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ABSTRACT 
Reactor safety and risk are dominated by the potential and major contribution for human error in the 

design, operation, control, management, regulation and maintenance of the plant, and hence to all 
accidents. We need to determine the outcome (error) probability, or the chance of failure. Time and again 
we are faced with the same situation and question: how to predict the risk or chance of a mistake by an 
operating crew or team. 

Conventional reliability engineering is associated with the failure rate of components, or systems, or 
mechanisms, not of human beings in and interacting with a technological system. The probability of 
failure requires a prior knowledge of the total number of outcomes, which for any predictive purposes we 
do not know or have. Analysis of failure rates due to human error based on the Learning Hypothesis 
allows a new determination of the dynamic human error rate in technological systems, consistent with and 
derived from the available world data. The basis for the analysis is that humans learn from experience, 
both prior to and during a transient or event, and consequently the accumulated experience defines the 
failure rate. 

Our "best" equation for the probability of human error, outcome or failure rate, which has been 
validated against the full spectrum of the world's outcome data, allows for calculation and prediction of 
the probability of human error. 

In nuclear probabilistic risk assessment, the modeling of nuclear plant operator actions and transient 
control behavior is extremely important, and is a requirement according to industry standards. The human 
error probability (REP) often classified according to Skill, Rule and Knowledge based behavior. We 
examine the data and results observed in transients in both plants and simulators, available from France 
and the USA. We demonstrate that the human error probability (REP) is dynamic, and that it may be 
predicted using the Learning Hypothesis and the minimum failure rate, and can be utilized for 
probabilistic risk analysis purposes. 

INTRODUCTION 
Using the learning hypothesis, analysis of the human rate of learning allows a new determination of 

the dynamic probability and human failure (error) rate in technological systems. The result is consistent 
with and derived from the available world data for modern technological systems [1,2,3,4,5,6]. Since the 
approach is based on the Learning Hypothesis, the resulting probability of outcome or error can be shown 
to agree with available data. The model is entirely consistent with the "theory of error correction" for 
human learning [7]. 

The two useful concepts are of the probability of failure (error), p(s) or cumulative distribution 
function (CDF) before or in less than any interval, s; and the probability density function (PDF) as the 
differential probability of failure, f(s), in any small interval of experience, dc. Usually or conventionally, 
elapsed calendar or component operating time, t, is taken as the independent variable, not the experience, 
s, which is adopted here on the basis of the observed world outcome data. 
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Conventional reliability engineering is associated with the failure rate of components, or systems, or 
mechanisms, not of human beings in and interacting with a technological system. The probability of 
failure requires a prior knowledge of the total number of outcomes, which for any predictive purposes we 
do not know or have. Analysis of failure rates due to human error based on the Learning Hypothesis 
allows a new determination of the dynamic human error rate in technological systems, consistent with and 
derived from the available world data. The basis for the analysis is that humans learn from experience, 
both prior to and during a transient or event, and consequently the accumulated experience defines the 
failure rate.  

Our “best” equation for the probability of human error, outcome or failure rate, which has been 
validated against the full spectrum of the world’s outcome data, allows for calculation and prediction of 
the probability of human error. 

In nuclear probabilistic risk assessment, the modeling of nuclear plant operator actions and transient 
control behavior is extremely important, and is a requirement according to industry standards. The human 
error probability (HEP) often classified according to Skill, Rule and Knowledge based behavior. We 
examine the data and results observed in transients in both plants and simulators, available from France 
and the USA. We demonstrate that the human error probability (HEP) is dynamic, and that it may be 
predicted using the Learning Hypothesis and the minimum failure rate, and can be utilized for 
probabilistic risk analysis purposes. 

INTRODUCTION 
Using the learning hypothesis, analysis of the human rate of learning allows a new determination of 

the dynamic probability and human failure (error) rate in technological systems. The result is consistent 
with and derived from the available world data for modern technological systems [1,2,3,4,5,6]. Since the 
approach is based on the Learning Hypothesis, the resulting probability of outcome or error can be shown 
to agree with available data. The model is entirely consistent with the “theory of error correction” for 
human learning [7]. 

