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Abstract 

The objective of this study is to develop a new fuel channel safety analysis system for 

covering both the blowdown analysis including the power pulse and the post-blowdown 

analysis with the same safety analysis code, CATHENA[1] in a consistent manner. This new 

safety analysis methodology for a fuel channel analysis is expected to be better than the 

previous one used for the Wolsong 2,3,4 licensing[2] which used CATHENA for the 

blowdown analysis and CHAN-II[3] for the post-blowdown analysis, in several areas; 

consistency in the computer codes used and the modeling methods, the degree of uncertainty 

in the modeling and calculation. For this aim the existing CATHENA subchannel fuel 

channel model for a post blowdown analysis[4] has been modified, and thus improved, and a 

processing program that conveys all the final state of the fuel channel at the end of 

blowdown analysis to the post-blowdown analysis as the initial conditions[5] has been 

developed, and tested for its proper implementation for the intended purposes. A comparison 

of the results of this new analysis method with those of the Wolsong 2/3/4 Safety 

Analysis[2] confirmed that the total heat transfer rate matches well up to 1000 sec, and then 

that of the new method begins to under-predict it consistently. On the other hand, the fuel 
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temperatures of the center pin, inner ring fuel and the middle ring fuel are predicted by this 

new method to be lower than the old method by about 200 — 250 °C at the peak time. 

Considering the differences in these two analyses methodologies, especially the modeling of 

the fuel ring, a subchannel flow passage with an intermixing, and the radiation among the 

solid structures by considering every fuel individually, this trend of the results seems to be 

physically reasonable. However considerable future validation works are necessary to justify 

this new methodology for a licensing 

I. INTRODUCTION 

In the case of a Large LOCA without an ECC in CANDU-6 reactor, the 95 fuel channels at 

the downstream of the break, called the critical core pass, will undergo a severe loss of 

coolant, significant channel voiding resulting in a rapid power pulse in the order of several 

seconds, and then after a proper reactor trip it will undergo a blowdown phase and then a 

post-blowdown phase of a LOCA. In this case the safety concern is twofold, one is the fuel 

breakup and the other pressure tube rupture due to a PT/CT contact. Thus these two concerns 

are manifested in terms of the acceptance critieria of the fuel channel design; the prevention 

of the fuel channel integrity impairment by an abrupt fuel breakup during a power pulse. The 

prevention of an impairment of the pressure tube integrity by an overheating of the fuel 

channel during a post-blowdown period. One of the most probable ways of jeopardizing the 

fuel channel integrity is a dryout of the calandria tube on the moderator side due to a contact 

of the pressure tube and the calandria tube, whether a ballooning contact or sagging contact. 

Thus ensuring the prevention of this condition throughout the LBLOCA transient by analysis 

has been one of the goal of generic safety issues of the CANDU reactors. These safety 

analyses involve two major parts, one to find the transient heat flux of the calandria tube on 

the moderator side throughout the accident, the other to find the local moderator subcooling 

adjacent to the calandria tubes during the transient. The first part consists of carrying out the 

blowdown and post-blowdown fuel channel analyses for most of the foreseeable transient 

conditions, and thus it involves a lot of analyses cases, e.g. the blowdown and post 

blowdown analyses for the 6 channel groups of the critical and the noncritical core passes. 

Due to the difficulty in justifying the uncertainties in the coolant flow rates involved in the 

final condition of the blowdown analysis, a series of sensitivity studies on the incoming 

steam flow rate, which results in many cases of code simulation for the post-blowdown 

phase. Because of the many laborious engineering works involved in carrying out this 

analysis, it was attempted to improve the efficiency as well as the accuracy of the simulation 

by changing the post-blowdown analysis code from the CHAN-II code to the CATHENA 

code, and by developing an interface processing program that automatically transfers the 
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necessary input data from the results of the blowdown analysis to the post-blowdown 

analysis input deck for the pre-prepared sensitivity cases. 

The objective of this study is to develop a new fuel channel safety analysis methodology for 

covering both the blowdown analysis including the power pulse and the post-blowdown 

analysis with the same safety analysis code, CATHENA in a consistent manner. This new 

safety analysis methodology is expected to be better than the previous one which used 

CATHENA for the blowdown analysis and CHAN-II for the post-blowdown analysis, in 

many respects, such as a consistency in the computer code as well as the modeling methods, 

reducing the area of uncertainties in the modeling and calculation. For this aim the existing 

CATHENA subchannel fuel channel model for a post blowdown analysis has been modified, 

and thus improved, and a processing program that conveys all the final states of the fuel 

channels at the end of a blowdown analysis to the post-blowdown analysis as the initial 

conditions, has been developed, and tested for its proper implementation for the intended 

purposes. 

