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Abstract 

Two probabilistic models focusing on the channel surveillance tests of the shutdown system 

number 1 (SDS1) in a CANDU nuclear power plant are proposed in this paper. The first one is a 

state transition model which is used to study the effect of surveillance test intervals on the 

unavailability and the probability of spurious trips. The second model is developed to examine 

the effect of the test interval on the core damage probability caused by both spurious trips and 

unavailable channels in the SDS1. The calculated core damage probabilities have clearly shown 

that there is an optimal test interval to provide the minimal probability of core damage. 

Therefore, the results are of significant importance in practice. 

1 INTRODUCTION 

One of the unique properties of any safety shutdown system (SDS) is that the system 

usually remains dormant, until it is called upon in an emergency. To ensure their availability, 

surveillance tests are often carried out to reveal latent failures. In case of nuclear power plants, 

such regular tests are enforced by regulatory bodies. For example, in Canadian nuclear power 

plants, the Canadian Nuclear Safety Commission (CNSC) has set the availability target for such 

systems to have a reliability level of 10-3 years/year [1][2]. To show compliance, the safety 

systems are tested regularly. The interval between two consequent tests, known as the 

surveillance test interval (STI) needs to be determined. 

It is important to note that shorter and more frequent tests do not always translate into 

higher availability because the test itself will reduce the robustness of the 2-out-of-3 decision-
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making process, and could trigger the shutdown system by mistake to actually reduce the 

availability. In practice, to meet CNSC demand on availability in the presence of uncertainties in 

the data, higher failure rates are often assumed in calculating the test interval, which usually 

result in more conservative (shorter) test intervals. Since too frequent testing can be an economic 

burden to the operational personnel, may even lead to unnecessary reactor shutdown, and can 

contribute to shortening lifetimes of some system components. Therefore, it is highly desirable to 

determine the 'optimal' test interval to meet the availability specification under the given failure 

rates of the related system components. 

To increase the immunity of the safety system against common-mode failures and to allow 

on line test, most of the shutdown systems in a nuclear power plant are designed with multi 

channel signal paths followed by a voting process. However, during the on-line test of a 

channel„ the multi-channel voting logic becomes degraded status to spurious operation. Such 

spurious operations not only cause unnecessary economical loss, but also increase the probability 

of core damage frequency (CDF) by stressing the plant electrical distribution system which is 

required for removal of decay heat during the plant shutdown. Therefore, it is very important to 

determine the desirable test interval. 

In the process of determining the STIs, the target reliability should be established based on 

the 1) frequency of demand; 2) consequence of failures; and 3) risk [ 3 ]. The minimum 

requirements are often set in the regulatory document, for example, in CANDU NPPs, these 

values are provided in [1][2]. After the numerical goals are specified, the modeling techniques 

should be used for quantitative analysis, and industry standards and guideline 

[3][4] [5] [6][7] [8] [9] should be followed. 

One of the important considerations in designing the routine tests is to ensure that the 

combined unavailability of the primary and the backup protection system for a process failure 

listed in the regulatory documents [1][2] is within the unavailability target of 10-3 years /year. 

The unavailability allocation for components in SDS1 is listed in Table 1. The allocated 

unavailability depends on the reliability of the components and the failure rates of the routine 

test. The unavailability for the detectors, the multiple channels, and the shutoff rods are designed 

to achieve the target unavailability by assigning the proper test frequency for each component. 
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The formulas for calculating the unavailability of the SDS1 are also listed in Table 1 with the 

target primary and backup trip channel unavailability. These formulas can be derived and found 

in many reliability engineering books [10][11]. 

Table 1: Routine Test Design for the SDS1 

Components Trip Parameter 
Sensors(2/3) 

Channel Logic (2/3) Shutoff Rods 
(26/28) 

Primary Backup Primary Backup 
Unavailability 

Allocation 
3x10-4 3x10-4 0.5 x 10-4 0.5 x10-4 1 x10 4 
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Various efforts have been made to analyze the reliability of shutdown systems through the 

selection of optimal surveillance test intervals. Some of the results are available in the literature 

[12][13][14]. Even though these studies share the similar view that the STI is closely related to 

spurious reactor trips and such trips also have the potential risk leading to core damages, 

however, few studies can be found for determining the STI of shutdown systems in CANDU 

NPP that considers the core damage probability (CDP) as the STI changes. 