 
The two useful concepts are of the probability of failure (error), p(ε) or cumulative distribution 

function (CDF) before or in less than any interval, ε; and the probability density function (PDF) as the 
differential probability of failure, f(ε), in any small interval of experience, dε. Usually or conventionally, 
elapsed calendar or component operating time, t, is taken as the independent variable, not the experience, 
ε, which is adopted here on the basis of the observed world outcome data.  

  

27th Annual CNS Conference & 
30th CNS/CNA Student Conference
June 11-14, 2006
Toronto, ON, Canada

LEARNING CURVES IN CONTROL ROOMS: 
SKILL? RULE? KNOWLEDGE?

R. Duffey

Page 1 of 11



27th Annual CNS Conference & 
30th CNS/CNA Student Conference 
June 11-14, 2006 
Toronto, ON, Canada 

LEARNING CURVES IN CONTROL ROOMS: 
SKILL? RULE? KNOWLEDGE? 

R. Duffey 

THE PROBABILITY OF HUMAN RELIABILITY 
The chance and risk of making or having errors changes with the accumulated experience. The 

reliability relationships and definitions in our new experience terminology are: 
a) the hazard function is equivalent to the failure or outcome rate at any experience, A,(s), being the 

relative rate of change in the reliability with experience; 
b) the CDF or outcome fraction, F(8), is just the observed frequency of prior outcomes, the ratio 

n/N, where we have recorded n, out of a total possible of N outcomes; and is identical to the 
observed cumulative prior probability, p(c); 

c) the chance of an outcome in any small observation interval, is the PDF f(c), which is just the rate 
of change of the failure or outcome fraction with experience, dp(8)/d8. 

Hence, the probability of the outcome or error occurring in or taking less than s, is just the CDF, 
p(c) = n/N, conventionally written as F(s). Relating this to the failure rate, via (a) through (c) above, 
gives: 

p(s) = F(s) = 1 - e-5 Axle (1) 

Therefore, the probability is a double exponential due to the exponential form of the Minimum Error 
Rate Equation (MERE) failure rate itself imposed on the probability expression. This form is related to or 
may be considered as an "extreme value distribution" function that has arisen quite naturally from the 
learning hypothesis. It creates a probability that is in the form of a "human bathtub" as experience 
increases. Substituting for the MERE hazard or failure rate, and carrying out the integration from an 
initial experience, so, to any interval, s, we obtain the probability as the double exponential: 

p(s) = 1— exp {(A, - ?„)/k - A..(so — s)} 

where, of course from the MERE, 

A.(s) = + (A0 - A„) exp - k(s - so) 

(2) 

(3) 

and A,(so) = A,0 at the initial experience, so, accumulated up to or at the initial outcome(s). 
Using our "best" values for the learning rate constant, k=3, and for the minimum failure rate, we fmd 

that: 

= 5.10-6 + {(1/s) - 5.10-6}e-3e (4) 

The corresponding PDF f(c), is the probability that the error or outcome occurs in the interval dc, 
derived from the change in the CDF failure fraction with experience: 

f(c) = A,e 4de = A(c) x (1 - p(c)), 

= 10,,n + — ?) exp(—k(s - Co))} x texP (NE) — 4)/k — - c))} (5) 

The limits are clear: as experience becomes large, s—no, or the minimum rate is small, A, << A0, or 
the value of k varies, etc. 

For comparison with standard "engineering reliability" models, we show the MERE result also as a 
Weibull chart or "probability plot" form in Figure 1. 
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THE PROBABILITY OF HUMAN RELIABILITY 
The chance and risk of making or having errors changes with the accumulated experience. The 

reliability relationships and definitions in our new experience terminology are: 
a) the hazard function is equivalent to the failure or outcome rate at any experience, λ(ε), being the 

relative rate of change in the reliability with experience;  
b) the CDF or outcome fraction, F(ε), is just the observed frequency of prior outcomes, the ratio 

n/N, where we have recorded n, out of a total possible of N outcomes; and is identical to the 
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p(ε) ≡ F(ε) = 1 - e-∫ λdε (1) 
 
Therefore, the probability is a double exponential due to the exponential form of the Minimum Error 

