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Abstract 

In this paper a simulation platform for CANDU reactors' control system is presented. The platform 
is built on MATLAB/SIMULINK interactive graphical interface. Since MATLAB/SIMULINK are powerful 
tools to describe systems mathematically, all the subsystems in a CANDU reactor are represented in 
MATLAB'S language and are implemented in SIMULINK graphical representation. The focus of the 
paper is on the flux control loop of CANDU reactors. However, the ideas can be extended to include 
other parts in CANDU power plants and the same technique can be applied to other types of nuclear 
reactors and their control systems. The CANDU reactor model and xenon feedback model are also 
discussed in this paper. 

1. Introduction 

Most of the control systems in use for nuclear reactors were designed during 60s based on classical 
control theories. These designs are based on frequency response methods and time domain methods 
for single input single output (siso) systems. Designers of these systems tried to break down the 
complicated loops into simpler ones and make the design process easier to handle. However, loop 
interactions are difficult to deal with. 

Simulation codes play a major role in design and analysis of nuclear power plants. Atomic Energy 
of Canada, Ltd. (AECL), Ontario Power Generation (oPG), and other utility companies have developed 
simulators and codes to meet their needs. Some of these codes are designed to perform specific tasks, 
others are simulators of larger scope for training purposes, which are intended to simulate the whole 
power plant or a subset of its processes. 

Nuclear power plant simulators are deployed either as full-scope training simulators or in a smaller 
version as desktop simulators. Owing to the complexity of nuclear power plants, and limitations on 
computational power and storage of computers, simulators used to require dedicated hardware to 
run in real-time. The recent developments of computer technology has made it possible to develop 
computer codes and simulators that can run on conventional desktop computers or on a cluster of 
computers. 

Power plant simulators for existing CANDU designs are developed at OPG and are available for train-
ing and analysis purposes. These simulators are behind all the full-scope training simulators and are 
also available in desktop versions. The desktop version requires an alpha-processor machine to run 
in real-time. Cassiopeia Technologies Inc (cTI) has developed pc-based desktop simulators for generic 
type LAPPS such as PWR, BWR, CANDU 9, and VVER. These simulators are available through International 
Atomic Energy Agency (IAEA). The simulators are based on CAS sim, which is the simulation develop-
ment environment developed at CTI [1]. AECL and other utility companies have done extensive work 
in this field, but most of their work is not reported in open literature and are considered proprietary. 
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is built on Matlab/Simulink interactive graphical interface. Since Matlab/Simulink are powerful
tools to describe systems mathematically, all the subsystems in a candu reactor are represented in
Matlab’s language and are implemented in Simulink graphical representation. The focus of the
paper is on the flux control loop of candu reactors. However, the ideas can be extended to include
other parts in candu power plants and the same technique can be applied to other types of nuclear
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1. Introduction

Most of the control systems in use for nuclear reactors were designed during 60s based on classical
control theories. These designs are based on frequency response methods and time domain methods
for single input single output (siso) systems. Designers of these systems tried to break down the
complicated loops into simpler ones and make the design process easier to handle. However, loop
interactions are difficult to deal with.

Simulation codes play a major role in design and analysis of nuclear power plants. Atomic Energy
of Canada, Ltd. (aecl), Ontario Power Generation (opg), and other utility companies have developed
simulators and codes to meet their needs. Some of these codes are designed to perform specific tasks,
others are simulators of larger scope for training purposes, which are intended to simulate the whole
power plant or a subset of its processes.

Nuclear power plant simulators are deployed either as full-scope training simulators or in a smaller
version as desktop simulators. Owing to the complexity of nuclear power plants, and limitations on
computational power and storage of computers, simulators used to require dedicated hardware to
run in real-time. The recent developments of computer technology has made it possible to develop
computer codes and simulators that can run on conventional desktop computers or on a cluster of
computers.

Power plant simulators for existing candu designs are developed at opg and are available for train-
ing and analysis purposes. These simulators are behind all the full-scope training simulators and are
also available in desktop versions. The desktop version requires an alpha-processor machine to run
in real-time. Cassiopeia Technologies Inc (cti) has developed pc-based desktop simulators for generic
type npps such as pwr, bwr, candu 9, and vver. These simulators are available through International
Atomic Energy Agency (iaea). The simulators are based on cassim, which is the simulation develop-
ment environment developed at cti [1]. aecl and other utility companies have done extensive work
in this field, but most of their work is not reported in open literature and are considered proprietary.
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One of the major difficulties that the early designers faced is still troublesome today. This is the lack 
of a unified simulation environment. In a unified simulation environment, the control system engineers 
could test their ideas and designs before they implement into a real reactor control system. Historically, 
many computer codes have been developed to solve different kinds of problems that arise in nuclear 
reactor engineering. The issue is that the communication between these codes has never been trivial. 
The computer codes that are sophisticated in solving transient characteristics of a reactor, are not always 
equipped with control system design tools and vice versa. Simulators such as CTI simulators provide a 
unified environment for simulation, but the core of the simulation is based on a new language which is 
unfamiliar to most engineers and difficult to modify. 

In this paper a unified approach towards simulation of nuclear reactors and their control systems 
has been developed. To achieve this goal MATLAB and its interactive graphical modeling environment 
SIMULINK are used. The effort is paid to CANDU reactors, although the general idea can be applied to 
other types of power reactors with appropriate modifications. This is an extension of the work reported 
in [2], with the objective of improving the models and making them more concise. A main advantage 
of this approach is that it is based on MATLAB language and the blocks are built in SIMULINK which are 
familiar to most of control engineers and simulation scientists. 

2. Reactor Regulating System 

The focus of this paper is on the flux control loop of a CANDU reactor which controls the reactor power 
throughout its allowed range of operation. Reactor power is controlled by various reactivity devices. 
Reactor control in CANDU is computerized and is implemented in the Reactor Regulating System (RRs) 
program in the plant control computers: Direct Digital Control Computers (Dcc) system consisting of 
two computers (Dccx and DccY). The two computers are identical and each one can control the reactor 
independently. The advantage of redundancy is the increased reliability and availability of the control 
system computers. 

