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Abstract 

The primary heat transport system in CANDU reactors is composed of the zirconium alloy in-
core components, the carbon steel out-core piping and the Alloy 800 steam generator tubing. The flow-
accelerated corrosion (FAC) occurring in the carbon steel outlet feeders at 310°C, because of the 
undersaturated in dissolved iron there and the high flow rates, dominates and loads the system with 
magnetite. The FAC is modelled from corrosion mechanisms as the fundamental basis, taking account of 
electrochemical corrosion potential, oxide film precipitation and dissolution, mass transfer and flow-
induced erosion of oxide particles. Good agreement with measurements is obtained. 

Introduction 

In CANDU-6 reactors, the primary heat transport (PHT) circuit is composed of zirconium alloy 
in-core components, the SA 106-B carbon steel feeder piping, and the Alloy 800 steam generator tubing. 
The heavy water (D20), utilized as a coolant in the PHT system, flows in the inlet feeders at 265°C to the 
reactor core to remove heat generated at the reactor core. Subsequently, its temperature is raised to 310°C 
when leaving the reactor core. The heat in the coolant is utilized to produce steam at the steam 
generators; therefore, the temperature of the coolant is lowered to 265°C when leaving the steam 
generators and returning to the inlet feeders. 

The coolant is maintained at a constant pHA, the apparent pH of D20 calibrated with H2O 
solution, of 10.3 to 10.8 by lithium hydroxide addition. In order to minimize dissolved oxygen, 3 to 10 
mL/kg of hydrogen gas is added in the coolant. The velocity of the coolant in the inlet and outlet feeders 
is in the range of 12-17 m/s. 

In 1996 at Point LePreau, the failure of outlet feeder S08 caused it s removal and its subsequent 
examination let to flow-accelerated corrosion being considered the major phenomenon in the outlet 
feeders. The root cause was undersaturation with dissolved iron in the coolant and high fluid velocity. 
The work presented here is an attempt to describe the phenomenon of corrosion in the outlet feeders 
through mathematical modelling based on the fundamental principles of corrosion with an 
electrochemical aspect. 

Corrosion Mechanism 

The corrosion reaction is composed of one oxidation reaction and one reduction reaction on the 
metal surface as shown in equations 1 and 2, respectively: 

Fe —> Fe2+ + 2e- (1) 

2H+ + 2e= <---> H2 (2) 
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−+ +→ eFeFe 22       (1) 

222 HeH ↔+ =+       (2) 
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Ferrous iron from equation 1 is hydrolyzed to ferrous hydroxide as indicated in equation 3, where 
b is 1, 2, or 3. It is known that Fe(OH)2 is the major species under alkaline and high temperature based on 
Tremaine and LeBlanc's work [1980]. 

Fe2+ + bH2O <—> Fe(OH)b-b + bH+ (3) 

A hypothetical thin gap between the metal surface and metal-oxide interface is assumed since the 
corrosion reaction and oxide formation occur separately, depicted in figure 1. 

oxide 
• • • 

•, 41' 6,0 a 4.64- - 3' • 4. 4 • • I 
` t • e • • "• • • 

Ir• • • 

3Fe(OH)2+ 4-> Fe304 +2H20 +2H. +2e-

2H. +2e= <4 H, 

gapE  
metalfIIII,/eee/l/,,,,/,,/ —> Fe' +2e-

-.2H. +2e= 4-> H, 

Figure 1. Hypothetical gap and reactions on the metal surface and the metal-oxide interface 

On the metal-oxide interface, similarly to the metal surface, there are there are coupled oxidation and 
reduction reactions; the magnetite formation and hydrogen evolution indicated in equation 4 and 5. 
Typically, the film is magnetite formed on the carbon steel in high temperature water and under alkaline 
conditions, as in CANDU feeders, 

3Fe(OH)2 + <—> Fe30 4 + 2H20 +2H+ + 2e-

211+ +2e= <—> 112

(4) 

(5) 

The magnetite film is typically duplex which composed of an inner oxide layer and an outer oxide 
layer [Potter and Mann, 1962]. The inner oxide comprises very fine magnetite as it grows in the confined 
space on the metal-oxide interface. From Potter and Mann's work [1962], it was found that the inner 
oxide replaces the volume of the corroded metal. The outer oxide is formed at the oxide-solution 
interface as it precipitates from solution. Therefore, the outer layer comprises coarse oxide compared 
with the inner oxide. 