Rate Equation (MERE) failure rate itself imposed on the probability expression. This form is related to or 
may be considered as an “extreme value distribution” function that has arisen quite naturally from the 
learning hypothesis. It creates a probability that is in the form of a “human bathtub” as experience 
increases. Substituting for the MERE hazard or failure rate, and carrying out the integration from an 
initial experience, ε0, to any interval, ε, we obtain the probability as the double exponential: 

 
p(ε) = 1 – exp{(λ - λm)/k - λ(ε0 – ε)} (2) 
 
where, of course from the MERE, 
 
λ(ε) = λm + (λ0 - λm) exp - k(ε - ε0) (3) 
 
and λ(ε0) = λ0 at the initial experience, ε0, accumulated up to or at the initial outcome(s).  
Using our “best” values for the learning rate constant, k=3, and for the minimum failure rate, we find 

that: 
 
λ = 5.10-6 + {(1/ε) - 5.10-6}e-3ε (4) 
 
The corresponding PDF f(ε), is the probability that the error or outcome occurs in the interval dε, 

derived from the change in the CDF failure fraction with experience: 
 
f(ε) = λe -∫λdε = λ(ε) x (1 - p(ε)),  
 
= {(λm + (λ0 – λm) exp(–k(ε - ε0))} x {exp ((λ(ε) – λ0)/k – λm(ε0 - ε))} (5) 
 
The limits are clear: as experience becomes large, ε→∞, or the minimum rate is small, λm << λ0, or 

the value of k varies, etc.  
 
For comparison with standard “engineering reliability” models, we show the MERE result also as a 

Weibull chart or “probability plot” form in Figure 1. 

  

27th Annual CNS Conference & 
30th CNS/CNA Student Conference
June 11-14, 2006
Toronto, ON, Canada

LEARNING CURVES IN CONTROL ROOMS: 
SKILL? RULE? KNOWLEDGE?

R. Duffey

Page 2 of 11



27th Annual CNS Conference & 
30th CNS/CNA Student Conference 
June 11-14, 2006 
Toronto, ON, Canada 

LEARNING CURVES IN CONTROL ROOMS: 
SKILL? RULE? KNOWLEDGE? 

R. Duffey 

10 

0.1 

0.01 

0.001 

0.0001 

0.00001 

Probability Plot 
(Initial rate =1/Tau, Minimum rate=0.000005) 

— a -k3 Lamda(0)=1ftau 

- Im1 Lamda(0)=1ftau 

- Lamda(0) =0.00005 

0.000001 
0.001 0.01 0.1 1 10 100 1000 10000 100000 1000000 

Experience, tau 

Figure 1: Human error probability shown in a Weibull form of plot. 

In Figure 1 the natural logarithm ln(1/(1-p(s)) is shown plotted versus the accumulated experience, s, 
measured in tau units for two learning rates, k=1 and k=3. The plot demonstrates that the influence of 
learning is to produce a distinct "kink" in otherwise straight (or conventional) Weibull log-log lines. For 
comparison only, we show an example with an assumed low constant initial rate of 0.000005, consistent 
with our minimum value derived from data. 

THE HUMAN BATHTUB 
The probability of human error, and its associated failure or error rate, we expect to be unchanged 

unless dramatic technology shifts occur. We can also estimate the likelihood of another event, and 
whether the MERE human error rate frequency gives sensible and consistent predictions. Using Bayesian 
reasoning, the posterior or future probability, p(P), of an error when we are at experience, s, is, 

Posterior, p(P) = {Prior, p(s)} x {Likelihood, p(L)} (6) 

where p(s) is the prior probability, and by definition both 1P,L1 > c, our present accumulated 
experience. 

The likelihood, p(L), is also a statistical estimate, and we must make an assumption, based on our 
prior knowledge, and often is taken as a uniform distribution. We can show that the likelihood is formally 
related to the number of outcomes for a given variation of the mean. Either: 

a) the future likelihood is of the same form as experienced up to now; and/or 
b) the future is an unknown statistical sample for the next increment of experience based on the 

differential probability, the PDF f(c). 
In the first case (a), we have that the future likelihood probability p(L) is the fraction or ratio of 

events remaining to occur out of the total possible number that is left. 
For the second case (b), the future is an unknown statistical sample for the next increment of 

experience based on the PDF, f(c). This is called a "conditional probability", where the probability of the 
next outcome depends on the prior ones occurring, which was Bayes original premise. 

