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Abstract 

Oxidation of zircaloy cladding exposed to a high temperature steam is an important phenomenon 
for the safety analysis of CANDU reactors during a postulated loss-of-coolant accident (LOCA), 
since this zircaloy/steam reaction is highly exothermic and results in a hydrogen production. The 
CS28-2 high temperature experiment represents this accident scenario well. As a part of a CFD 
(Computational Fluid Dynamics) simulation for the CS28-2 experiment, a zircaloy/steam 
reaction model is implemented into a commercial CFD code, CFX-10, because the present 
version of the CFX-10 code does not include a surface reaction model. 
First, the present oxidation model for the CFX-10 code is validated against the model 
correlations implemented into the CFX-10 code, and then applied to the simulation of the CS28-
2 experiment. The CFX predictions of a temperature rise in the heater rods are compared with 
the temperature measurements to confirm the validity of the oxidation heat release calculated by 
the present model. Furthermore, the prediction of a hydrogen generation as a byproduct of the 
oxidation reaction is validated against the amount of the collected hydrogen in the experiment. 

1. Introduction 

The decay energy in fuel rods during a post-blowdown period of a CANDU reactor heats up the 
zircaloy (Zr) of the fuel rods and the pressure tubes. It also ignites a chemical reaction between 
Zr and steam (H20). This is an exothermic reaction, i.e., it results in the production of heat as 
well as a hydrogen gas (H2) as follows: 

Zr + 2H20 = ZrO2 + 2H2 + 586 kJ (1) 

If this heat removal is insufficient, the resultant high temperatures and a rapid heating may cause 
a failure of the fuel channel integrity. Therefore, it is important to have a thorough understanding 
of a high-temperature fuel channel behavior and the effectiveness of a moderator as a heat sink 
to demonstrate the safety of CANDU reactors during postulated accidents. 
To understand a fuel channel behavior during a LOCA condition, the CHAN thermal Chemical 
Experiments [1] had been performed at the Whiteshell Laboratories in Canada. The CS28-2 
experiment [2,3] is one of the experiments for the simulation of a high-temperature steam 
cooling condition in a full scale horizontal fuel channel with a 28-element fuel bundle which is 
electrically heated. 
The temperature transient in the 28-element bundle is affected by the amount of electrical power 
and the exothermal heat generated in this bundle during a CS28-2 test. As a part of a 
Computational Fluid Dynamics (CFD) simulation of the CS28-2 high temperature experiment 
for this accident analysis, two zircaloy/steam reaction models based on a parabolic rate law are 
implemented in a commercial CFD code (CFX-10) [4] through a user FORTRAN. 
This paper is about preliminary work for a transient simulation of the CS28-2 experiment: two 
zircaloy/steam oxidation models used in the CANDU fuel channel codes such as CAHENA [5] 
and CHAN-II [6] are implemented into the CFX-10 code through a user FORTRAN since the 
CFX-10 code does not include a surface reaction module. The zircaloy/steam reaction models by 
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Urbanic et al. [7] and Baker et al. [8] are considered for these CFX-10 applications. These 
models are based on the parabolic/Arrhenius behavior of the isothermal oxidation experiments: 
their correlations (Urbanic-Heidrick and Baker-Just correlations) are expressed by the reaction 
rate equations in form of parabolic oxidation laws. 
The CFX-10 code with the present surface oxidation model can calculate the extra heat energy in 
the solid domain (zircaloy) and the hydrogen mass source in the fluid domain (steam). This 
oxidation model for a CFX-10 code application is validated by benchmark tests and 
experimental results. First, it is confirmed that the CFX-10 calculations reproduce the results of 
each empirical correlation in the simple benchmark tests well. Then a validation against the 
CS28-2 experiment is performed. The CFX-10 predictions of a temperature transient in the 
heater rods of the CS28-2 experiment are compared with the experimental results to investigate 
the validity of the oxidation heat release calculated by the present model. And the CFX-10 
prediction of a hydrogen generation as a byproduct of the oxidation reaction is validated against 
the amount of the hydrogen accumulated in the exit of the test section. 

