cases reviewability, the test tool also supports other commands such as WAIT, DEFINE, etc.

Unit test cases based on the latest SDD have been fully developed following the applicable test
procedure and documented in the test plan. Unit test is performed on the target PDC and test
results will be documented in the test report.

SEL Output Input0

Input1

G

MUX Output

Input0

Input1

K

Inputn-1

28th Annual CNS Conference & 31st CNS/CNA Student Conference
June 3 - 6, 2007 Saint John, New Brunswick, Canada

8 of 11

28th Annual CNS Conference & 31st CNS/CNA Student Conference
June 3 - 6, 2007 Saint John, New Brunswick, Canada

Log Power

Conditions tested:

- rational (and greater than LCalibLim)

- irrational high

- rational and <= LCalibLim

- irrational and <= LCalibLim

- irrational low
Notes:

- HCalib limit corresponds to irrational HLim, however the LCalib limit does

not correspond to the irrational LLim

o_LogNPowerDisp = (4095-819)/(5000-0) * (v_LogPowerAI - 0) + 819 (if rational)

o_LogNPowerDisp = k_AOhiLim (4095, if irrational high)

o_LogNPowerDisp = k_AOloLim (0, if irrational low)

define HLim 4588.0
define LLim 200.0
define Default 4520.7
define LCalibLim 1000.0
define Hys 50.0
define M 3.5

TEST_TABLE
SET m_LogPower TEST o_LogPirr_I v_LogPirr v_LogNPower o_LogNPowerDisp
1 2500.0 1 0 2500.0
2
3

HLim-M
HLim+M

1
0

0
1

HLim-M
Default 34095

4 5000.0 0 1 Default 4095

5 5300.0 0 1 Default 4095
6 HLim 0 1 Default 4095
7 HLim-Hys+M 0 1 Default 4095

8 HLim-Hys-M 1 0 HLim-Hys-M 3790
9 LCalibLim+50.0 1 0 LCalibLim+50.0 1507
10 LCalibLim-50.0 1 0 LCalibLim 1441
11 LLim+M 1 0 LCalibLim 952
12 LLim-M 0 1 Default 0
13 0.0 0 1 Default 0
14 LLim 0 1 Default 0
15 LLim+Hys-M 0 1 Default 0
16 LLim+Hys+M 1 0 LCalibLim 985
17 LCalibLim-50.0 1 0 LCalibLim 1441
18 LCalibLim 1 0 LCalibLim 1474
19 LCalibLim+50 0 1 0 LCalibLim+50.0 1507
END TABLE

Figure 5 A Sample Unit Test Script

6. Integration test

The objectives of the integration testing are:

• to test that the software modules integrated together and with the target hardware and
pre-developed software meets the requirements specified in the SRS,

• to find errors in the software, hardware, and pre-developed software interfaces, and
• to find errors in handling stress conditions, timing, fail-safe features, error conditions,

and error recovery

9of11

Figure 5 A Sample Unit Test Script

6. Integration test

The objectives of the integration testing are:

• to test that the software modules integrated together and with the target hardware and
pre-developed software meets the requirements specified in the SRS,

• to find errors in the software, hardware, and pre-developed software interfaces, and
• to find errors in handling stress conditions, timing, fail-safe features, error conditions,

and error recovery

Log Power

Conditions tested:
- rational (and greater than LCalibLim)
- irrational high
- rational and <= LCalibLim
- irrational and <= LCalibLim
- irrational low
Notes:
- HCalib limit corresponds to irrational HLim, however the LCalib limit does
not correspond to the irrational LLim

o_LogNPowerDisp = (4095-819)/(5000-0) * (v_LogPowerAI - 0) + 819 (if rational)

o_LogNPowerDisp = k_AOhiLim (4095, if irrational high)
o_LogNPowerDisp = k_AOloLim (0, if irrational low)

define HLim 4588.0
define LLim 200.0
define Default 4520.7
define LCalibLim 1000.0
define Hys 50.0
define M 3.5