The so-called generalized conditional probability or Likelihood, p(L), can be defined utilizing the 
CDF and PDF expressions. Described by Sveshnikov [8] as the "generalized Bayes formula", the 
expression given is based on the prior outcome having already occurred with the prior probability p(c). 
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with our minimum value derived from data.  

THE HUMAN BATHTUB 
The probability of human error, and its associated failure or error rate, we expect to be unchanged 

unless dramatic technology shifts occur. We can also estimate the likelihood of another event, and 
whether the MERE human error rate frequency gives sensible and consistent predictions. Using Bayesian 
reasoning, the posterior or future probability, p(P), of an error when we are at experience, ε, is, 

 
Posterior, p(P) = {Prior, p(ε)} x {Likelihood, p(L)} (6) 
 
where p(ε) is the prior probability, and by definition both |P,L| > ε, our present accumulated 

experience. 
The likelihood, p(L), is also a statistical estimate, and we must make an assumption, based on our 

prior knowledge, and often is taken as a uniform distribution. We can show that the likelihood is formally 
related to the number of outcomes for a given variation of the mean. Either: 

a) the future likelihood is of the same form as experienced up to now; and/or 
b) the future is an unknown statistical sample for the next increment of experience based on the 

differential probability, the PDF f(ε). 
In the first case (a), we have that the future likelihood probability p(L) is the fraction or ratio of 

events remaining to occur out of the total possible number that is left. 
For the second case (b), the future is an unknown statistical sample for the next increment of 

experience based on the PDF, f(ε). This is called a “conditional probability”, where the probability of the 
next outcome depends on the prior ones occurring, which was Bayes original premise. 

The so-called generalized conditional probability or Likelihood, p(L), can be defined utilizing the 
CDF and PDF expressions. Described by Sveshnikov [8] as the “generalized Bayes formula”, the 
expression given is based on the prior outcome having already occurred with the prior probability p(ε). 
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This prior probability then gives the probability or Likelihood of the next outcome, p(L), in our present 
experience-based notation, as: 

Pa-) = 

(f(c), probability that the outcome occurs in the interval dc) 
(p(c), probability that the outcome occurred in or less than s) 

{PDF/CDF} = f(c)/p(c) 

= 1/p(c){dp(c)/dc} = A,e4Ade/(1 - e rAde) 

= A,{(p(c)-1)/p(c)} (7) 

In mathematical notation [8], the PDF is a differential function, f(c) = dp(c)/dc, being the probability 
of an outcome in any experience increment; and the CDF is an integral function for the observed outcome 
(failure) fraction, F(c), being the probability of the outcomes for all experience. Both functions can be 
evaluated using the (continuous random variable) MERE exponential solution for the outcome (failure) 
rate as we now show. 

So, in the second case, for the next increment of experience, we may take the likelihood, p(L) as 
related to the PDF, f(c), and the CDF, p(c) by the expressions for the posterior probability: 

p(P) = p(s) x (PDF, f(c)/CDF, p(c)) = f(s) (8) 

This implies that the likelihood is as we stated in (Eq.7). We can evaluate these Bayesian likelihood 
and posterior expressions using our "best" MERE values, obtaining the results shown in Figure 2. 

It is clear from Figure 2 that the "human bathtub" prior probability, p(c), causes the likelihood to 
fluctuate up and down with increasing experience. The likelihood tracks the learning curve, then 
transitions via a bump or secondary peak to the lowest values as we approach certainty (p—>1) at large 
experience. However, the posterior probability, p(P), just mirrors and follows the MERE failure rate, as 
we predicted, decreasing to a minimum value of —5.10-6, our ubiquitous minimum outcome rate, before 
finally falling away. 

Hence, since the future probability estimate, the posterior p(P), is once again derivable from its 
(unchanged) prior value, f(c) = dp(c)/ds X(c), derived from learning from experience, and thus the past 
predicts the future. 