Since the inner oxide fills the space of corroded metal, the corrosion rate, CR (in mol/cm2s), is 
given by equation 6. 

Fe in the inner oxide = CR x 0.479(1— 0) (6) 

where 4 is porosity. 

The remaining dissolved iron from the oxide formation at the metal-oxide interface will diffuse 
through the oxide film. Diffusion of dissolved iron can be explained by Fick's law: 

Diffusing dissolved iron = CR x (1— 0.479(1— 0)) (7) 

CR x (1— 0.479(1— qs)) = D60  (C. — Cos ) (8) 
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 Since the inner oxide fills the space of corroded metal, the corrosion rate, CR (in mol/cm2s), is 
given by equation 6. 
 

 Fe in the inner oxide = ( )φ−× 1479.0CR     (6) 
 
where  φ is porosity. 
  
 The remaining dissolved iron from the oxide formation at the metal-oxide interface will diffuse 
through the oxide film.  Diffusion of dissolved iron can be explained by Fick’s law: 
 

 Diffusing dissolved iron = ( )( )φ−−× 1479.01CR     (7) 
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where DFe is diffusion coefficient of dissolved iron in cm2/s, 8 is the oxide thickness in cm, ti is 
tortuosity, C,00 and Cos are concentration of dissolved iron in mol/cm3 at the metal-oxide interface and at 
the oxide —solution interface, respectively. 

At the oxide-solution interface, the oxide dissolves under iron-undersaturated conditions but 
precipitates under iron-saturated conditions, as found in the outlet and inlet feeders, respectively. The 
expression of corrosion rate, equation 9, is obtained from the combination of dissolution/precipitation of 
oxide, diffusion of dissolved iron, and mass transfer of dissolved iron to the bulk solution. 

(kd A Csatf — kg Cb

Cm°
CR= 

(kg + kdA) 
(9) ( 

(1— 0.479(1 — ir 
gor00 

1 +
j) Fe0i DFe  kg + kd A 

where Csat is solubility magnetite, Cb is concentration of dissolved iron in the bulk solution, kg is mass 
transfer coefficient (cm/s), kd is magnetite dissolution rate constant (cm/s), A is area factor (1.73), f is 
particle size factor (1.1), Si is the inner oxide thickness, 80 is the outer oxide thickness (cm), 4i is inner 
oxide porosity, and 4)0 is outer oxide porosity. 

Flow-Accelerated Corrosion 

Flow-accelerated corrosion occurs in a high fluid velocity system, which causes high shear stress, 
where there are undersaturated conditions. The oxide particle at the oxide-solution interface can be 
sheared off in high velocity fluid. It takes only a very short time to be sheared off. However, the required 
time for shearing the particle off not only depends on velocity (u), but also depends on particle size (d), 
porosity and dissolution. For the iron-undersaturated condition as in the outlet feeders, required time (t5) 
for shearing off is expressed in equation 10. 

sd 
t = 
s u 20kd (Csar x f — Cos ) 

(10) 

Where s is a shearing-off constant 

For a saturated system as in the inlet feeders, there is no dissolution mechanism to weaken the 
oxide film. Therefore, the required time of shearing off does not depend on the magnetite dissolution as 
indicated in equation 11. 

i s = sd (11) 
u20 

To estimate the oxide film thickness (8 in gm), equation 12 is applied if there is no outer oxide 
film and equations 13 and 14 are applied when there is an outer oxide. 