The reactivity control devices in CANDU reactors are: 

• Light water Liquid Zone Controllers (Lzc) 

• Adjuster Rods (AR) 

• Mechanical Control Absorbers (MCA) 

On-power re-fuelling for compensating long term reactivity effects, and liquid moderator poison for 
providing negative reactivity can also be used as reactivity control mechanisms. 

Figure 1 shows a simplified version of the reactor control system. For the purpose of this study, 
the block diagram is a good representation of the flux control loop in a CANDU reactor. Among several 
reactivity control devices which are present, only Lzc is modeled explicitly. The reactivity worth of all 
other devices are lumped into one single reactivity source. This source is shown as "Other Reactivity 
Devices" in Figure 1. 

The control algorithms hosted on DCCX and DCCY lie in the heart of the flux control loop. There are 
many routines on the control computers, but in this paper only a few crucial ones in the flux control 
loop are cosidered. 

3. Vectorization of Models 

An important feature of all the models is vectorization. Since the reactor is divided into 14 zones, other 
elements of the control system also work in a dimension of 14 or higher. MATLAB/SIMULINK is very 
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Figure 1: Simplified block diagram of CANDU reactor control system 

proficient at handling vectors and matrices. This is one of the major strongholds of MATLAB. Using 
this feature, it is possible to implement the models in a very compact and concise form. The vectorized 
implementations are more efficient and are easier to read and understand in the graphical environment 
of SIMULINK. 

4. CANDU Reactor 

Nuclear reactors are the heart of every nuclear power plant. The most commonly used technologies 
in nuclear power plants are Boiling Water Reactors (BwR), Pressurized Water Reactors (PwR), and 
CANada Deuterium Uranium (cANDu) reactors. All the nuclear power plants in Canada have a CANDU 

type reactor in their core with minor differences in their design. 
The model of a CANDU reactor in this paper is a nodal model adopted from the work done by A. P. Ti-

wari and colleagues reported in [3] and a series of articles such as [4]. The modeling process starts 
from a two-group diffusion description of the reactor dynamics. The usual assumptions of multigroup 
diffusion theory have been applied along with some other assumptions. For detailed discussion of the 
assumptions on diffusion theory, interested readers are referred to [5] and [6]. 
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proficient at handling vectors and matrices. This is one of the major strongholds of Matlab. Using
this feature, it is possible to implement the models in a very compact and concise form. The vectorized
implementations are more efficient and are easier to read and understand in the graphical environment
of Simulink.

4. CANDU Reactor

Nuclear reactors are the heart of every nuclear power plant. The most commonly used technologies
in nuclear power plants are Boiling Water Reactors (bwr), Pressurized Water Reactors (pwr), and
CANada Deuterium Uranium (candu) reactors. All the nuclear power plants in Canada have a candu
type reactor in their core with minor differences in their design.

The model of a candu reactor in this paper is a nodal model adopted from the work done by A. P. Ti-
wari and colleagues reported in [3] and a series of articles such as [4]. The modeling process starts
from a two-group diffusion description of the reactor dynamics. The usual assumptions of multigroup
diffusion theory have been applied along with some other assumptions. For detailed discussion of the
assumptions on diffusion theory, interested readers are referred to [5] and [6].
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The equations for epithermal and thermal neutron group are given as 

1 a 01 
and 
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h=1 

1 502
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where epithermal (fast) and thermal (slowed down) groups are represented by subscripts 1 and 2. 
0(r, t) stands for the neutron flux. a h(r , t) is the number density of delayed neutron precursors'. 
Ea and Ef stand for absorption and fission cross sections, respectively. E12 is the scattering cross 
section from fast group to thermal group. All the cross sections are functions of position r. As are the 
decay constants of the delayed neutron precursor groups and f3 is the total fractional yield of delayed 
neutrons. The speed of the neutron in each group is denoted by v1 and v2. This form of the diffusion 
equations is very common when studying a reactor dynamics with two energy groups. The assumptions 
made here are similar to the ones made for AECL'S RFSP code [7], [8], and many other reactor physics 
codes. The delayed neutron precursor concentrations evolve according to 

a eh p  
at — phkyr, As V r, L,f21,As 2) — h= 1, 2, .. Ind . (3) 

In nodal approximation, the 3D space is divided into small boxes or cells. Equations (1-3) are 
averaged over the volume of cell i. Averaging gives rise to new fluxes 4,1 and 4,2, and all the neutronic 
properties are averaged over the volume of the cell accordingly. 

'ki(t)e 
1 = — f k(r , t)dV k = 1, 2 . (4) 

Vi 

Note that the fluxes defined in Equation (4) are only function of time. Subscript k stands for the fast 
and thermal group and i is an index to the cell number. It is assumed that chi is the value of the flux at 
the center of the cell i. The cross sections are treated in a similar fashion; for example, the absorption 
cross section of fast and thermal groups are flux-weighted according to 

Iv Eak(r )0 k(r , t)dV I
v Eak(r )0 k(r , t)dV i  i 

Eaki - = (5) 
f Ili 0 k(r , t)dV cki(t) 

The main source of the problem is the leakage term (the first term on RHS of Equations (1) and 
(2)). In general, the leakage term, if integrated over the volume of the cell can be written as [6] 

1 T 

— f V • Dk(r)V 0 ki(r , t)dV -a kicki + E akii,pki, (6) 
Vi vi .i=1 

where, i and j are the indexes of the cells, J is the number of neighbouring cells to cell i, and k is the 
index for fast and thermal group (k = 1, 2). alo and a2ii are the coupling coefficients between the 
cells for fast and thermal neutron energies. The diagonal elements of the coupling coefficient matrix 
can be calculated from the relation 

T 

akii = akii 

j=1 

'Photo-neutrons get the same treatment as delayed neutrons 

(7) 
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In nodal approximation, the 3D space is divided into small boxes or cells. Equations (1–3) are
averaged over the volume of cell i. Averaging gives rise to new fluxes Φ1 and Φ2, and all the neutronic
properties are averaged over the volume of the cell accordingly.