A comparison of the results of this new analysis method with those of the Wolsong 2/3/4 

Safety Analysis[2] confirmed that the total heat transfer rate matches well up to 1000 sec, 

and then that of the new method begins to under-predict it consistently. On the other hand, 

the fuel temperatures of the center pin, inner ring fuel and the middle ring fuel are predicted 

by this new method to be lower than the old method by about 200 — 250 °C at the peak time. 

Considering the differences in these two analyses methodologies, especially the modeling of 

the fuel ring, a subchannel flow passage with an intermixing, and the radiation among the 

solid structures by considering every fuel individually, this trend of the results seems to be 

physically reasonable. However considerable future validation works are necessary to justify 

this new methodology for a licensing 

II. FUEL CHANNEL POST-BLOWDOWN ANALYSIS MODEL 

Under a low steam flow and a high fuel temperature condition, which is expected after the 

blowdown phase of a LOCA ends in severe accidents such as LOCA/LOECC accidents, the 

heat transport in the CANDU fuel channel is affected by a thermal radiation, a steam 

convection, a heat conduction in the solid components and a heat flux in the moderator. In 

addition, at a high temperature, the zirconium sheath reacts chemically with the steam 

producing an additional heat and hydrogen gas. Also the arrangement of the fuel elements in 

concentric rings results in different flow rates between the different rings of the elements(i.e., 

coolant subchannels). Under this condition, the pressure tube weaken and subsequently 

contacts with the calandria tube. On the basis of these phenomena, a CATHENA post-
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blowdown model for a subchannel hydraulic modeling and a local solid-to-solid contact 

modeling has been developed successfully 

II.A. Fuel Channel Hydraulic Model 

The fuel channel model for the CATHENA post-blowdown fuel channel analysis uses the 5 

subchannel post-blowdown model as shown in Fig.l. Here each flow subchannel is treated as 

a horizontal pipe with a different flow and hydraulic diameter. Flow mixing is assumed to 

take place at the ends of the fuel bundles called junctions. The mixing is modeled by 

discretizing the heated portion of the whole fuel channel into 12 equal-length pipe 

components and inserting small mixing nodes between the discretized hydraulic nodes as 

shown in Fig.2. 

H.B. Heat Transfer Solid Component Model 

The heat transfer model is divided into two parts, one is the solid component model, and the 

other is the auxiliary model. The former includes the geometry of the fuel, the pressure tube, 

the calandria tube, the boundary conditions, the material properties, the heat generation, and 

the initial temperature. On the other hand, the latter is divided into 3 subcomponents; the 

radiation model, the solid-solid contact model, and the fuel channel deformation model. 

These models are included in the heat transfer package, GENHTP, of the CATHENA input 

file. The solid component model is composed of the fuel element, the pressure tube and the 

calandria tube. Each fuel element is divided radially into 4 regions, i.e., fuel meat, gap, 

zircaloy tube, and the zircaloy-oxide layer. All the other elements besides the center and the 

topmost outer element, are divided into 2 circumferential sectors. The center element has 1 

circumferential sector whereas the top most element has more circumferential sectors to 

simulate the FE/PT contact. The heat generation from each element is determined based on 

the ring power ratio based on a zero bundle burn up condition and the bundle power. The 

axial bundle power distribution is conservatively determined based on the fuel management 

analysis as explained in the next section. 

The Zr-Steam reaction rate and the heat from this reaction are computed based on the 

Urbanic-Heidrick correlation[6]. The pressure tube is divided into radially 2 regions, one a 

metal and the other an oxide layer, and many circumferential sectors as shown in Fig.l. The 

annulus region filled with CO2 gas is modeled as a thermally insulated region. The moderator 

to which the heat is discharged from the fuel across these two tubes is modeled as a 

largecooling reservoir. 

H.C. Axial Power Profile 
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After the axial power profiles of all the fuel channels in the core are analyzed, they are 

grouped into 6 groups. All the axial power profiles of all the fuel channels of the 6-th group 

are found to fall between two representative limiting axial power profiles. Among these 

profiles the most limiting axial power profile is found through a sensitivity study in terms of 

the final fuel temperatures from the post-blowdown analyses. Thus one profile is selected as 

the representative axial power profile for the highest channel power group, the 0-06 channel 

group, and it is used for all the other lower channel power groups. 