This purely deterministic view is predicated by assuming an unchanging homo-technological system 
(HTS) and learning rate, thus reflecting reality, and that the prior "collective" of outcomes is a true 
sample of the posterior ones. Therefore, as usual, the uncertainty is determined by the prior probability. 

For rare events, A,(s) n/s, and p(s) <<1, so a sensible working estimate for the PDF is f(s) A,(s) —
n/s, where n 1. We can show how this estimate for the likelihood indeed corresponds to that derived 
from the learning theory with negligible learning (a rate constant k 103), thus showing a consistent 
result. 

For the special case of "perfect learning" when we learn from all the non-outcomes as well as the 
outcomes, the Poisson-type triple exponential form applies for low probabilities and small numbers of 
outcomes (n<<m). Of course, the limit of "perfect learning" is when we have an outcome, so here p(c) = 
1/c, and is the rare event case for n = 1. The Perfect Learning limit fails as soon as we have an event, as it 
should. But there is also a useful simple physical interpretation, which is that: 

a) we learn from non-outcomes the same way we learn from outcomes; 
b) the perfect learning ends as soon as we have just a single (rare) outcome; and 
c) the influence of the finite minimum rate is then lost. 
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Figure 2: The estimate of the likelihood and posterior probabilities when learning. 

COMPARISON TO DATA: THE PROBABILITY OF FAILURE AND HUMAN ERROR 
We may now compare the above learning theory with the available data, where we are looking for the 

major impact of human error on the outcome rate. Fortunately or unfortunately, "human error" has an 
overriding (typically >60%) contribution to almost all HTS outcomes and events. This is true worldwide 
for the whole spectrum, all the way from transportation crashes, social system and medical errors, to large 
administrative failures and the whole gamut of industrial accidents. Such outcome rates generally follow 
the ULC (Duffey and Saull (2002)[4]), where a learning pattern is clearly evident, and well over 1000 
data sources formed the basis for the estimated value of k-3 for the learning rate "constant" taken above. 

To compare the failure rates to outcome data for the probability of human error now requires a further 
analysis step that we outline here. There are three data sets for catastrophic events with defined large 
human error contributions that are worth re-examining further: 

1. the crash rate for global commercial airlines, noting most occur during maneuvering and 
approach for take-off and landing but as we have seen can also occur in flight; 

2. the loss of the space shuttles, Challenger and Columbia, also on take-off and during the approach 
for landing; and 

3. the probability of non-detection by plant operators of so-called latent (hidden) faults in the 
control of nuclear system transients. 

Apparently disparate, these three all share the common element of human involvement in the 
management, design, safety "culture", control and operation of a large technological system; all are 
subject to intense media and public interest; and the costs of failure are extremely expensive and 
unacceptable in many ways. 

For the first two cases, we calculate the outcome (fatal crash) probability for all and each ith airline, 
where the probability, pi(s) is given by ni(s)/N, where N is the total number of outcomes (-276 in the 30-
year observation interval). To normalize the data over the observation interval of experience, we must 
adopt a measure for the maximum experience, which in the case of commercial airlines and Concorde is 
taken as the 720 Mh accumulated (Tina)) of actual flying from 1970-2000 (i.e., 1 tau = 1Mh flying). 

For the Shuttle [9], as a test we take for the experience normalization either: 
1. the maximum Mh aircraft value, thus assuming the shuttle is just another type of commercial-type 

flying machine with the same human error but independent causes; or 
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Figure 2: The estimate of the likelihood and posterior probabilities when learning. 

COMPARISON TO DATA: THE PROBABILITY OF FAILURE AND HUMAN ERROR 
We may now compare the above learning theory with the available data, where we are looking for the 

major impact of human error on the outcome rate. Fortunately or unfortunately, “human error” has an 
overriding (typically >60%) contribution to almost all HTS outcomes and events. This is true worldwide 
for the whole spectrum, all the way from transportation crashes, social system and medical errors, to large 
administrative failures and the whole gamut of industrial accidents. Such outcome rates generally follow 
the ULC (Duffey and Saull (2002)[4]), where a learning pattern is clearly evident, and well over 1000 
data sources formed the basis for the estimated value of k~3 for the learning rate “constant” taken above.  