Φki(t)¬
1

Vi
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φk(r , t)dV k = 1, 2 . (4)

Note that the fluxes defined in Equation (4) are only function of time. Subscript k stands for the fast
and thermal group and i is an index to the cell number. It is assumed that Φki is the value of the flux at
the center of the cell i. The cross sections are treated in a similar fashion; for example, the absorption
cross section of fast and thermal groups are flux-weighted according to
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The main source of the problem is the leakage term (the first term on rhs of Equations (1) and
(2)). In general, the leakage term, if integrated over the volume of the cell can be written as [6]

1

Vi

∫
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∇ · Dk(r )∇φki(r , t)dV ¬−αkiΦki +
J
∑
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αki jΦk j , (6)

where, i and j are the indexes of the cells, J is the number of neighbouring cells to cell i, and k is the
index for fast and thermal group (k = 1,2). α1i j and α2i j are the coupling coefficients between the
cells for fast and thermal neutron energies. The diagonal elements of the coupling coefficient matrix
can be calculated from the relation

αkii =
J
∑

j=1

αki j (7)

1Photo-neutrons get the same treatment as delayed neutrons
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Using Equation (6), it is possible to simplify Equations (1) and (2), because it will remove all the 
second order partial derivatives. To apply this technique, one has to address another question. How to 
calculate the coupling coefficients? The coupling coefficients between mesh cells are determined by the 
nodalization scheme which is chosen for the geometry of the core, and the finite-difference methods 
used. Coupling coefficients are functions of the nodalization geometry and finite-difference scheme 
that one chooses to discretize the derivatives [6]. 

Different expressions for coupling coefficients have been proposed in the literature. For a large 
PHWR which is very similar to CANDU reactors in its design, the coupling coefficients between nodes i 
and j are given as [4] 

Dv IAo
a =  (8) 

1-1 dii Vi ' 

where D is the diffusion constant after collapsing fast and thermal neutron fluxes in each node accord-
ing to 11- group theory [9], v is the thermal neutron speed (again after collapsing the groups), do is 
the center-to-center distance of nodes i and j, i is the prompt neutron lifetime, Ao is the interface area 
between nodes i and j and Vi is the volume of the node i. Each node of the nodalization scheme is 
equivalent to one of the zones of the CANDU reactors and hence there are only 14 nodes in this scheme. 
Coupling between the zones which are not immediate neighbors is considered to be zero. 

The spatial coupling coefficients between mesh cells are not unique and depend on such factors as 
nodalization scheme and finite difference method. Reference [9] gives a different expression for cou-
pling coefficients. For a slightly different coupled nodal kinetics model of the core, another expression 
is given to represent the coupling coefficients between the nodes in [10]. In all these studies it has 
been assumed that the coupling coefficients are constant during the transients and they are treated as 
parameters once they are determined. If the flux shape changes in the reactor owing to a perturbation 
in configuration of the core, the coupling coefficients determined from an unperturbed flux shape will 
no longer be accurate and they introduce error to the flux transient tilting [11]. 

The flux of the node i after collapsing the fluxes of fast and thermal groups is 11(t)(  = (1,1i(t)+4,2i(t), 
and all the macroscopic cross sections are collapsed using the same principle. The power of node (zone) 
i can be calculated by 

Pi(t) = EfEfiVicl, i(t), (9) 

where, Ef is the energy released per fission. Equation (3) can be simplified further, if a new variable for 
delayed neutron precursor concentrations is defined similar to the power of each node. This modified 
precursor concentration is given as 

Chi(t) = EfEfiviViehi(t), (10) 

where, vi is the neutron speed in node i (after collapsing the groups) and Chi(t) is the precursor 
concentration after it is being averaged over the volume of the node. h is an index to the number of 
delayed neutron groups (h = 1, . . . , md). It should be noted that Chi(t) is measure in the same units as 
as Pi(t) (W) after this change of variables. 

Substituting the average flux of the zone with Equation (9) and the average delayed neutron pre-
cursor concentrations with Equation (10), a set of coupled kinetics equations for zones of the reactor 
in a form similar to point kinetics equations can be obtained as follows: 

dPi p i  Z 
Pi

Z p i  and 

d t = (pi — p) 
i  
- - E a ii 7  + E a ii 7  + E Ahchi

j=1 ' j=1 ' h=1 
dd Chi 

Ph= 7 Pi — AhChi (12) 
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∑
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+
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∑
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where Z is the number of the zones (in this case 14) and pi is the net reactivity of zone i and is defined 
as 

kooi — 1 
P i =  k„oi

and kooi is the infinite medium multiplication factor for zone i. 

(13) 

4.1. Steady State Solution 

When the reactor is critical and at equilibrium, the derivatives on the LHS of Equations (11) and (12) 
will vanish. The equilibrium values of delayed neutron precursors are given by 

PhPi,r 
(14) Chi r = ah  , 

where, subscript "r" stands for the reference value. Reference condition is when the reactor is operating 
at 100 %FP. The zonal powers at the steady state condition are solutions to a set of equations in the 
form of z z 

pipi,,. - E a iiPi,,. + E aiipi,r = 0 . J=1 J=1 (15) 

Equation (15) is essentially identical to steady state diffusion equation when it is converted to differ-
ence equation form. Finding a physically meaningful solution to this problem results in an eigenvalue 
problem. Generally, an iterative scheme can be used to solve diffusion equation by applying source 
iterations or power iterations method to the equations. However, in case of coarse mesh nodalization of 
CANDU reactor, because of the small dimension of the problem (Z = 14), a direct eigenvalue method 
can be utilized. 

The infinite medium multiplication factor for node i is expressed as 

and the reactivity can be written as 

v Eft kooi = 
Eat

Eai pi = 1 — . 
v Efi 

(16) 

(17) 

To determine the critical solution of the reactor there is a systematic procedure which yields only 
the physical solutions. The procedure is based on the assumption that the number of neutrons emitted 
per fission (v) can be changed [12]. Essentially, in this method the average number of neutrons emitted 
per fission is divided by the effective multiplication factor k, therefore the reactivity of each zone can 
be written as 

kEai
Pi = 1 . (18) 

v Efi

Substituting Equation (18) in Equation (15), and expanding the resultant equation, gives 

z z kEai
Pi,,. — E aopi,r + E aiipi,r = —Pi,.. 