H.D. Radiation Heat Transfer Model 

This model simulates the radiation heat transfer between the solid components, i.e., between 

the fuels, the fuels and the pressure tube, and the pressure tube and the calandria tube. The 

view factor matrix is obtained by using an utility program, MATRIX, and an emissivity of 

0.8 is used for the fuel outer surface, the internal surface of the pressure tube, and an 

emissivity of 0.325 is used for the outer surface of the pressure tube[7] and both side 

surfaces of the calandria tube. No feedback of the geometry change for the radiation heat 

transfer calculation during a transient is considered. 

ILE. Pressure Tube Deformation Model 

This model circumferentially calculates the plastic deformation of the pressure tube caused 

by the internal pressure and high temperature at various fuel bundle locations. The 

calculation of the plastic deformation rate of the pressure tube continues until the pressure 

tube contacts with the calandria tube. The contact conductance between the two tubes is 

calculated after a contact. The pressure tube creep rate, or the expansion rate at high 

temperature are calculated based on Shewfelt's creep rate correlations[8,9], and the 

maximum and minimum bound failure criteria. 

PT axial straining is considered by using sagging temperature criterion. The temperature at 

which a PT sag contact occurs is assumed to be 850°C with a maximum contact angle of 60°

at the bottom of the channel, which was used in previous Safety Analysis Reports[2] based 

on the results from large-scale experiments[10,11]. 

H.F. Fuel Gap Conductance, Fuel/PT, PT/CT Contact Conductance Model 

The fuel-to-sheath gap conductance is assumed to be 10 kW/m°C to account for a sheath lift-

off from the fuel due to a depressurization of the fuel channel. This is conservative because 

during the first several seconds of a transient for a large break LOCA, the fuel channel has 

not depressurized enough to cause a sheath lift-off from the fuel and lower the gap 

conductance. The chosen conductance value is consistent with Ross and Stoute's 
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experimental measurements [12]. 

This model simulates the heat transfer coefficient due to a direct contact between the metal 

surfaces. Contact conductance between the PT and CT is assumed to be constant at 6.5 

kW/(m2K) for sagged pressure tubes and 11 kW/(m2K) for ballooned pressure tubes, which 

are consistent with those used in the Safety Analysis Reports[2]. 

MG Metal-Water Reaction and Hydrogen/Heat Generation 

The Urbanic and Heidrick correlation [6] is used for the zircaloy/steam reaction calculation 

on the fuel sheath and inner surface of the PT. This zircaloy/steam reaction adds more heat 

generation both on the sheath outside surface and the inside surface of the PT, on top of the 

channel decay power. The thickness of the oxide layer, the volume of the hydrogen 

produced, and the heat generation for the metal water reaction is calculated. The effect of the 

generated hydrogen in reducing the amount of steam available for the reaction is modeled. 

This "steam starvation" calculation is not fed back to the channel thermohydraulic 

calculation. 

II.H. Selection of A Pessimistic Inlet Flow Condition for the Most Limiting LOCA 

Scenario, RIH 35% Break 

The postulated 35% RIH Break event was selected as the accident scenario for this study as 

this scenarios has significant PT/CT contact in the downstream core pass (called the 

critical pass) in the broken loop owing to a continual relatively high internal pressure in the 

order of 3 to 4 MPa for about 20 sec during which the weakened pressure tube balloons, 

whereas no significant pressure tube ballooning occurs due to a rapid system 

depressurization for the other typical large LOCA scenarios such as a PSB 55% break and a 

ROH 100% break. The most pessimistic channel inlet steam flow condition from the view 

point of a pressure tube heat up due to a metal-water reaction and subsequent sagging 

contacts, i.e., mass flow rate of 10 g/s, is used for all the fuel channels in this analysis. This 

steam flow is high enough to contribute to the zirconium/steam reaction but low enough that 

a steam cooling is not very effective. 

III. Results and Discussion of the Post-Blowdown Analysis for Channel 06 for the 

RIH35% Break LOCA/LOECC 

The results of the blowdown and post-blowdown analyses for the representative fuel 

channel of the highest channel power level group among the 6 channel groups (0-06, S-10, 

L-03, G-05, B-10, W-10) is presented in Table 1 and Fig.3 for the Reactor Inlet Header (RIH) 
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experimental measurements [12]. 
This model simulates the heat transfer coefficient due to a direct contact between the metal 
surfaces. Contact conductance between the PT and CT is assumed to be constant at 6.5 
kW/(m2K) for sagged pressure tubes and 11 kW/(m2K) for ballooned pressure tubes, which 
are consistent with those used in the Safety Analysis Reports[2]. 
 