The objective of this paper is to develop analytical techniques which can quantify the effect 

of STI on the spurious trip probability (Psp) and the unavailability of the trip channel (UcH) in 

the SDSs. The results can be directly used to determine the optimal STI for SDSs in CANDU 

NPPs. Two scenarios leading to core damage from the surveillance test have been considered in 

this paper. The first one is related to unavailable SDSs due to a process failure and the second is 

through the spurious reactor trip which challenges the class IV power in CANDU electrical 

distribution system. 
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of STI on the spurious trip probability (PSP) and the unavailability of the trip channel (UCH) in 
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2 MODELS FOR DETERMINING THE OPTIMAL STI FOR SDS1 

Selection of STIs in SDSs involves the properties of sensors, channel logics, and shutoff 

rods. This paper focuses only on the channel logic test. Two models are developed. One is a state 

transition model which is capable of handling multiple states as shown in the industry standards 

and the studies [15 ][ 16 ][ 17 ][ 18 ][ 19 ][ 20]. The model relates the variation of STI to the 

unavailability of trip channel (UcH) and the spurious trip probability (Psp). The other model 

calculates the core damage probabilities as a function of the spurious trip probability (Psp) and 

the unavailability of trip channel (UcH). 
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Fig. 1: State Transition Diagram of the STI Model for SDS1 

2.1 State Transition Model of the STI for SDS1 

The state transition diagram as illustrated in Fig. 1 reflects all the events that can change 

the states of the reactor and the trip channels of the SDS1. Other state transitions, such as the 

marginal shutoff rod tests, the detector calibrations, have not included in this diagram for 

simplicity. The full state space involved 26 variables. The interested readers can refer to [21] for 

detail. 
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Let P =[P, P2  p26 ] represents the steady state solution vector of the 26 states and V 

represents the state transition matrix, and then the steady state expression of the model can be 

written as PV =V as in Ref. [10]. By solving this equation, the unavailability of the trip channel 

can be obtained by 

UCH = P3 + P4 + P9 + P10 

The probability of reactor abnormal condition is 

PABN = P15 + P16 + P 25 + P 26 

(2-1) 

(2-2) 

Similarly, the spurious trip probability can also be obtained as 

Psp = P17 + P18 + P19 + P 20 (2-3) 

2.2 Loss of Class IV Power Supply on a Plant Trip 

A simplified power distribution scheme showing only Class IV power in a CANDU NPP is 

illustrated in Fig. 2. Once spurious reactor trip signals are registered, the SDS1 will trip the 

reactor and the turbine generator trip follows. Consequently, the unit service transformer (UST) 

will lose its power and the "13.8kV parallel bus transfer" from the system service transformer 

(SST) will automatically be initiated. If the transfer fails and the power from the SST fails, the 

loss of Class W power event occurs. The reliability of Class IV power depends on the reliability 

of 13.8kV Odd bus only once the plant is tripped. The fault tree for the unavailability of the 

Class IV power on a plant trip is shown in Fig. 3. As shown, the top event, i.e. the 5314-BUA 

loss of power, occurs if the bus itself fails or the grid supplying power to the plant fails. 
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Fig. 2: Power Distribution System in CANDU Fig. 3: 13.8kV Odd Bus Fault Tree 

The data from the operating experience can be used to estimate the probability of grid 

disturbance on the plant trip. Table 2 shows the probability of grid disturbance on plant trip 

reported by Martinez et al. [22]. In this analysis, the probability of loss of Class IV on a spurious 

trip (CP LOCLO is chosen as 4.529x10-3. Failure of Class IV is a major event, as it may lead to 

rapid increase in fuel temperature, which can cause failure in the fuel channel and fuel damage. 

The conditional core damage probability (CCDP) on a loss of Class W power (CCDPLoa4) can 

be derived based on CANDU probabilistic safety assessment (PSA) results, which is estimated to 

be the initiating event frequency (IEF) of 6.6x10-2/year and the resulting core damage frequency 

(CDF) 7.29x10-6/year. Then the CCDP for loss of Class IV power (CCDPLOCL4) can be 

calculated to be 1.104x10-4 as shown in Table 3. 
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2.3 CDP Model of SDS1 

By quantifying the system modeled in Fig. 1 using a time homogeneous Markov process 

technique as a function of STI, the effect of STI on the spurious trip probability (Psp) and the 

unavailability of the trip channel (UCH) can be numerically derived. However, the spurious trip 

probability (Psp) and the unavailability of the trip channel (UCH) do not have the same level of 

importance as far as the plant safety is concerned so that they cannot be compared directly with 

each other. The question that CDP calculation tries to answer is 'How many routine tests will 

provide the most benefit to the plant safety in a given SDS1 system?' 

The core damage may occur after a spurious reactor trip if the loss of Class W power 

event and the subsequent mitigating system failures also occur at the same time. The CDP caused 

by a spurious reactor trip during a routine test can be calculated by 

CDPSP = PSP X CPLOCL4 X CCDPLOCL4 (2-4) 

where CDPSP is the core damage probability due to the spurious reactor trip, PSP is the 

probability of the spurious reactor trip during the test, CPLOCL4 is the conditional probability of 

loss of Class IV event given that a reactor is tripped, and CCDPLoa4 is the conditional core 

damage frequency given a loss of Class IV event. 