VEft j=1 j=1 

(19) 

Writing all the equations for i = 1, .. .,Z, gives a clue as how to write the equations for all zones in a 

compact matrix form. Defining the power vector as P 
T 

- r = [Pl,r P2,r • • • PZ,r] one can write 

k 
Pr +AT — NPr = —

v
MPr, (20) 
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where Z is the number of the zones (in this case 14) and ρi is the net reactivity of zone i and is defined
as

ρi =
k∞i − 1

k∞i
, (13)

and k∞i is the infinite medium multiplication factor for zone i.

4.1. Steady State Solution

When the reactor is critical and at equilibrium, the derivatives on the lhs of Equations (11) and (12)
will vanish. The equilibrium values of delayed neutron precursors are given by

Chi,r =
βhPi,r

`λh
, (14)

where, subscript “r” stands for the reference value. Reference condition is when the reactor is operating
at 100%FP. The zonal powers at the steady state condition are solutions to a set of equations in the
form of

ρi Pi,r−
Z
∑

j=1

αi j Pi,r+
Z
∑

j=1

α ji Pj,r = 0 . (15)

Equation (15) is essentially identical to steady state diffusion equation when it is converted to differ-
ence equation form. Finding a physically meaningful solution to this problem results in an eigenvalue
problem. Generally, an iterative scheme can be used to solve diffusion equation by applying source
iterations or power iterations method to the equations. However, in case of coarse mesh nodalization of
candu reactor, because of the small dimension of the problem (Z = 14), a direct eigenvalue method
can be utilized.

The infinite medium multiplication factor for node i is expressed as

k∞i =
νΣfi

Σai
, (16)

and the reactivity can be written as

ρi = 1−
Σai

νΣfi
. (17)

To determine the critical solution of the reactor there is a systematic procedure which yields only
the physical solutions. The procedure is based on the assumption that the number of neutrons emitted
per fission (ν) can be changed [12]. Essentially, in this method the average number of neutrons emitted
per fission is divided by the effective multiplication factor k, therefore the reactivity of each zone can
be written as

ρi = 1−
kΣai

νΣfi
. (18)

Substituting Equation (18) in Equation (15), and expanding the resultant equation, gives

Pi,r−
Z
∑

j=1

αi j Pi,r+
Z
∑

j=1

α ji Pj,r =
kΣai

νΣfi
Pi,r . (19)

Writing all the equations for i = 1, . . . , Z , gives a clue as how to write the equations for all zones in a

compact matrix form. Defining the power vector as Pr =
�

P1,r P2,r . . . PZ ,r

�T
one can write

Pr+ AT−NPr =
k

ν
MPr , (20)
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where A is the coupling coefficients matrix with entries (to for i 0 j and 0 for i = j (the main diagonal 
of the matrix are all zeros). M and N are both diagonal matrices defined as 

M = diag ( —Eai, i = 1, .. . , Z ) (21) 
Efi 

( 
z 

N = diag E aii, i = 1, . .. , Z . (22) 
j=1 

Since M is nonsingular, it is easy to calculate its inverse. Subsequently, Equation (20) can be rearranged 
into 

M-1 (iz + AT — N) Pr = k —
v
P„ (23) 

where, i is the identity matrix of dimension Z. Equation (23) is in standard eigenvalue problem form. 
The eighenvalues of the matrix M-1 (i + AT — N) will be equal to k/v. . Alternatively, it can be said that 
k is the eigenvalue of the following eigenvalue problem: 

K (lz -FAT — N) Pr =kP„ (24) 

where K = diag (k„,,i, i = 1, ... ,Z). The steady state zonal powers are the eigenvectors associated with 
Equation (23) or Equation (24). 

Generally, a matrix of dimension Z has Z eigenvalues and eigenvectors. Next question that arises is 
which one of these eigenvalue/eigenvector pairs should be chosen as the physically meaningful solution 
as the reactor steady state zonal powers. This question has been studied in the context of applied 
mathematics for multigroup diffusion equation and the results can be extended to this simplified case 
too. It has been proved that all the eigenvalues of steady state multigroup diffusion equation are 
real, and the largest eigenvalue corresponds to the fundamental harmonic of the flux [13]. Therefore, 
one only needs to calculate the largest eigenvalue of the matrices on the LHS of the Equation (23) or 
Equation (24) and its corresponding eigenvector. It should be emphasized that the eigenvector that 
is calculated, should be multiplied by a scaler to give the real power of the zones. If Pbuik is the bulk 
power of the reactor, and v is the eigenvector of Equation (24), the steady state zonal powers are given 
as 

Pbulk 
Pr = v z v V. 

z-Aj=1 vi 
(25) 

If the homogenized averaged absorption and fission cross sections in all zones are equal, i.e., 
Eui = Eui and Efi = Efi for all i 0 j, the eigenvalue calculation can be skipped based on a simple 
physical fact. In such a configuration, the power of each zone is dependent on the volume of the zone. 