2. The zircaloy/steam reaction model for the CFX-10 code application 

2.1 Reaction rate constant 

It is generally accepted that the mechanism which governs this reaction is the diffusion of 
oxygen anions through the anion-deficient ZrO2 lattice [1]. The reaction rate can be described by 
a parabolic expression of the form 

W
2 

= Kpt, (2) 

where co is a measure of the extent of the reaction (i.e., weight of zirconium reacted per unit area), t is 
the reaction time, and K p is the parabolic reaction rate constant. The K p is related to the temperature 

by an expression of the form 

K p = A exp(— —RET j (3) 

where A is a pre-exponential factor, E is the reaction activity energy, R is the ideal gas 
constant, and T is the temperature of the oxidization layer (K). 
Several investigations have been made to determine K p as a function of the temperature. One of these 

works, the oxidation model by Urbanic et al. [7] is used for the default model of the CATHENA code [8]. 
The resulting K p is given by the following correlations: 

82 0 j 
K p = 29.6 expr 

16 for 7' 1850 K (4) 
T 

K p = 87.9 exp( 166101
T for T > 1850 K (5) 

Substituting pz xg for co in the Eq. (2) and by a differentiating with respect to time [3], we can obtain: 

d8 K p 

dt — 2pz28
, (6) 

where g is the thickness of the zircaloy consumed during an oxidation and pz is the density of the 
zircaloy. 
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Substituting δρ ×z  for ω  in the Eq. (2) and by a differentiating with respect to time [3], we can obtain: 

δρ
δ

22 z

pK
dt
d

= , (6) 

 
where δ is the thickness of the zircaloy consumed during an oxidation and zρ is the density of the 
zircaloy. 
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2.2 Application to the CFX-10 code 

For the CFX-10 code application, the rate of a heat generation (Q) as a result of the zircaloy/steam 

reaction at high temperatures is expressed as: 

Q= CAS Tda • (7) 

where C is the heat generation per unit volume of Zr (4.22x1010) and As is the surface area of 

the reaction. This reaction requires that there be a Zr and a ZrO2 region. The Zr-steam oxidation 
model starts to be applied when a solid component's temperature reaches 827°C. 
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Steam 
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Figure 1 Configuration of the growth of the ZrO2 layer in a fuel pin. 

To correctly simulate the oxidation reaction and the thermal response of the oxidizing layer, the growth of 
the ZrO2 layer must be traced. For a fuel pin as shown in Fig. 1, let rout and rin be the instantaneous radii 

of the ZrO2-steam interface and the ZrO2-Zr interface, respectively. The original (no-oxidation: 8 = 0 ) 
outer radius of the fuel element is rzr . When zircaloy is consumed by an oxidation, rin moves inward. 

At the same time, rout moves outward as a result of the volume expansion caused by converting Zr to 

ZrO2. The thickness of the zirconium consumed up to time t is obtained by integration of Eq. (7) to give: 

K )1I2, 
+ At. 

Pz 
(8) 

where St_, is the thickness of the zirconium consumed up to time t — At and At is the current 

time step size. 
Then the hydrogen generation rate, Hot (mole/s) is 

How — P t Ot-et),

where, P is a constant (1.436x105). 

2.3 CFX user Fortran for the oxidation model 

(9) 

The oxidation model described in the previous section is implemented into the CFX-10 code. For this 
purpose, a User CFX Expression Language (CEL) Function which uses a user subroutine for the 
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where tt Δ−δ is the thickness of the zirconium consumed up to time tt Δ−  and tΔ  is the current 
time step size. 
Then the hydrogen generation rate, outH (mole/s) is 
 

( )tttsout APH Δ−−= δδ , (9) 
 
where, P  is a constant (1.436×105). 
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oxidation model of the CFX-10 code is created. Then this subroutine is compiled and the library file 
required by the CFX-10 solver is created. 
When creating a User CEL Function, we need some variables to be available for use in the CEL 
expressions. 

Table 1 CEL variables used in a User CEL Function 

Name Units Meaning 

T K Temperature 

ctstep - Current time step 

dtstep S Time step interval 

mf - Mass fraction 

t S Simulation time 

3. Validation of the CFX oxidation model 

3.1 Benchmark test 

3.1.1 Set up of the benchmark problem 

In the benchmark problem, a constant steam flow is introduced into the annulus between the 
cylinder of the zircaloy (outer radius: 0.00765 m) and the surrounding tube (inner radius: 0.0215 
m) and the flow length is 0.2 m. The temperature of the zircaloy surface is assumed to be 
uniform as a temperature boundary condition. The configuration of the benchmark test is shown 
in Fig. 2. 