To compare the failure rates to outcome data for the probability of human error now requires a further 
analysis step that we outline here. There are three data sets for catastrophic events with defined large 
human error contributions that are worth re-examining further:  

1. the crash rate for global commercial airlines, noting most occur during maneuvering and 
approach for take-off and landing but as we have seen can also occur in flight;  

2. the loss of the space shuttles, Challenger and Columbia, also on take-off and during the approach 
for landing; and  

3. the probability of non-detection by plant operators of so-called latent (hidden) faults in the 
control of nuclear system transients.  

Apparently disparate, these three all share the common element of human involvement in the 
management, design, safety “culture”, control and operation of a large technological system; all are 
subject to intense media and public interest; and the costs of failure are extremely expensive and 
unacceptable in many ways. 

For the first two cases, we calculate the outcome (fatal crash) probability for all and each ith airline, 
where the probability, pi(ε) is given by ni(ε)/N, where N is the total number of outcomes (~276 in the 30-
year observation interval). To normalize the data over the observation interval of experience, we must 
adopt a measure for the maximum experience, which in the case of commercial airlines and Concorde is 
taken as the 720 Mh accumulated (τmax) of actual flying from 1970–2000 (i.e., 1 tau ≡ 1Mh flying). 

For the Shuttle [9], as a test we take for the experience normalization either: 
1. the maximum Mh aircraft value, thus assuming the shuttle is just another type of commercial-type 

flying machine with the same human error but independent causes; or  
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2. just the total launch and re-entry amount for all the 113 shuttle missions, hence assuming that the 
failure rate and human error mechanisms are completely unrelated to that for commercial aircraft. 

The comparison of the data to theory is shown in Figure 3 where the lines are the MERE calculated 
probability, p(s) using the "best" values. The three lines use three bounding values for the minimum error 
rate to illustrate the sensitivity. Despite the scatter, a minimum rate of order —5.10-6 is indeed an upper 
bound value, as we estimated before. The Shuttle data point sensitivity to the four orders of magnitude 
variation in choice of maximum experience shows the outcome probability is well matched with the 
aircraft data when only shuttle flights are considered, demonstrating that the minimum human error is 
independent but indeed is about the same magnitude (-5.10-6). We note two points: the probability is now 
increasing with experience, as the minimum has been attained and passed; and the chance (probability) of 
a fatal crash for any airline is typically a maximum of between 1 and 10%. Thus, 90 to 99% of the airlines 
are the lucky ones and do not have one so far. 
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Figure 3: The probability of failure: MERE comparison to airline and shuttle data. 

OPERATOR ACTIONS AND ERRORS IN NUCLEAR PLANTS 
For the other human error case, we have the results of the probability of non-detection (i.e., human 

error) of latent faults for nuclear plant transients, which are also fairly regular events. The transient events 
examined by Baumont et al [10] were derived for a total reactor "fleet" of 58 units, which reported 900 
outcomes spread over two years. The learning opportunity is the average experience per outcome for all 
the fleet, which is then given by: 

Experience per outcome = (58 x 2 years x 365 days x 24 hours x 60)/900 
Tm = 68,000 minutes per event. 

The data and the MERE error rate can be normalized to fitting the curves using this maximum 
experience (1 tau = 1 transient hour) for the specific transients, close to the MERE minimum error 
interval. The initial probability was taken as unity, that is p(so) =1, for comparison purposes. 

Initially, the operators had little or no chance of detection -- the latent fault remained undetected. As 
experience was gained and the event unfolded, the chance of finding the hidden fault increased 
dramatically. The data and the theory are in reasonable accord, despite the necessity of having to be 
renormalized. Perhaps the key two observations here are that: the shape of the data curve is indeed 
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following the MERE failure rate prediction: and that the operators were indeed on the steepest 
(downward) or learning part. 

This probability trend is also entirely consistent with what happened in the aircraft loss of fuel event 
over the Azores [11]. The latent fault was the hidden fuel-line leak, and it took about an hour, or — 10-5 tau 
on this same figure scale, for the crew to make the wrong diagnosis. Assuming the same human error 
forces are at work between the two industries, the probability of non-detection of this latent fault we 
would estimate at —90%, consistent with the actual outcome. 

