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Abstract 

To form a licensing basis for the new methodology of the fuel channel safety analysis code 

system for CANDU-6, a CATHENA model for the post-blowdown fuel channel analysis has 

been developed, and tested for a high temperature thermal-chemical experiment CS28-1. 

As the major concerns of the post-blowdown fuel channel analysis are with the current 

CANDU-6 design characteristics how much of the decay heat can be discharged to the 

moderator via a radiation and a convective heat transfer at the expected accident conditions, 

and how much zirconium sheath would be oxidized to generate H2 gas at what fuel 

temperatures, this study has focused on understanding these phenomena, their interrelations, 

and a way to maintain good accuracy in the fuel temperature prediction throughout the post-

blowdown phase of a LBLOCA. Considering that an accurate prediction of the initial steady 

state of the experiment is important to better prediction, it was attempted to find what factors 

significantly contributes the prediction accuracy. As a result, the use of the constant 

emissivity of 0.80 for the entire transient for FES, and the non-participating medium 

treatment of the CO2 gas annuls in CATHENA radiation model and the inability of 

CATHENA modeling of the possible natural convective heat transfer between the hot PT 

outer wall and the cold CT inner wall are identified as these factors. However the radiation 

model of CATHENA between FESs and PT is found to be accurate in the order of TC 

measurement accuracy reported Based on the prediction comparison of the current 

CATHENA model and the experiment data, the steady state model seems adequate as a 

starting point of the following high temperature thermal-chemical experiment of a metal-

water reaction. 
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I. Introduction 

In a CANDU reactor the fuel and coolant are separated from the heavy-water moderator by 

two concentric horizontal fuel channels. Owing to this physical separation, even during a 

large break LOCA without a ECC injection, the decay heat from the fuel can be discharged 

to the cool huge volume of a moderator once the fuel temperature rises to such a degree not 

too high to jeopardize the structural integrity of the fuel bundle and channel, but high enough 

to dissipate the decay heat via a radiation heat transfer. So it has been a great concern as to 

whether the fuel channel integrity can be maintained even if there is no effective ECC 

injection from a long term core cooling viewpoint. As the fuel and fuel channel can be 

disintegrated not only by melting, but also metal-water reaction such as zirconium-steam, it 

is very important to thoroughly understand high-temperature fuel-channel behavior and to 

know the effectiveness of the moderator as a heat sink to demonstrate the safety of current 

and future PHW reactors during postulated accident. 

This may be best achieved by understanding the involved phenomena not only by employing 

the appropriate mathematical models to describe them, but also by performing an intensive 

numerical simulation backed up by various separate effect tests results. These models can 

then be coupled into an integrated circuit code to predict a fuel-channel behavior under 

accident conditions. Computer codes such as CHAN-II, CATHENA and FACTAR are 

regarded as capable of predicting the thermal-chemical response of CANDU fuel channels 

when the internal coolant is superheated steam. These codes, however, must be validated 

against experimental data whenever possible. Data for a validation of the codes comes from 

various experiments involving the complex interactions of the temperature, material 

properties, heat transfer and reaction kinetics on fuel-channel components subjected to a 

severe temperature transient. One of these experiments used for a validation of the post-

blowdown fuel channel analysis model of CATHENA is so called CS28-1, which is the first 

28-element bundle high temperature experiment. 

In Korea, since the completion of the Wolsong 2,3,4 licensing, there have been few 

appreciable activities on the CANDU safety except that for a CANFLEX-NU demonstration 

irradiation at Wolsong-1 in 2004. Therefore properly maintaining the safety analysis system 

such as the related computer codes, input deck, the computer hardware and staffs has been 

the task of the CANDU safety analysis group. Meanwhile a significant effort has been 
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poured to establishing a self-sustaining CANDU safety analysis system while filling the 

technology gap for those areas which were the responsibilities of AECL during the Wolsong 

2,3,4 projects, one of which is the moderator circulation and subcooling analysis. Another 

effort was to replace the old analysis codes with more recently developed and realistic codes 

and methodology, one of which is to replace the CHAN-II code with CATHENA for the 

post-blowdown fuel channel analysis. To this end an advanced model for the post-blowdown 

fuel channel analysis for CANDU-6 has been developed based on the interim version of the 

CATHENA fuel channel model for the post-blowdown analysis which was frozen since the 

completion of the Wolsong 2,3,4 licensing, and is being considered to replace the current 

CHAN-II model in the near future after a proper testing and validation. This paper describes 

one of these efforts to validate this advanced fuel channel model of CATHENA for the post-

blowdown fuel channel analysis. As there is only a few high temperature thermal-chemical 