Steam / 112 mixture 
Outlet 

Zircaloy surface 

Steam / 112 mixture 

Steam 
Inlet 

0.022 0.045 0.06] (m) 

1120 

Zr 

112 
+ 586kJ 

Figure 2 Schematic view of benchmark test. 
For the CFX-10 calculations a hexagonal mesh is used and the total number of elements is 
11,760. The solid domain for the zircaloy surface and the fluid domain for the steam/hydrogen 
mixture are modeled in the CFX-Pre. The Urbanic-Heidrick correlation is used for the 
benchmark calculation of the mass and energy sources in the domain interface between the 
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zircaloy and steam/hydrogen mixture. Because this correlation has a transition at a temperature 
of 1850 K, the temperature boundary conditions on the zircaloy surface are divided into two 
groups: one for below and one for above this temperature. 
The initial and boundary conditions for the benchmark test are shown in Table 2. The 
benchmark problems with a total of 6 cases are calculated for 30 sec of a simulation time. 

Table 2 Initial and boun conditions for the benchmark test 

Type Parameter Groupl Group2 

Initial condition 
Oxidation thickness, 

Sr (m) 1.0x10-6 1.0x10-4

Boundary condition 

Steam inlet flow 
(mole/m2-s)* 

1.7318

zircaloy surface 
temperature (K) 

1273 
1373 
1473 

1873 
1973 
2073 

* for the zircaloy surface area: 9.6130x10-3 m2

3.1.2 Benchmark test results 

The release of hydrogen simulated by the CFX-10 code is visualized in Fig. 3. 
The hydrogen mole fraction is circumferentially symmetric, because the composition of the 
steam/hydrogen mixture and the zircaloy surface temperature are uniform along the 
circumferential direction. As a mixture of steam and hydrogen flows downward along a zircaloy 
tube, the hydrogen product is accumulated and its mole fraction is increased. This result is 
visualized in the longitudinal view in Fig. 4. 
The 112 mole fraction calculated from the ratio of the hydrogen production rate (mole/sec) to the 
steam inlet flow rate (mole/sec) is compared with the result from the CFX-Post (area-averaged 
value of the variable: H2.Molar Fraction) as shown in Fig. 5. The CFX-10 prediction of the 112
mole fraction reveals a close agreement with the calculation result by the oxidation correlation. 
As the reaction time increases, the mole fraction at the exit is decreased due to the characteristics 
of the parabolic reaction rate. 
The calculations of the heat flux on the zircaloy surface are compared in Fig. 6. Because of the 
similarity of the mass (hydrogen) and energy (exothermal heat) productions by the oxidation 
reaction, the results in Fig. 6 are similar to those in Fig. 5. 
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Figure 4   Benchmark test: H2 mole fraction vs. oxidation length. 
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Figure 5 Benchmark test: 112 mole fraction vs. oxidation time. 
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3.2 Validation against the CS28-2 experiment 

3.2.1 Overview of the CS28-2 experiment 

Fig. 7 illustrates the test apparatus of the CS28-2 experiment. A superheated steam at about 700°C 

enters the test section from a steam super-heater. In the test, the 28-element bundle raises the 
temperature of the steam and zircaloy surfaces to temperatures sufficient to cause the zircaloy and 
steam to react. This reaction produces hydrogen gas and energy which further raises the surface 
temperatures and increases the reaction rate. The steam and hydrogen gas mixture left the test 
section and flows into the condenser where the steam was condensed. The hydrogen gas flow was 
measured by a mass flow meter and vented to the atmosphere. 
The procedure for the CS28-2 experiment consists of a low power phase (steady-state condition) 
and a high power phase (transient condition). At the initial steady-state, the heater power was 10 
kW, and the ratios of the pin power were 1.111, 0.894, and 0.755, for the outer, middle, and inner 
rings, respectively as shown in Fig. 8. The transient test started at about 530 sec and its power was 
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3.2 Validation against the CS28-2 experiment 
 
3.2.1 Overview of the CS28-2 experiment 
 
Fig. 7 illustrates the test apparatus of the CS28-2 experiment. A superheated steam at about 700℃ 
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measured by a mass flow meter and vented to the atmosphere. 
The procedure for the CS28-2 experiment consists of a low power phase (steady-state condition) 
and a high power phase (transient condition). At the initial steady-state, the heater power was 10 
kW, and the ratios of the pin power were 1.111, 0.894, and 0.755, for the outer, middle, and inner 
rings, respectively as shown in Fig. 8. The transient test started at about 530 sec and its power was 
raised up to 145 kW and the electric power was turned off at 887 sec. 
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3.2.2 CFX-10 modelling of the CS28-2 

The fluid domains consist of the super-heated steam in the pressure tube and the CO2 gas in the 
annulus between the pressure tube and the calandria tube. The solid domains consist of three heater 
rod walls (including graphite, Al2O3, and zircaloy domains), the pressure tube wall, and the 
calandria wall. The modeling of a pool surrounding the calandria tube is simplified by using a 

temperature boundary condition (40°C) on the outer surface of the calandria tube. 