If the volume of the zones is arranged in a vector V = [1/1 1/2 ... Vz] T, it can be said v cc V and 
eigenvalue/eigenvector calculation need not be performed. MATLAB gives the eigenvectors in a nor-
malized form so that the Euclidean length of the vector is equal to one [14]. Therefore, the eigenvector 
v calculated by MATLAB iS 

V 
V  

"V"2
(26) 

4.2. Nondimensionalization of the Model Equations 

Since all the detectors and sensors read the power (flux) and other variables in terms of fractions of 
the maximum or nominal value of that parameter, it is a good idea to write the dynamic equations 
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where A is the coupling coefficients matrix with entries αi j for i 6= j and 0 for i = j (the main diagonal
of the matrix are all zeros). M and N are both diagonal matrices defined as

M= diag
�

Σai

Σfi
, i = 1, . . . , Z
�

(21)

N= diag







Z
∑

j=1

αi j , i = 1, . . . , Z






. (22)

Since M is nonsingular, it is easy to calculate its inverse. Subsequently, Equation (20) can be rearranged
into

M−1 �IZ + AT−N
�

Pr =
k

ν
Pr , (23)

where, IZ is the identity matrix of dimension Z . Equation (23) is in standard eigenvalue problem form.
The eighenvalues of the matrix M−1

�

IZ + AT−N
�

will be equal to k/ν . Alternatively, it can be said that
k is the eigenvalue of the following eigenvalue problem:

K
�

IZ + AT−N
�

Pr = kPr , (24)

where K = diag
�

k∞i , i = 1, . . . , Z
�

. The steady state zonal powers are the eigenvectors associated with
Equation (23) or Equation (24).

Generally, a matrix of dimension Z has Z eigenvalues and eigenvectors. Next question that arises is
which one of these eigenvalue/eigenvector pairs should be chosen as the physically meaningful solution
as the reactor steady state zonal powers. This question has been studied in the context of applied
mathematics for multigroup diffusion equation and the results can be extended to this simplified case
too. It has been proved that all the eigenvalues of steady state multigroup diffusion equation are
real, and the largest eigenvalue corresponds to the fundamental harmonic of the flux [13]. Therefore,
one only needs to calculate the largest eigenvalue of the matrices on the lhs of the Equation (23) or
Equation (24) and its corresponding eigenvector. It should be emphasized that the eigenvector that
is calculated, should be multiplied by a scaler to give the real power of the zones. If Pbulk is the bulk
power of the reactor, and v is the eigenvector of Equation (24), the steady state zonal powers are given
as

Pr =
Pbulk
∑Z

j=1 v j

v . (25)

If the homogenized averaged absorption and fission cross sections in all zones are equal, i.e.,
Σai = Σa j and Σfi = Σf j for all i 6= j, the eigenvalue calculation can be skipped based on a simple
physical fact. In such a configuration, the power of each zone is dependent on the volume of the zone.

If the volume of the zones is arranged in a vector V =
�

V1 V2 . . . VZ

�T
, it can be said v ∝ V and

eigenvalue/eigenvector calculation need not be performed. Matlab gives the eigenvectors in a nor-
malized form so that the Euclidean length of the vector is equal to one [14]. Therefore, the eigenvector
v calculated by Matlab is

v =
V

‖V‖2
. (26)

4.2. Nondimensionalization of the Model Equations

Since all the detectors and sensors read the power (flux) and other variables in terms of fractions of
the maximum or nominal value of that parameter, it is a good idea to write the dynamic equations
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that complies with this practice. To achieve this goal, Equations (11) and (12) can be written in 
nondimensionalized form. The following variables are defined 

, 
Pi = — (27) 

Pi,r 
Chi 

Chi = . 
Chi,r 

(28) 

Replacing these variables in Equations (11) and (12) and simplifying the equations, the nondimension-
alized form of the reactor kinetics are obtained: 

dPi ma 
t

 —(pi — P) 13i — EceoPi+Emii3J-FEPIA 
j=1 j=1 h=1 

dChi
= (Pi — t-hi) d t 

where no are the elements of a modified coupling coefficients matrix and they are given as 

o Pi,r = cco . 
i-j,r 

The matrix H is built from elements no with similar structure to A. 

(29) 

(30) 

(31) 

4.3. Implementation of the Reactor Model 

If the equations for all zones are written in a matrix notation, they can be implemented in SIMULINK 
in a vectorized form. For example to implement the power dynamics equation, one does not need 
14 integrators. One integrator can be used to implement the vector form of the equation and MAT-
LAB/SIMULINK will expand the equations to the appropriate size. 

The nondimensionalized form of the power dynamics for all zones is 

dP „ 

d t 
= RP — NP + HTP + , (32) 

where, R is a diagonal matrix defined as 

and B is a block-diagonal matrix 

R = diag (pi — p,i.i,...,z), (33) 

Pmd 
P1 P2 • • • Pmd 

P1 P2 • • • Pmd _ 

The vector C is a column vector of dimension mdZ x 1 of all the delayed neutron precursor concentra-
tions in all nodes for all groups of delayed neutrons and photo-neutrons, i.e., 

(34) 

[t '11 C21 • • • t rnd 1 e '12 e '22 • • • t-rnd 2 • C1Z C2Z • • • Cmd Z 
T 

(35) 
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that complies with this practice. To achieve this goal, Equations (11) and (12) can be written in
nondimensionalized form. The following variables are defined

P̂i =
Pi

Pi,r
(27)

Ĉhi =
Chi

Chi,r
. (28)

Replacing these variables in Equations (11) and (12) and simplifying the equations, the nondimension-
alized form of the reactor kinetics are obtained:

`
d P̂i

d t
=
�

ρi − β
�

P̂i −
Z
∑

j=1

αi j P̂i +
Z
∑

j=1

η ji P̂j +
md
∑

h=1

βhĈhi (29)

dĈhi

d t
= λh

�

P̂i − Ĉhi

�

(30)

where ηi j are the elements of a modified coupling coefficients matrix and they are given as

ηi j ¬ αi j
Pi,r

Pj,r
. (31)

The matrix H is built from elements ηi j with similar structure to A.

4.3. Implementation of the Reactor Model

If the equations for all zones are written in a matrix notation, they can be implemented in Simulink
in a vectorized form. For example to implement the power dynamics equation, one does not need
14 integrators. One integrator can be used to implement the vector form of the equation and Mat-
lab/Simulink will expand the equations to the appropriate size.

The nondimensionalized form of the power dynamics for all zones is

`
dP̂

d t
= RP̂ −NP̂ +HTP̂ + BĈ , (32)

where, R is a diagonal matrix defined as

R= diag
�

ρi − β , i = 1, . . . , Z
�

, (33)

and B is a block-diagonal matrix

B=













β1 β2 · · · βmd
: :
: β1 β2 · · · βmd

:

: :
. . .