II.G. Metal-Water Reaction and Hydrogen/Heat Generation 
The Urbanic and Heidrick correlation [6] is used for the zircaloy/steam reaction calculation 
on the fuel sheath and inner surface of the PT. This zircaloy/steam reaction adds more heat 
generation both on the sheath outside surface and the inside surface of the PT, on top of the 
channel decay power.  The thickness of the oxide layer, the volume of the hydrogen 
produced, and the heat generation for the metal water reaction is calculated. The effect of the 
generated hydrogen in reducing the amount of steam available for the reaction is modeled. 
This “steam starvation” calculation is not fed back to the channel thermohydraulic 
calculation. 

 

II.H. Selection of A Pessimistic Inlet Flow Condition for the Most Limiting LOCA 
Scenario, RIH 35% Break 
The postulated 35% RIH Break event was selected as the accident scenario for this study as 
this scenarios has significant PT/CT contact in the downstream core pass (called the  
critical pass) in the broken loop owing to a continual relatively high internal pressure in the 
order of 3 to 4 MPa for about 20 sec during which the weakened pressure tube balloons, 
whereas no significant pressure tube ballooning occurs due to a rapid system 
depressurization for the other typical large LOCA scenarios such as a PSB 55% break and a 
ROH 100% break. The most pessimistic channel inlet steam flow condition from the view 
point of a pressure tube heat up due to a metal-water reaction and subsequent sagging 
contacts, i.e., mass flow rate of 10 g/s, is used for all the fuel channels in this analysis. This 
steam flow is high enough to contribute to the zirconium/steam reaction but low enough that 
a steam cooling is not very effective.  

 

III. Results and Discussion of the Post-Blowdown Analysis for Channel O6 for the 
RIH35% Break LOCA/LOECC 
 
The results of the blowdown and post-blowdown analyses for the  representative fuel 
channel of the highest channel power level group among the 6 channel groups (O-06, S-10, 
L-03, G-05, B-10, W-10) is presented in Table 1 and Fig.3 for the Reactor Inlet Header (RIH) 

27th Annual CNS Conference & 
30th CNS/CNA Student Conference
June 11-14, 2006
Toronto, ON, Canada

DEVELOPMENT OF THE CATHENA FUEL CHANNEL MODEL
FOR AN INTEGRATED BLOWDOW AND POST-BLOWDOWN ANALYSIS

FOR A 37-ELEMENT CANDU FUEL CHANNEL
B.W.Rhee, T.Y. Shin, et al.

Page 6 of 13



27th Annual CNS Conference & 
30th CNS/CNA Student Conference 
June 11-14, 2006 
Toronto, ON, Canada 

DEVELOPMENT OF THE CATHENA FUEL CHANNEL MODEL 
FOR AN INTEGRATED BLOWDOW AND POST-BLOWDOWN ANALYSIS 

FOR A 37-ELEMENT CANDU FUEL CHANNEL 
B.W.Rhee, T.Y. Shin, et al. 

35% Break of a Large Loss of Coolant Accident without an ECC Injection. 

The times at which the pressure tube ballooned to contact with the calandria tube at various 

axial bundle locations for the 4 highest channel power level groups as well as the pressure 

tube contact temperature and the corresponding internal pressure are tabulated in Table 1. 

The total heat load to the moderator from each fuel channel group during the RIH35% Break 

LOCA w/o an ECC are shown in Fig.3. After performing a similar calculation for all the 6 

representative fuel channels and summing all the heat transfer rates to the moderator from 

the 95 fuel channels belonging to the critical core pass which is 1/4 of the 380 core fuel 

channels located at the downstream of the broken inlet header, the total radiation heat 

transfer rate to the moderator from the critical core pass was obtained as shown in Fig.4 for 

both the blowdown phase and the post-blowdown phase. In.Fig.5 and Fig.6 the fuel 

temperatures of the center element, and the inner, the middle, and the outer ring and the 

temperatures of the pressure tube and the calandria tube are shown for the bundle no. 6 at a 

steam Flow of 10 g/s, a 7.0 MW Channel Bundle 6 for the RIH35% Break w/o an ECC case 

for both the fuel channel analysis methodology, the new one and the previous one. 