CANDU fuel channel experiments subject to a metal-water exothermic reaction resulting in a 

fuel sheath and possible bundle disintegration which are applicable to 37-element fuel case, 

it was decided to develop a 3-D post-blowdown fuel channel analysis model by using the 

CFD model based on the commercial codes such as CFX or FLUENT and to validate it 

against the existing 28-element high temperature thermal-chemical CANDU fuel channel 

experiment such as CS28-1, 2, 3. Then the same technique and methodology can be applied 

to develop one for a 37-element fuel channel case for a CANDU-6 application. Eventually 

this model after proper validation will be used to generate a benchmark problem of 37-

element fuel case, which can then be used to validate the CATHENA post-blowdown model 

for CANDU-6. Therefore to this aim a 3-D CFD model based on the CFX code is being 

developed and a validation of this model against CS28-1[9] will be performed. This paper 

describes one of the recent studies to validate the CATHENA post-blowdown fuel channel 

model for the CS28-1 experiment. The motivation of this work is the authors belief that the 

theoretical and technical know-how involved in developing and validating post-blowdown 

fuel channel models for 28-element and 37-element fuel channels would be essentially the 

same. So once the one for a 28-element channel is successful, it can be also applied to 37-

element case without much difficulty. 

As a first step to carry out this research, the authors reviewed the previous works[1-9] for 

validating the CHAN-II and CATHENA codes against 1-, 7- and 28-element experiments. I 

was found that there was room to be improved in these works, especially the matching of the 

computer code models' prediction of the initial steady state. It is the authors opinion that the 

loose prediction of the transient fuel and fuel channel behavior by the CHAN-II code or 

especially the CATHENA code are partly due to the failure to match the steady state 
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condition more accurately at the outset, and then use it as the initial condition for the rest of 

the transient. Therefore it is treated separately in this paper and how the authors managed to 

match the initial steady state fuel and fuel channel condition rigorously and thus succeed to 

better predict the rest of the whole transient of the CS28-1 experiment is given in detail. 

II. Test Conditions, the Measured Temperatures of the Steady State of 

Experiment CS28-1. 

In this steady state, a radiation and convective heat transfer problem, two heat transfer 

mechanisms contribute and compete with each other to determine the FES fuel temperature 

for the given boundary conditions, which are the pool water temperature, the temperature, 

pressure and flow rate of the inlet steam and the incoming CO2 flow into the annulus as well 

as the heat input of the individual FES heater. 

1. Experimental Set Up and Operating Conditions are as follows; 

1) This is the high temperature thermal-chemical experiment with the largest number of 

fuel elements carried out by AECL 

2) All the FES (Fuel Element Simulator) of a length of 1.8m is held in place and divided 

into 6 axial regions separated by 5 Zirconium spacer grid plates. 

3) In the annulus between the inside pressure tube and the outside calandria tube CO2 gas 

of 10 g/s is flowing. 

4) For cooling the calandria tube it is submerged in the water pool of a temperature of 40 

±5 °C 

5) The superheated steam at 700°C flows into the short inlet plenum through the small 

sized inlet piping located at the top of the calandria tube entrance at a rate of 10.2 g/s. 

6) The heater power is 10kW, and the power ratio of the inner, middle, and outer ring fuel 

is 0.78; 0.88 ; 1.10 respectively and one of the heater R-1, red shaded one in the inner 

ring, has failed. 

7) The T/C was installed at two locations of each FES, one at the inner and the other at the 

outer to measure the difference inside and outside due to a radiation heater transfer as 

shown in Fig.1 of the bundle cross section. 

8) The pressure tube temperature was measured at 8 locations which were evenly spaced 

as shown by black dots on the right outside the pressure tube in Fig.l. 

9) The calandria tube temperature was measured at two locations, one at the bottom and 

the other at the top as shown as by black dots on the right outside of the calandria tube. 
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10) The moderator temperature was measured at two locations, one at the pool bottom, and 

the other at the top of the pool water. Both thermocouples indicate that the pool water 

heat up rate lies between 0.0035°C/s and 0.0040°C/s. 

The basic heat transfer mechanisms in the fuel channel are the radiation heat transfer 

between the FES heaters and the pressure tube, and the convective heat transfer between the 

FES heaters and the steam coolant. The relative contribution of each mechanism to the total 

heat transfer will be determined by the relative thermal resistances of each mechanism at 

various axial positions of the test bundle. The basic heat transfer mechanisms between the 

pressure tube and the calandria tube are again a radiation heat transfer between the pressure 

tube and the calandria tube, and a convective heat transfer between the pressure tube and the 

CO2 gas flow, and a calandria tube and CO2 gas flow, and a conduction heat transfer between 

the pressure tube and the calandria tube via a garter spring. The heat transfer between the 

calandria tube and the pool water would be a natural convective heat transfer by the pool 

water. The method as to how each of these heat transfer mechanisms are modeled and 

handled is described in the following section of the CATHENA model description. In this 

case, the reference temperature to which all the other temperatures are computed would be 

the temperatures of the pool water and, the inlet steam coolant provided the effect of the CO2

convective heat transfer be negligible. Thus accurate temperature prediction of the calandria 

tube, the pressure tube, the FES heater and the steam coolant against the experimentally 

measured values are very important to validate the appropriateness of the corresponding 

models of the CATHENA code. 