: : β1 β2 · · · βmd













. (34)

The vector Ĉ is a column vector of dimension md Z × 1 of all the delayed neutron precursor concentra-
tions in all nodes for all groups of delayed neutrons and photo-neutrons, i.e.,

Ĉ =
h

Ĉ11 Ĉ21 · · · Ĉmd1
... Ĉ12 Ĉ22 · · · Ĉmd2

... · · ·
... Ĉ1Z Ĉ2Z · · · Ĉmd Z

iT
(35)
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Similarly, the delayed neutron precursor dynamics for all zones and all groups can be put into vector 
form 

dC — 
Lid + L2P, (36) 

d t

where L1 is an mdZ x md Z diagonal block-matrix, with its diagonal elements being diagonal matrices 
themselves. If Al is defined as 

the block-matrix L1 can be written as 

Al = diag (Ai, Az, • • • , Arnd ) , (37) 

L1 = diag (Ai, Ai, ..., A1) . (38) 
.—..,,._. 

z 

Matrix L2 is similar in structure to B, but each one of the diagonal blocks is a column vector. 

[Al A2 

L2 =

• • • Arno 

• Al A2 • • • Amd _ 

With the definition of vectors and matrix gains completed, the model can be implemented in 
SIMULINK easily. To covert a vector to a diagonal matrix with the elements of the vector on the main 
diagonal, MATLAB'S diag command is used. To construct the block-diagonal matrices the blkdiag is 
employed. For more information on the calling format of these commands, the interested reader can 
refer to MATLAB help files. 

MATLAB performs matrix and vector multiplications in several ways (element-wise product, matrix 
product, etc.). The desired multiplication method should be chosen to get the correct results. The 
selection of multiplication method is performed within the dialog window of the gain block. 

The implementation is shown in Figure 2. This implementation can be compared to the previous 
implementation of the reactor in [2]. In fact, the current implementation of the model is much simpler 
and the connections between the elements are better seen. Another benefit of the vectorization is the 
fact that the older model, includes 14 subsystems, each for one zone of the reactor, and only 1 group 
of effective delayed neutron precursors are considered in the model. On the contrary to that idea, 
depending on the size of j3 and A, the delayed neutron precursor dynamics is expanded to include 1, 
6, 15, or 17 groups of delayed neutron precursors and photo-neutron groups. 

Figure 2 shows the implementation of the reactor model with the assumption that there are 14 
zones and 17 groups of delayed neutron precursors (6 groups of delayed neutrons, and 11 groups of 
photo-neutrons). The dimension of each line is shown on the diagram. Most of the blocks on the 
diagram don't need any explanation. To make it easier to understand the connection of the diagram 
and Equations (32) and (36), some of the blocks need to be explained briefly. 

On the left hand side of the diagram the constant blocks designated by alpha and eta' are the A 

and HT matrices, respectively. The "Matlab Function" block f 1 applies the diag function on its input to 
generate a 14 x 14 matrix. The f2 Matlab Function block creates the N matrix using the diag and sum 
functions. 

The gl gain block is the matrix gain a and g3 is the implementation of (R — N + HT) P in Equation 
(32). The gain blocks g2 and g4 are the representations of —L1 and L2, respectively. The type of each 
gain block is shown on its icon. For example K*uvec means that a matrix gain K is pre-multiplied to the 
vector u ve c. 

T 

(39) 
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Similarly, the delayed neutron precursor dynamics for all zones and all groups can be put into vector
form

dĈ

d t
=−L1Ĉ + L2P̂ , (36)

where L1 is an md Z ×md Z diagonal block-matrix, with its diagonal elements being diagonal matrices
themselves. If Λ1 is defined as

Λ1 = diag
�

λ1,λ2, . . . ,λmd

�

, (37)

the block-matrix L1 can be written as

L1 = diag
�

Λ1,Λ1, . . . ,Λ1
�

︸ ︷︷ ︸

Z

. (38)

Matrix L2 is similar in structure to B, but each one of the diagonal blocks is a column vector.

L2 =













λ1 λ2 · · · λmd
: :
: λ1 λ2 · · · λmd

:

: :
. . .

: : λ1 λ2 · · · λmd













T

. (39)

With the definition of vectors and matrix gains completed, the model can be implemented in
Simulink easily. To covert a vector to a diagonal matrix with the elements of the vector on the main
diagonal, Matlab’s diag command is used. To construct the block-diagonal matrices the blkdiag is
employed. For more information on the calling format of these commands, the interested reader can
refer to Matlab help files.

Matlab performs matrix and vector multiplications in several ways (element-wise product, matrix
product, etc.). The desired multiplication method should be chosen to get the correct results. The
selection of multiplication method is performed within the dialog window of the gain block.

The implementation is shown in Figure 2. This implementation can be compared to the previous
implementation of the reactor in [2]. In fact, the current implementation of the model is much simpler
and the connections between the elements are better seen. Another benefit of the vectorization is the
fact that the older model, includes 14 subsystems, each for one zone of the reactor, and only 1 group
of effective delayed neutron precursors are considered in the model. On the contrary to that idea,
depending on the size of β and λ, the delayed neutron precursor dynamics is expanded to include 1,
6, 15, or 17 groups of delayed neutron precursors and photo-neutron groups.

Figure 2 shows the implementation of the reactor model with the assumption that there are 14
zones and 17 groups of delayed neutron precursors (6 groups of delayed neutrons, and 11 groups of
photo-neutrons). The dimension of each line is shown on the diagram. Most of the blocks on the
diagram don’t need any explanation. To make it easier to understand the connection of the diagram
and Equations (32) and (36), some of the blocks need to be explained briefly.