TEST_TABLE
SET m_LogPower TEST o_LogPirr_I v_LogPirr v_LogNPower o_LogNPowerDisp
1 2500.0 1 0 2500.0 2457
2 HLim-M 1 0 HLim-M 3823
3 HLim+M 0 1 Default 4095
4 5000.0 0 1 Default 4095
5 5300.0 0 1 Default 4095
6 HLim 0 1 Default 4095
7 HLim-Hys+M 0 1 Default 4095
8 HLim-Hys-M 1 0 HLim-Hys-M 3790
9 LCalibLim+50.0 1 0 LCalibLim+50.0 1507
10 LCalibLim-50.0 1 0 LCalibLim 1441
11 LLim+M 1 0 LCalibLim 952
12 LLim-M 0 1 Default 0
13 0.0 0 1 Default 0
14 LLim 0 1 Default 0
15 LLim+Hys-M 0 1 Default 0
16 LLim+Hys+M 1 0 LCalibLim 985
17 LCalibLim-50.0 1 0 LCalibLim 1441
18 LCalibLim 1 0 LCalibLim 1474
19 LCalibLim+50.0 1 0 LCalibLim+50.0 1507
END_TABLE

28th Annual CNS Conference & 31st CNS/CNA Student Conference
June 3 - 6, 2007 Saint John, New Brunswick, Canada

9 of 11

28th Annual CNS Conference & 31st CNS/CNA Student Conference
June 3 - 6, 2007 Saint John, New Brunswick, Canada

6.1 Integration test methodology

Integration test is performed at the I/O electrical level (i.e., non-intrusive testing) using a test
facility. The PDC software is integrated with the PDC hardware, system software and I/O sub
system, and the PDC software is tested on the PDC target without modifications. The test facility
has its own CPU and is connected to the PDC target via I/O terminal blocks. The test facility
writes values to the PDC monitored variables via its output modules and reads PDC controlled
variables from its input modules (Figure 6).

Depending on the capability of the test facility, integration test cases can be either developed and
executed directly on the test facility processor or performed by an external test PC connected to
the test facility as in the case for unit test. For PLR SDS1 PDCs, integration test is performed
using an external test PC.

4 DI DO

1

 Test Facility
DO

DDE/OPC DI
1

Test Tool Ethernet Processor AI AO
Link 1

Test PC AO AI

Figure 6 Integration Test Configuration

6.2 Integration test cases definition

PDC
Processors

Integration test cases are selected to provide the following coverage requirements

• Define test cases to test each functional requirement in the SRS.
• Define test cases to test the performance requirements specified in the SRS.
• Identify all resources used by the subsystem software and define test cases which test the

subsystem under conditions that attempt to overload these resources in order to determine
if the functional and performance requirements defined in the SRS are met.

• Define test cases to exercise any interfaces between:
o The software and the target hardware,
o The software and pre-developed software,
o The software modules themselves,

• Define test cases to show that the subsystem meets its requirements under each hardware
configuration and operation option.

• Define test cases to test the ability of the subsystem to respond as indicated in the SRS to
software, hardware and data errors.

10 of 11

6.1 Integration test methodology

Integration test is performed at the I/O electrical level (i.e., non-intrusive testing) using a test
facility. The PDC software is integrated with the PDC hardware, system software and I/O sub
system, and the PDC software is tested on the PDC target without modifications. The test facility
has its own CPU and is connected to the PDC target via I/O terminal blocks. The test facility
writes values to the PDC monitored variables via its output modules and reads PDC controlled
variables from its input modules (Figure 6).

Depending on the capability of the test facility, integration test cases can be either developed and
executed directly on the test facility processor or performed by an external test PC connected to
the test facility as in the case for unit test. For PLR SDS1 PDCs, integration test is performed
using an external test PC.

Figure 6 Integration Test Configuration

6.2 Integration test cases definition

Integration test cases are selected to provide the following coverage requirements

• Define test cases to test each functional requirement in the SRS.
• Define test cases to test the performance requirements specified in the SRS.
• Identify all resources used by the subsystem software and define test cases which test the

subsystem under conditions that attempt to overload these resources in order to determine
if the functional and performance requirements defined in the SRS are met.

• Define test cases to exercise any interfaces between:
o The software and the target hardware,
o The software and pre-developed software,
o The software modules themselves,

• Define test cases to show that the subsystem meets its requirements under each hardware
configuration and operation option.

• Define test cases to test the ability of the subsystem to respond as indicated in the SRS to
software, hardware and data errors.

Ethernet
Link

 Test Facility
 Processor

DI

DO

AI

AO

 PDC
 Processors

DO

DI

AO

AI

DDE/OPC
 Test Tool

Test PC

28th Annual CNS Conference & 31st CNS/CNA Student Conference
June 3 - 6, 2007 Saint John, New Brunswick, Canada

10 of 11

28th Annual CNS Conference & 31st CNS/CNA Student Conference
June 3 - 6, 2007 Saint John, New Brunswick, Canada

• Define test cases which attempt to subvert any existing safety or security mechanisms.