The measured parameters of the major solid components and the test section inlet are: 

1) Calandria Tube Temperature., Pressure Tube Temperature. 

2) FES (Fuel Element Simulator) Temperature. 

3) Steam Temperature, Pressure, Flow Rate and the Electric Power to the FES Heaters. 
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Fig. 1. Cross Section of the CS28-1 Test Bundle and Thermocouple Locations.[11] 
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Fig.2. Electric Power to the Heater, and the Inlet Steam Flow Conditions.[9] 

Page 7 of 17 

 
Fig.2. Electric Power to the Heater, and the Inlet Steam Flow Conditions.[9] 

27th Annual CNS Conference &
30th CNS/CNA Student Conference
June 11-14, 2006
Toronto, ON, Canada

VALIDATION OF THE CATHENA FUEL CHANNEL MODEL 
FOR THE POST BLOWDOWN ANALYSIS FOR THE

CS28-1 EXPERIMENT, I-STEADY STATE
B. Rhee, H.S. Kang, et al.

Page 7 of 17



27th Annual CNS Conference & 
30th CNS/CNA Student Conference 
June 11-14, 2006 
Toronto, ON, Canada 

VALIDATION OF THE CATHENA FUEL CHANNEL MODEL 
FOR THE POST BLOWDOWN ANALYSIS FOR THE 

CS28-1 EXPERIMENT, I-STEADY STATE 
B. Rhee, H.S. Kang, et al. 

750 

700 

— 650 
0 
t.) 

ci 600 
E 

550 

500 

450 

IJ  

—.— Inner FES 
Middle FES 
Outer FES 

—.— Press. Tube 

-1 1 

iv
1 

v ----
LL

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 

Distance along Test Section (m) 

Fig. 3. Inner, Middle and Outer Ring FES and the PT temperatures along the axial 

Direction [11] 

III. Heat Transfer Model Description of the CATHENA Post-Blowdown 

Analysis 

1. Solid Structure Model 

1) Fuel Element Simulator 

Graphite heater, oxide layer, gap, zircaloy sheath and a ZrO2 oxide layer on the 

outside surface of the sheath are modeled as is, and the ZrO2 layer is included to 

model the zirconium-steam reaction. Each FES is circumferentially divided into 

two sectors to represent the surfaces facing inward and outward. The size of 

these two sectors is chosen to approximately match the surfaces facing each 

coolant subchannel. Axially the total length of the FES is divided into 12 

segments, two per each axial section divided by a spacer grid. A circumferential 

conduction is neglected. The urbanic-Heidrick correlation is used to model the 

metal-water reaction. The thickness of the oxide layer and the volume of the 

hydrogen produced are considered. 

2) Pressure Tube, Calandria Tube 

No circumferential and axial conduction are assumed. The pool water simulating 

the moderator is coupled to the calandria tube as a thermalhydraulic boundary 

condition. Zircaloy is used for the pressure tube material, and a heat generation 
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from the zirconium-steam reaction is modeled on the inside surface of the pressure 

tube, by using the initial oxide layer thickness of 10-6 m. Pressure tube and calandria 

tube are divided circumferentially into 10 sectors. The annulus gap between the 

pressure tube and the calandria tube is modeled as an insulated space with a 

prescribed boundary condition. 

2. Annulus Shaped Subchannel Model 

Each fuel bundle consists of 28 fuel elements arranged in 3 rings (4,8 and 16 pins in 

the inner, middle and outer fuel rings respectively). The FES are equispaced along 

the concentric pitch circles. This ring type bundle structure can cause a density-

stratified flow when steam is heated up under a low flow condition. To consider it, a 

coolant channel is divided into three subchannels as shown in Fig.4. The flow rate in 

each subchannel depends on the subchannel cross-sectional area and the relative 

flow resistance among the subchannels. Therefore depending on the flow condition, 

and the steam properties, a convective heat transfer can be calculated between the 

steam and the solid components. (fuel pin and/or pressure tube). Where there is a 

spacer grid plate, a complete coolant mixing is enforced by modeling a small pipe 

component at each spacer grid location. 