On the left hand side of the diagram the constant blocks designated by alpha and eta’ are the A

and HT matrices, respectively. The “Matlab Function” block f1 applies the diag function on its input to
generate a 14× 14 matrix. The f2 Matlab Function block creates the N matrix using the diag and sum

functions.
The g1 gain block is the matrix gain B and g3 is the implementation of

�

R−N+HT
�

P̂ in Equation
(32). The gain blocks g2 and g4 are the representations of −L1 and L2, respectively. The type of each
gain block is shown on its icon. For example K*uvec means that a matrix gain K is pre-multiplied to the
vector uvec.
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Figure 2: Implementation of the CANDU reactor model in SIMULINK 

238

One advantage of this implementation over the previous one is that it can be used for different types 
of reactors with different number of zones (nodes), provided that the coupling coefficients matrix is 
supplied correctly to the model. The model is very flexible to adapt itself to different number of nodes 
and different number of delayed neutron groups. 

5. Xenon Feedback 

The iodine and xenon dynamics in each zone can be described by 

dii

d t — YiEfi4'i — Aiii 

di 
d t — rXEfi4"i + Air/ — ( 2.X + aaX41i) 2 i , 

(40) 

(41) 
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Figure 2: Implementation of the candu reactor model in Simulink

One advantage of this implementation over the previous one is that it can be used for different types
of reactors with different number of zones (nodes), provided that the coupling coefficients matrix is
supplied correctly to the model. The model is very flexible to adapt itself to different number of nodes
and different number of delayed neutron groups.

5. Xenon Feedback

The iodine and xenon dynamics in each zone can be described by

d Ĩi

d t
= γIΣfiΦi −λI Ĩi (40)

dX̃ i

d t
= γXΣfiΦi +λI Ĩi −

�

λX+σaXΦi
�

X̃ i , (41)
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where Ii and lei are the number densities of iodine and xenon in 111-3 . Substituting ci with Pi using 
Equation (9), Equations (40) and (41) can be converted to 

dIi

dt - YiEfiPi (42) 

dXi

d t = YxEfiPi + (Ax + axiPi) Xi (43) 

where the new variables Ii and Xi are defined as Ii = EfEfiViii and Xi = EfEfiVilei. The xenon absorp-
tion cross section for each zone is scaled according to 

g ax 

(TX/ = v . 
fi Vi 

It is important to note that Ii(t) and Xi(t) are measured in J/m and Crxi is measured in J-1. 

5.1. Steady State Solution 

At reference conditions, steady state values of iodine and xenon are given by 

riEfiPi,r 
= 

y  (r1 + TX) EfiPi,r 

aXiPi,r • 

(44) 

(45) 

(46) 

As can be seen, the steady state value of xenon concentration is a nonlinear function of the steady state 
power of the zone. 

5.2. Nondimensionalization of Xenon Model 

It is desirable to nondimensionalize the iodine and xenon dynamics equations, similar to power and 
delayed neutron dynamics equations. To achieve this, the power of each zone is nondimensionalized 
according to Equation (29), and the iodine and xenon concentrations in nondimensionalized frame are 
I i = Ii /k r and lei = Xi PCi,r  .. Replacing the Ii and Xi with their nondimensionalized representations, 
the iodine and xenon dynamics can be written as 

dii
= (/3i - Ii) (47) 

d t 

+ 
U 
A =

t  ri + rx VXF/ ri f i ( A x a X/ P i,r15/) g i • (48) 

As it is seen from the above equations, the steady state power of the zone Pi,r appears as a parameter 
in the xenon equation in nondimensionalized form. 

Further simplification can be made with the assumption that the fission cross section of all zones 
are equal. As previously shown, in such a case, the steady state powers of the reactor can be expressed 
in terms of the zone volumes as described in Equation (26). Steady state power of zones can be written 

as Pr = eV where e = Pbuik lE jz._,Vi and the product of CrxiPi,r can be simplified as 

g ax egaX 
= T r X  6  V i = = C . . 

V EfEf 
(49) 
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where Ĩi and X̃ i are the number densities of iodine and xenon in m−3. Substituting Φi with Pi using
Equation (9), Equations (40) and (41) can be converted to

d Ii

d t
= γIΣfi Pi −λI Ii (42)

dX i

d t
= γXΣfi Pi +λI Ii −

�

λX+ σ̄Xi Pi
�

X i , (43)

where the new variables Ii and X i are defined as Ii = EfΣfiVi Ĩi and X i = EfΣfiVi X̃ i . The xenon absorp-
tion cross section for each zone is scaled according to

σ̄Xi =
σaX

EfΣfiVi
. (44)

It is important to note that Ii(t) and X i(t) are measured in J/m and σ̄Xi is measured in J−1.

5.1. Steady State Solution

At reference conditions, steady state values of iodine and xenon are given by

Ii,r =
γIΣfi Pi,r

λI
(45)

X i,r =

�

γI+ γX
�

Σfi Pi,r

λX+ σ̄Xi Pi,r
. (46)

As can be seen, the steady state value of xenon concentration is a nonlinear function of the steady state
power of the zone.

5.2. Nondimensionalization of Xenon Model

It is desirable to nondimensionalize the iodine and xenon dynamics equations, similar to power and
delayed neutron dynamics equations. To achieve this, the power of each zone is nondimensionalized
according to Equation (29), and the iodine and xenon concentrations in nondimensionalized frame are
Îi = Ii

À

Ii,r and X̂ i = X i

À

X i,r . Replacing the Ii and X i with their nondimensionalized representations,
the iodine and xenon dynamics can be written as

d Îi

d t
= λI
�

P̂i − Îi
�

(47)

dX̂ i

d t
=
λX+ σ̄Xi Pi,r

γI+ γX

�

γX P̂i + γI Îi
�

−
�

λX+ σ̄Xi Pi,r P̂i

�

X̂ i . (48)

As it is seen from the above equations, the steady state power of the zone Pi,r appears as a parameter
in the xenon equation in nondimensionalized form.

Further simplification can be made with the assumption that the fission cross section of all zones
are equal. As previously shown, in such a case, the steady state powers of the reactor can be expressed
in terms of the zone volumes as described in Equation (26). Steady state power of zones can be written

as Pr = εV where ε = Pbulk

.