A comparison of these results with those of Wolsong 2/3/4 Safety Analysis[2] confirmed that 

the total heat transfer rate matches very well up to 1000 sec, and then that of the new method 

begins to under-predict it consistently. On the other hand, the fuel temperatures of the center 

pin, inner ring fuel and the middle ring fuel are predicted by this new method to be lower 

than the old method by about 200 — 250 °C at the peak time. Considering the differences in 

these two analyses methodologies, especially the modeling of the fuel ring, a subchannel 

flow passage with an intermixing, and the radiation among the solid structures by 

considering every fuel individually, this trend of the result was expected. The rationale is that 

both the radiation heat transfer and the convective heat transfer would be more effective in 

the fuel channel model of the new method than the old CHAN-II method which models all 

the fuel pins in each ring as one annularly shaped solid tube. Even though these results are 

deemed physically reasonable and consistent, justification of them for licensing is another 

matter. So a validation of this new fuel channel analysis methodology has been under way 

for the past years, which involves a validation of a similar CATHENA post-blowdown model 

against the CS28-1,2 experiments, and developing and validating a 3-D CFD model for a 

post-blowdown analysis for a 37-element fuel channel. It is hoped that these efforts can be 

useful for justifying the new methodology including the above mentioned under-prediction 

of the fuel temperatures in the post-blowdown phase of a LBLOCA. 
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IV. CONCLUSION 

A CATHENA model for a post-blowdown fuel channel analysis have been improved from 

an existing one for a CANDU-6 reactor, and an analysis for a RIH 35% LBLOCA without an 

ECC has been performed. 

A comparison of the results of this new analysis method with those of the Wolsong 2/3/4 

Safety Analysis[2] confirmed that the total heat transfer rate matches well up to 1000 sec, 

and then that of the new method begins to under-predict it consistently. On the other hand, 

the fuel temperatures of the center pin, inner ring fuel and the middle ring fuel are predicted 

by this new method to be lower than the old method by about 200 — 250 °C at the peak time. 

Considering the differences in these two analyses methodologies, especially the modeling of 

the fuel ring, a subchannel flow passage with an intermixing, and the radiation among the 

solid structures by considering every fuel individually, this trend of the results seems to be 

physically reasonable. However considerable future validation works are necessary to justify 

this new methodology for a licensing 
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Table 1. PT/CT Contact Results During the Blowdown Period for the Critical Pass of 35% 

RIH Break with Loss of ECC Injection 

Channel id 

and Power 

PT/CT Contact 

Time [s] 

Bundle 

Location 

Max. PT Temp. 

[°C] at Contact 

Time 

Internal Pressure at 

Contact Time 

[Mpa(a)] 

0-06 

7.3 MW 

21.3 5 809.6 4.0 

21.9 6 812.7 4.0 

22.2 7 808.1 3.9 

22.7 4 805.8 3.9 

25.1 8 780.2 3.7 

25.7 3 801.4 3.7 

31.2 2 789.2 3.3 

S-10 

7.0 MW 

24.1 5 802.0 3.8 

25.0 6 790.8 3.7 

25.1 4 797.7 3.7 

26.5 7 777.4 3.6 

28.0 3 794.2 3.5 

34.0 2 776.3 3.2 

L-03 

6.6 MW 

24.3 6 803.7 3.8 

24.6 5 804.5 3.8 

24.7 7 796.9 3.8 

26.7 4 799.8 3.6 

28.9 8 760.7 3.5 

30.5 3 795.2 3.3 

38.4 2 782.1 2.9 

G-05 

6.0 MW 

29.6 5 793.3 3.4 

30.0 6 782.2 3.4 

33.8 4 779.9 3.2 

37.5 3 764.4 3.0 
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Fig.1. Fuel Rod Power Grouping, Solid Structure and Coolant Subchannel Modeling in the 
Post Blowdown Analysis Model of a  CANDU 37-Element Standard Fuel Bundle 
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Fig.2. Coolant Subchannel Hydraulic Node Arrangement for the Post Blowdown Analysis 

Model for a CANDU 37-Element Standard Fuel Bundle 
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Fig. 4. Comparison of the Total Heat Load of the Critical Pass to the Moderator between the 
New Method and the Previous Method for RIH35% Break w/o an ECC [2]. 
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Fig. 5. The Ringwise Fuel Temperature, PT and CT Temperature Prediction obtained by 

the Previous Method for the Bundle at a Steam Flow of 10 g/s, a 7.0 MW Channel for a 

RIH35% Break w/o an ECC [2]. 
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Fig. 6 The Ringwise Fuel Temperature, PT and CT Temperature Prediction 

obtained by the New Method for the Bundle at Steam Flow of 10 g/s, 7.0 MW 

Channel for a RIH35% Break w/o ECC. 
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Fig. 6  The Ringwise Fuel Temperature, PT and CT Temperature Prediction 

obtained by the New Method for the Bundle at Steam Flow of 10 g/s, 7.0 MW 

Channel for a RIH35% Break w/o ECC. 
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