3. Radiation Heat Transfer Model 

The radiation model calculates the heat exchange due to a thermal radiation among the solid 

component models; between the FES facing each other, between the FES and the pressure 

tube, and also between the pressure tube and the calandria tube. The view factor matrix is 

generated separately by using the utility program MATRIX. An emissivity of 0.8 (based on 

ZrO2) is used for the fuel sheaths and the inside surface of the pressure tube and the inside 

surface of the calandria tube. A detailed view factor matrix between the pressure tube and 

each of the 28 FES is generated first, and then converted to the contracted view factor matrix 

file which is consistent with the solid component models. 
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As there remains a significant discrepancy between the measured pressure tube temperatures 

and those predicted by CATHENA after accounting for all these radiation and convective 

heat transfer of CO2, it was decided as necessary to introduce a multiplying correction factor 

to the CO2, convection heat transfer coefficient necessary to match the measured pressure 

tube temperature, which is conjectured to account for the enhanced conduction effect of the 

garter spring between the pressure tube and the calandria tube. 

IV. CATHENA Fuel Channel Analysis and Results. 

The measured inner ring temperature remains essentially constant along the length of the test 

section as shown in Fig.3 whereas that predicted as shown in Fig.5 shows a slight decrease 

along the axial distance. This indicates that the heat transfer rate is uniform along the length 

of the inner FES elements. Generally because of their closer proximity to the pressure tube, 

the middle ring FES elements are cooler than the inner ring FES elements. Because of this, 

the middle ring FES element temperatures are expected to exhibit similar trends to those of 

the inner ring FES elements, as shown in Figure 6. Outer ring FES element temperatures are 

strongly affected by the presence of the nearby pressure tube. Since the pressure tube 

temperatures tend to be significantly lower than the FES temperatures, the heat removal rate 

from the outer ring of the FES elements is limited by the temperature of the adjacent 

circumferential segment of the pressure tube. The comparison of the outer ring FES 

temperatures shown in Fig.3 and Fig.7 indicates that there is an axial temperature gradient 

for the first half length of the test section with the highest temperature occurring near the 

steam inlet. This indicates that the hot inlet steam is being cooled at the entrance to the test 
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section and that the "cooling length" is roughly half the length of the test section. The 

CATHENA prediction in Fig.7, though the slope change is not that clearly recognizable, 

shows a similar trend. Considering that the accuracy of the temperature measurement is ±2%, 

which corresponds to ±19.5°C for the temperature of 700°C, and the accuracies for the other 

boundary condition parameters, the prediction of the CATHENA model of this work can be 

deemed to be acceptable. 

As for the justification of the adjustment of the convective heat transfer coefficient across the 

CO2 gap to match the measured pressure tube temperature, the authors could not explain 

whatsoever the reason why the pressure tube temperature should be so low in spite of 

accounting for all the radiation heat transfers as well as the convective heat transfers of the 

CO2 gas flow enhanced by the secondary type natural circulation flow between the hot 

pressure tube and the cold calandria tube[13,14]. A few possible explanations for this high 

heat transfer rate across the CO2 gap are; (1)the enhanced conduction by the garter spring, 

(2)the enhanced cooling effect of the CO2 flow caused by the intrusion of the welded spot of 

the T/C embedded into the pressure tube outside[10], (3)Deposition of thermal radiation 

from PT in the high absorptive medium of CO2.gas, thus heating the CO2 gas more than 

CATHENA radiation model can account for, and then cooled by natural convection at the 

cold CT inside wall. 
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V. Conclusion 

Once the pressure tube temperature is predicted correctly by the CATHENA radiation model 

between PT and CT through some adjustment, all the remaining temperatures of the inner 

ring, middle ring and outer ring temperatures can also be predicted quite satisfactorily, say to 

within an accuracy range of ±20 — 25°C, which is comparable to the reported accuracy of 

the temperature measurement is ±2%[9]. In CATHENA the pressure tube temperature can be 

matched to the measured ones by applying a correction multiplier to the CO2 conductivity as 

there is no way to account for enhanced convective heat transfer between PT and CT along 

with using radiation heat transfer model. Once this can be done, the FES temperatures can be 

pretty easily matched, which proves the robustness of the radiation model, at least between 

FES and PT. 

The slightly decreasing trend of the pressure tube temperature prediction along the axial 

direction seems to affect all the other FES temperatures so that they show similar trends 

unlike the flattened trend of the measured temperatures. From a closer observation of the 

results, it was found that this slope is sensitive to the magnitude of the radiation heat transfer 
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rate, and it can be adjusted by varying the emissivity of the PT and CT tubes. 

Through this study, several possible reasons or factors could be identified that may 

significantly affect the accurate prediction of the initial steady state of the experiment, which 

in turn is very important to the accurate temperature prediction of the whole transient. Also 

the relationship between the emissivities of the FES, PT and CT and the axial slope of these 

temperatures could be better understood. 
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