∑Z
j=1 Vj and the product of σ̄Xi Pi,r can be simplified as

σ̄Xi Pi,r =
σaX

EfΣfVi
× εVi =

εσaX

EfΣf
¬ cX . (49)
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This new parameter cx can be considered as the xenon burnout parameter, and it is not dependent to 
the zoning of the reactor geometry. Since the available data for CANDU reactor gives equal averaged 
fission cross section for all zones, this cx is used as the burnout parameter. 

Substituting cx for CrxiPi,,. in Equation (48) results in the xenon dynamics equation of zone i for the 
equal fission cross sections 

dXi + cx 

+ Yx 
(YxPi + riii) - (Ax + cxPi)gi • dt 

(50) 

5.3. Implementation of Xenon Feedback Model 

Iodine and xenon dynamics equation for all zones can be written in a vector form. Iodine dynamics in 
vector is written as 

dt 
The nonlinear term in xenon dynamics makes it more difficult to put the equations for all zones into 
vector form. To achieve this goal, one has to define an element-wise vector product symbol. MATLAB 
performs the element-wise product using the .* binary operator. The 0 symbol is used to represent 
the element-wise product in the xenon dynamics equation. Using this convention, xenon dynamics in 
vector form is given as 

di 
=2I (-I + P) . (51) 

+ cx
= (YxP + rif) - Axit - cxf' It • d t yi + yx

The xenon load reactivity for each zone is defined as 

CrxiXi
Px,i =  • (53) 

Eai 

If the nondimensionalized value of Xi is used in Equation (53), and simplifications are made to the 
resulting equation, the xenon load reactivity in terms of Ili can be expressed as 

Efi (ri + rx) QXiPi,r 
Px,i = Eai X1 . (54) 

Figure 3 depicts the SIMULINK implementation of the iodine and xenon dynamics. The input to the 
model is nondimensionalized reactor power, and the output of the model is the xenon load reactivity 
in k. It is assumed that the fission and absorption cross sections of all zones are equal, therefore the cx
formulation is used in the implementation. 

The top integrator in Figure 3 is the integrator for all the iodine concentrations in 14 zones. The 
bottom integrator integrators the xenon dynamics equations in 14 zones. The gains g 1- g6 in the 
block diagram represent the coefficients in Equations (51-52). g1 is the scaler AI, g2 is the scaler 
yx (2x + cx) /(yi + yx), g3 is scaler yi (2x + cx) /(yi + yx), g4 and g5, are simply cx and Ax, respec-
tively. g6 is the coefficient relating xenon load to xenon concentration in Equation (54). The multiplier 
in the block diagram performs element-wise product on vectors P and g using MATLAB'S . * operator. 

6. Conclusion 

(52) 

Mathematical models of CANDU reactor and xenon feedback dynamics are developed in this paper. The 
models are implemented in MATLAB/SIMULINK are parts of a unified CANDU control system simulation 
platform. The models of other elements of flux control loop are developed. It is concluded that the 
MATLAB/SIMULINK provide an excellent simulation environment for studying reactor dynamics. The 
vectorization of the models is particularly useful. 
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This new parameter cX can be considered as the xenon burnout parameter, and it is not dependent to
the zoning of the reactor geometry. Since the available data for candu reactor gives equal averaged
fission cross section for all zones, this cX is used as the burnout parameter.

Substituting cX for σ̄Xi Pi,r in Equation (48) results in the xenon dynamics equation of zone i for the
equal fission cross sections

dX̂ i

d t
=
λX+ cX

γI+ γX

�

γX P̂i + γI Îi
�

−
�

λX+ cX P̂i
�

X̂ i . (50)

5.3. Implementation of Xenon Feedback Model

Iodine and xenon dynamics equation for all zones can be written in a vector form. Iodine dynamics in
vector is written as

d Î

d t
= λI
�

−Î + P̂
�

. (51)

The nonlinear term in xenon dynamics makes it more difficult to put the equations for all zones into
vector form. To achieve this goal, one has to define an element-wise vector product symbol. Matlab
performs the element-wise product using the .* binary operator. The � symbol is used to represent
the element-wise product in the xenon dynamics equation. Using this convention, xenon dynamics in
vector form is given as

dX̂

d t
=
λX+ cX

γI+ γX

�

γXP̂ + γI Î
�

−λXX̂ − cXP̂ � X̂ . (52)

The xenon load reactivity for each zone is defined as

ρX,i =−
σ̄XiX i

Σai
. (53)

If the nondimensionalized value of X i is used in Equation (53), and simplifications are made to the
resulting equation, the xenon load reactivity in terms of X̂ i can be expressed as

ρX,i =−
Σfi

Σai

�

γI+ γX
�

σ̄Xi Pi,r

λX+ σ̄Xi Pi,r
X̂ i . (54)

Figure 3 depicts the Simulink implementation of the iodine and xenon dynamics. The input to the
model is nondimensionalized reactor power, and the output of the model is the xenon load reactivity
in k. It is assumed that the fission and absorption cross sections of all zones are equal, therefore the cX
formulation is used in the implementation.

The top integrator in Figure 3 is the integrator for all the iodine concentrations in 14 zones. The
bottom integrator integrators the xenon dynamics equations in 14 zones. The gains g1-g6 in the
block diagram represent the coefficients in Equations (51–52). g1 is the scaler λI, g2 is the scaler
γX
�

λX+ cX
���

γI+ γX
�

, g3 is scaler γI
�

λX+ cX
���

γI+ γX
�

, g4 and g5, are simply cX and λX, respec-
tively. g6 is the coefficient relating xenon load to xenon concentration in Equation (54). The multiplier
in the block diagram performs element-wise product on vectors P̂ and X̂ using Matlab’s .* operator.

6. Conclusion

Mathematical models of candu reactor and xenon feedback dynamics are developed in this paper. The
models are implemented in Matlab/Simulink are parts of a unified candu control system simulation
platform. The models of other elements of flux control loop are developed. It is concluded that the
Matlab/Simulink provide an excellent simulation environment for studying reactor dynamics. The
vectorization of the models is particularly useful.
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Figure 3: Implementation of iodine, xenon and xenon load reactivity in SIMULINK 
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