The core damage may follow a process failure when the failure occurs at the states 3, 4, 9, 

and 10 at which more than two undetected channel failures exist as shown in Fig. 1. Although 

the backup trip parameters of SDS1 and the redundant Shutdown System 2 (SDS2) trip 

parameters are designed for the situations where the primary SDS1 trip parameter is unavailable, 

the probability of failure in these backup and redundant trip parameters exist at the same time. 

The CDP due to unavailable channel can be derived as 

CDPUC= PABN X P BCU X PSDS2 (2-5) 

where CDPUC is the core damage probability for the unavailable channel, PABN is the probability 

of reactor abnormal condition challenged by a process failure during the undetected SDS1 

channel failure mode. PBCU is the probability of unavailable backup SDS1 trip parameter, and 

PSDS2 is the failure probability of the SDS2. 
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3 ANALYSIS OF THE RESULTS 

Ten trip parameters are used in the SDS1 to cope with the possible process failures listed 

in R-8 [1]. All the trip parameters are under different schedules for the surveillance tests. The 

analysis results under a high neutron power (HNP) trip channel are presented herein as an 

illustrative example. 

The calculated results of the spurious trip probability (Psp), the unavailability of trip 

channel (UcH), and the probability of reactor abnormal condition (PABN) are plotted with respect 

to the test frequency (,UT) in Fig. 4. The probabilities are obtained by varying the test frequency 

(,UT) from 1 test/year to 312 tests/year. The test duration is assumed to be one hour (pA07). As it 

can be seen from Fig. 4, the unavailability of the trip channel (UCH) decreases while the spurious 

trip probability (Psp) increases as the test frequency (,UT) increases. The results also show that the 

unavailability of the trip channel (UCH) is 4.93 x le at the test frequency of 72 tests/year. It can 

be assumed that more than 72 tests/year is required to satisfy the unavailability allocation for the 

channel logic of 5x10-5 as shown in Table 1. The probability of reactor abnormal condition 

(PABN) decreases as the test frequency increases. 

The core damage probabilities for unavailable channel (CDPuc) are illustrated in Fig. 5 

as a function of the test frequency (p7). The CDP profiles are drawn with the assumption of the 

failure probability of SDS1 backup trip parameters for 4.5x10-4, 2.25x10-4, and 1.125x10-4

respectively and the SDS2 failure probability of 1.0 X 10-3. The results show that the CDP 

decreases with the increased test frequency and the increased reliability of the system based on 

the backup trip parameters. 

The core damage probabilities caused by the spurious reactor trip (CDPsp) are shown in 

Fig. 6 as a function of the test frequency (p7). Three cases of test duration (pA0T) are also 

considered. The results show that the CDPs increases with the increased test frequency and the 

increased test duration (pAoT). 
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The total CDPs of the core damage probability for unavailable channel (CDPuc) and the 

core damage probability caused by a spurious reactor trip (CDPsp) for different test duration are 

shown in Fig. 7, Fig. 8 and Fig. 9, respectively. Each figure contains three cases of CDPs for 

different failure probability in backup trip of SDS1 (PBS). For the sensitivity study of SDS1, 

different cases for SDS1 backup trip unavailability are calculated. Based on the unavailability 

allocation design for SDS1 components shown in Table 1, the unavailability of the basic backup 

trip function of SDS1 is assumed to be 4.5x1 0-43 which is the summation of the unavailability of 

backup trip parameter sensors, channel logic, and shutoff rods. For test duration 1 hour and the 

assumption of the basic backup trip parameter unavailability of SDS1 of 4.5 x10-4, 61 tests/year 

provides the lowest total CDP. 
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4 CONCLUSIONS 

The relationships between the surveillance test interval and the core damage probability 

caused by spurious trips have been developed with the consideration of the loss of Class IV 

power failure. The effect of the surveillance test interval on the core damage probability has been 

studied based on two developed models. They are: 1) the state transition model for quantification 

of the effect of the surveillance test interval on the unavailability and the spurious trip 

probability; and 2) the core damage probability model for quantification of the effect of the 

surveillance test interval on the core damage probability. Through analysis studies, the optimal 

surveillance test interval which gives the lowest core damage probability can be determined. 

The results of the core damage probability for a I-1NP channel clearly show that reduction of 

the surveillance test interval does not always bring reduced risk in terms of the core damage 

probability. It can be concluded that there exists an optimal value for the surveillance test 

interval at which the probability of core damage is minimized. The core damage probabilities, 

the main outcome of the models proposed in this paper can provide the necessary input 

parameters for more detailed probabilistic safety assessment studies. 

160 
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