All the outcomes we observe are the outcomes we should have expected, given the human 
involvement and the probability of human error. 
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Figure 4: Comparison of MERE to human error probability data of Baumont et al. for French nuclear 
plants. 

Thus, the human error probability is indeed dynamic, and evolves with experience. In this difficult 
arena of coupled human and technological system behavior, these new results show a very reasonable 
level of concordance between the mere theory and the human error data, using the typical minimum error 
interval (100,000 to 200,000 hours). The method and approach we have validated here also allows for 
predictions to be made. 

THE IMPACT OF LEARNING ON HUMAN RELIABILITY ANALYSIS IN NUCLEAR SAFETY 
In probabilistic safety assessments, the use of human reliability analysis (HRA) is used to assess the 

probability of successful or conversely unsuccessful, human actions during transient and stressful 
decision-making. For nuclear power plants, which are another well-known HTS where operator and 
human actions are required, there is even an ASME engineering standard for risk assessment [12]. This 
includes the explicit treatment of human error in so-called "dependency analysis" during postulated 
reactor accident sequences. 

The probability of human non-response (error) in a transient is handled in probabilistic safety analysis 
(PSA) in a number of ways, including static and dynamic terms and multipliers to include the effects and 
influence of cognition (understanding), implementation (action) and decision-making response (timing), 
as well as the human's state or basis for action (skill, rule or knowledge). Hannaman [13] has summarized 
the various empirical forms of the REP functions. In general, the form taken is a summation of different 
error components: 
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p(t) =Ei Pi (9) 

where P1 is the error in detection and diagnosis, P2(t) is due to planning or non-response error, P3(t) 
the action error, etc., and these are also distinguished for skill, S, rule, R, and knowledge, K, based 
behavior. The effective timescale, t, is based on some median decision or diagnosis time, and it is stated 
and clear that there are not much statistical data to support the different model elements. So appeal must 
be made to simulator observations, where operating staff is put through simulated transients and their 
actions observed. 

All the data and fits for the REP values have been adjusted or normalized to some choice for the 
median decision or action timescale (Ty) based on observation of simulated events. Data on operator 
errors have been collected by Hannaman and others [13] for a range of some 200-simulator tests, and 
fitted with exponential and lognormal functions. The data and models reported show that the REP 
estimates for the three classes of action are such that at any given instant the hierarchy is 
p(Skill)<p(Rule)<p(Knowledge, particularly for P2, the non-response probability. So we asked Hannaman 
for access to the original data behind these unpublished functional fit curves. However, although unable 
to release the actual data, Hannaman [14] kindly supplied us with an Excel (xls.) data file containing the 
separate tabulations for the Skill, Rule and Knowledge probability functional fits. 

To obtain the actual timeframe or risk opportunity during the transient, we must choose the 
appropriate needed units, ti, for the experience interval to calculate the MERE failure rate and probability. 
We adopt a simple multiplier, making the units for the experience interval, ti, which then cover the 
possible range of timescales for Skill, Rule and Knowledge based actions. The necessary assumption is 
that the behavior can indeed be grouped into these three classifications. 

For comparison with the MERE result for the probability of non-response error (outcome) rates for 
any HTS in effect we have shifted the usual bathtub experience, c, using the simple adjusted accumulated 
experience parameter, 

P(E) = 1— exP - Xm)/k - X(so — s)} (10) 

We adopted without any adjustment the previously determined "best" values of k=3 and 4=5.10-6, as 
derived from the comparisons to the world outcome data. 

We initially found that the log-normal functions originally used and supplied by Hannaman [13] did 
not have a finite minimum probability. Hannaman [14] then included an arbitrary constant lowest value 
for each of the S,R and K cases; which contrasts with the MERE minimum determined naturally by the 
intersection of the falling learning and rising finite minimum failure rate portions to form the bathtub. The 
final comparisons obtained from these choices of experience measure and minima are shown in Figure 5, 
which contains the MERE probability prediction and the modified lognormal functions, p(S,K,R) [14]. 
The four MERE "human bathtub" curves cover the range of trends exhibited by the REP functions, using 
arbitrarily chosen constant experience multiplier values of = 0.1,1,10, and 100 on the experience units, T. 