The grid of the CS28-2 test section is generated by using the ICEM CFD [9] software. A two-
dimensional mesh for the cross section of the test section is generated and extruded along the 
longitudinal direction to obtain a three-dimensional mesh for the test section. The number of nodes 
with a longitudinal direction (for 1.8 m of an axial length) is 30 by an extrusion of the two-
dimensional mesh. 
As a turbulence model of the CFX-10 code, the k-e turbulence model uses the scalable wall-
function approach to improve its robustness and accuracy when the near-wall mesh is very fine. 
The scalable wall functions allow for a solution for arbitrarily fine near wall grids, which is a 
significant improvement over the standard wall functions. Fig. 9 shows the results of the grid 
generation with a refined mesh density near the wall boundaries. The number of elements used is 
764,901. 
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Figure 9 Grid of the CS28-2 test section for the CFX-10 simulation. 

3.2.3 Simulation results 

According to the present validation procedure, the sensitivity studies include CFX-10 simulations 
with and without alternative oxidation correlations of Urbanic-Heidrick and Baker-Just. Fig. 10 
shows a comparison of simulated and measured hydrogen production. We can see in Fig. 10 that 
results obtained with the Urbanic-Heidrick correlation agreed well with the measured values 
regarding the total amount of hydrogen produced, although the beginning of a hydrogen production 
is earlier for the CFX-10 calculations than the measurement. The hydrogen production rate, 
estimated from the slope of the plot in Fig. 10, increases rapidly during a temperature escalation 
(just before the electric power is turned off about at 900 sec). During this period, the production 
rate predicted by the Urbanic-Heidrick correlation shows a closer agreement with the measurement. 
However, a systematic over-prediction of the hydrogen production is predicted when using the 
Baker-Just correlation over the whole time range. Furthermore, the CFX-10 simulation with the 
Baker-Just correlation ended abnormally after a too sharp temperature escalation as shown in Fig. 
11, where one of the sheath temperatures measured in the inner ring are compared with the CFX-10 
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results. Fig. 12 shows comparisons of the temperatures on the pressure tube between the measured 
data and the CFX-10 results. The CFX-10 simulations with the Urbanic-Heidrick correlation for 
various measurement points in Figs. 11 and 12 show a close agreement with the experimental 
results, while the simulations with the Baker-Just correlation overestimate them. The simulations 
without the oxidation model cannot consider the oxidation heating and underestimate the 
temperature transients including the peak temperatures of the CS28-2 experiment. 
Therefore, it is concluded that an application of the proper oxidation model to the CFX-10 code is 
essential for a simulation of the CS28-2 experiment and the CFX-10 code with the Urbanic-
Heidrick option successfully predicts a temperature transient of the CS28-2 experiment. 
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results. Fig. 12 shows comparisons of the temperatures on the pressure tube between the measured 
data and the CFX-10 results. The CFX-10 simulations with the Urbanic-Heidrick correlation for 
various measurement points in Figs. 11 and 12 show a close agreement with the experimental 
results, while the simulations with the Baker-Just correlation overestimate them. The simulations 
without the oxidation model cannot consider the oxidation heating and underestimate the 
temperature transients including the peak temperatures of the CS28-2 experiment. 
Therefore, it is concluded that an application of the proper oxidation model to the CFX-10 code is 
essential for a simulation of the CS28-2 experiment and the CFX-10 code with the Urbanic-
Heidrick option successfully predicts a temperature transient of the CS28-2 experiment. 
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Figure 11 CS28-2 simulation: sheath temperature (R1-4) at 1575 mm from the inlet. 
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Figure 12 CS28-2 simulation: pressure tube temperature at 1575 mm from the inlet. 

4. Conclusion 

The zircaloy/steam oxidation models for a CFX-10 application were validated by benchmark 
tests and experimental results. From the present study the following conclusions can be made. 

• The benchmark tests were set up to represent the conditions for a validity of the parabolic 
reaction model such as a constant temperature and unlimited steam. Over various ranges of 
temperatures the CFX-10 with the oxidation model was shown to reproduce the results by the 
oxidation correlation well. 

• The temperature measurements and the hydrogen production in the CS28-2 experiment were 
compared with the predictions by the CFX-10. The CFX-10 predictions with the Urbanic-
Heidrick correlation showed a close agreement with the experimental results, while the 
simulations with the Baker-Just correlation overestimate them. 

For a future work, the CFX-10 with the present oxidation model will be used for a full transient 
simulation of the CS28-2 experiment including a sensitivity study of a grid intensity and a 
validation against other measurement data. 
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