Integration test scripts are defined in the same scripting language as in unit testing and are
executed using the same test tool. Integration test scripts have been developed and referenced in
the test plan. Integration test is performed using the test facility and test results will be
documented in the test report.

7. Test tools and facilities

To automate PDC application software testing, a test script interpreter has been developed using
Visual Basic. The scripting tool executes test scripts and logs test results automatically. It also
displays input values written to the target and output values read from the target. Test scripts
can be executed separately or can be contained in a single file to be executed one after another
automatically. The scripting tool communicates with the target using DDE/OPC protocols. Any
global variables with the READ or WRITE attribute in the target can be accessed by the test tool
using DDE/OPC. This intrusive test method is used for unit test of the PLR PDC software.

A PLC has been selected as the test facility for integration test. Test cases are applied via signals
at the I/O terminal block. The selected test facility supports communication with external
systems through a standard communication protocol (e.g., DDE/OPC).

8. Concluding remarks

The PLR SDS1 PDCs use the Integrated Approach (IA), which is a formal methodology
developed by AECL for the design and verification of safety-critical software. A major
characteristic of the IA is the use of a graphical programming language. The function block
language used for PLR is defined in the IEC 61131-3 standard. Testing of software implemented
in FBD language is automated to a great extent. To support automated software test, a
customized test scripting tool and test facility have been developed. PDC software test activities
for SDS1 and SDS2 have started and are expected to finish within a month. The engineering of
the SDS1/SDS2 PDCs is on track with schedule and quality objectives.

9. References

[1] Fraser, K.G., et al., "Point Lepreau refurbishment project programmable digital comparator
(PDC) replacement for SDS1 and SDS2 — update 2: software development and review and
validation test rig development," 27th Annual Conference of the Canadian Nuclear Society,
Toronto, June 2006.

[2] IEC 61131-3, "Programmable Controllers — Part 3: Programming Languages", First Edition,
1993.

11 of 11

• Define test cases which attempt to subvert any existing safety or security mechanisms.

Integration test scripts are defined in the same scripting language as in unit testing and are
executed using the same test tool. Integration test scripts have been developed and referenced in
the test plan. Integration test is performed using the test facility and test results will be
documented in the test report.

7. Test tools and facilities

To automate PDC application software testing, a test script interpreter has been developed using
Visual Basic. The scripting tool executes test scripts and logs test results automatically. It also
displays input values written to the target and output values read from the target. Test scripts
can be executed separately or can be contained in a single file to be executed one after another
automatically. The scripting tool communicates with the target using DDE/OPC protocols. Any
global variables with the READ or WRITE attribute in the target can be accessed by the test tool
using DDE/OPC. This intrusive test method is used for unit test of the PLR PDC software.

A PLC has been selected as the test facility for integration test. Test cases are applied via signals
at the I/O terminal block. The selected test facility supports communication with external
systems through a standard communication protocol (e.g., DDE/OPC).

8. Concluding remarks

The PLR SDS1 PDCs use the Integrated Approach (IA), which is a formal methodology
developed by AECL for the design and verification of safety-critical software. A major
characteristic of the IA is the use of a graphical programming language. The function block
language used for PLR is defined in the IEC 61131-3 standard. Testing of software implemented
in FBD language is automated to a great extent. To support automated software test, a
customized test scripting tool and test facility have been developed. PDC software test activities
for SDS1 and SDS2 have started and are expected to finish within a month. The engineering of
the SDS1/SDS2 PDCs is on track with schedule and quality objectives.

9. References

[1] Fraser, K.G., et al., “Point Lepreau refurbishment project programmable digital comparator
(PDC) replacement for SDS1 and SDS2 – update 2: software development and review and
validation test rig development,” 27th Annual Conference of the Canadian Nuclear Society,
Toronto, June 2006.

[2] IEC 61131-3, “Programmable Controllers – Part 3: Programming Languages”, First Edition,
1993.

28th Annual CNS Conference & 31st CNS/CNA Student Conference
June 3 - 6, 2007 Saint John, New Brunswick, Canada

11 of 11

	Abstract
	1. Introduction
	2. Progress update on PDC replacement
	3. The SDS1 PDC application software overview
	4. Test of software implemented using FBD
	5. PDC software unit test
	6. Integration test
	7. Test tools and facilities
	8. Concluding remarks
	9. References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