Rather amazingly, the Skill, Rule and Knowledge curves generally agree with the bounds of MERE 
results using just these simple experience timescale adjustments. Although it is not perfect, the agreement 
between the trends and magnitudes are now very encouraging given:(a) the approximations necessarily 
adopted in order to make the comparisons possible in the absence of the original data; and (b) the fact that 
the original curves are based on arbitrary (and not theoretically-based) lognormal fits anyway. 
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Figure 5: The Human Error Probability Comparison. 

The agreement between these older data with the new MERE result is extremely encouraging given 
the simple shift choice made for experience, and constitutes an independent validation of the Learning 
Hypothesis. Hence, it clearly shows that we may use the Learning Hypothesis [4] to determine the 
dynamic HEP in actual transients and events, as well as the outcomes in entire HTS. This result is also 
consistent with the latest models developed for explaining the human learning process [7]. 

Therefore, for estimating the HEP in PSA analysis we recommend adopting the theoretically derived 
MERE "bathtub" expression, 

p(r)= 1 — exp ((A, - A.„,)/k - MT° - 4T)} 

where 

+ (?o - ?)exp - k(4T-To), and 0.1<4<100. (12) 

Apparently, by shifting the experience parameter, ti, we can estimate p(Skill) using 4=0.1; for p(Rule), 
4=10; and for p(Knowledge), 4=100, thus underlining and emphasizing the performance premium 
obtained from having and acquiring skill. At any given experience, the transition to a Skill based response 
drastically reduces the probability of error. 

IMPLICATIONS FOR GENERALIZED RISK PREDICTION 
The implications of using this new approach for estimating HEP in HRA are potentially very 

profound. From this comparison and analysis, we may conclude that, within the uncertainties of such an 
analysis, the required standard HRA HEP models used in PSA can be fitted to the MERE form as derived 
from the Learning Hypothesis. Conversely, the MERE probability (the human bathtub) properly 
represents all the known data trends, such as they are, and hence can be used in PRA HEP estimation 
provided the correct measure is taken for experience. 

The important point is that the same learning trend is evident, from actual detailed human (operator or 
team) actions observed during a specific transient, all the way to the outcomes for accidents and events 
observed during entire HTS operation. The only difference lies in the experience measure chosen as 
relevant to the Learning Hypothesis, which choice then naturally reflects the experience accumulated with 
whatever level of HTS and outcomes are under consideration. 
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This new probability estimate is based on the failure rate describing the Universal Learning Curve 
(ULC), utilizing the validation from the outcome data of the world's HTS. Thus we have seamlessly 
linked all the way from individual human actions to the observed outcomes in entire systems throughout 
experience space, utilizing the same values everywhere for the learning rate constant, k, and the minimum 
error rate, Xm. The implication is also that separate accounting or addition is then not needed for the 
assumed cognition, Pi, and execution probabilities, P3. They are already implicitly included in the integral 
MERE probability estimate, p(r), which also automatically exhibits the minimum possible attainable 
probability as a natural function of the accumulated experience, T. 

Hence, for the first time, we are also able to make predictions of the probability of errors and 
outcomes for any assumed experience interval in any HTS. 

CONCLUSIONS: THE PROBABLE HUMAN RISK 
Analysis of human errors and the rate of learning allow a new determination of the dynamic human 

error rate in nuclear and other technological systems, consistent with and derived from the available world 
data. The basis for the analysis is the "learning hypothesis" that humans learn from both prior and current 
experience, and consequently the accumulated experience defines the failure rate. The exponential failure 
rate solution of the MERE then defines the probability of human error as a function of experience, which 
forms the shape of the "human bathtub" curve. This estimate allows for calculation and prediction of the 
probability of human error in any system. 

Comparisons to observed human error data, all the world's data, to individual nuclear plant operator 
transient control behavior, show accord with the Learning Hypothesis and the "human bathtub" result. 
The results demonstrate that the REP is dynamic, and that it may be predicted using the MERE learning 
hypothesis and the minimum failure rate, and can be utilized for probabilistic risk analysis purposes with 
the appropriate choice of the experience measure. 
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