g =8, = + 7.1x 10-4 CR. At — kdA(Csatf —Cos )x10-4 • At — d (12) 
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where   DFe is diffusion coefficient of dissolved iron in cm2/s, δ is the oxide thickness in cm, τ is 
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where Csat is solubility magnetite, Cb is concentration of dissolved iron in the bulk solution, kg is mass 
transfer coefficient (cm/s), kd is magnetite dissolution rate constant (cm/s), A is area factor (1.73), f is 
particle size factor (1.1), δi is the inner oxide thickness, δo is the outer oxide thickness (cm), φi is inner 
oxide porosity, and φo is outer oxide porosity. 
  
 
Flow-Accelerated Corrosion 
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Where s is a shearing-off constant 
 
 For a saturated system as in the inlet feeders, there is no dissolution mechanism to weaken the 
oxide film.  Therefore, the required time of shearing off does not depend on the magnetite dissolution as 
indicated in equation 11. 
 

φ2u
sdts =       (11) 

 
 To estimate the oxide film thickness (δ in μm), equation 12 is applied if there is no outer oxide 
film and equations 13 and 14 are applied when there is an outer oxide. 
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If there is outer oxide, 

St = + 7.1x 10-4 CR• At (13) 

S° = 8 0,0 kdA(Csorf —Cos )x10-4 • At— d (14) 

S = St + (17) 

where Si is inner oxide thickness, Si3O is initial inner oxide thickness, 80 is outer oxide thickness, 80,0 is 
initial outer oxide thickness, and At is time increment (second). 

Electrochemical Consideration 

In general, reactions involving electron transfer produce electric currents. The rate of reaction, 
corrosion rate for instance, is related to the current by Faraday's law as indicated in equation 15. 

i o,,, = CR • nF (15) 

where icon. is corrosion current, n is number of electron, and F is Faraday's constant (96487 coulomb/mol) 

The current can be estimated from the Butler-Volmer equation. 

jo [ r f3nF(E — E oo 
RT

)) [— (1— 13)rzF(E — E oo )T 
exp RT exp (16) 

where io is exchange current density (Amp/cm2), R is transfer coefficient, E is local potential (volt), Eeq
is equilibrium potential (volt), R is Gas constant (8.134 J/mol K) and T is absolute temperature 

The equilibrium constant can be obtained from the Nernst equation as indicated in equation 17 
and the exchange current density can be estimated from equation 19. 

E = E° +
RT

ln 
a 

(17) oo 
nF alto

Ox + ne- = Re 

Based on equation 18, 

io = k f C ox exp(— (1— 13)nFE oo / RT) = kb C Re exp(f3nFE oo / RT) 

(18) 

(19) 

where E° is standard potential, a 0, is activity of species in oxidized side, alto is activity of species in 

reduced side, C is concentration in mol/cm3, and kf and kb are the reaction rate constants of forward and 
backward reaction, respectively. 

From equations 16, 17, and 19, the potential at the metal-oxide interface and at the oxide-solution 
interface are obtained. Both potentials affect the concentration of hydrogen ion across the oxide film via 
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where   io is exchange current  density (Amp/cm2), β is transfer coefficient, E is local potential (volt), Eeq 
is equilibrium potential (volt), R is Gas constant (8.134 J/mol K) and T is absolute temperature 
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Based on equation 18,  
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where Eo is standard potential,  is activity of species in oxidized side, is activity of species in 
reduced side, C is concentration in mol/cm

Oxa Rea
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 From equations 16, 17, and 19, the potential at the metal-oxide interface and at the oxide-solution 
interface are obtained.  Both potentials affect the concentration of hydrogen ion across the oxide film via 
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the Nernst-Planck equation [Citieler, 1984]. Moreover, the 1=1 potential has the effect on the 
dissolution rate constant as indicated in equation 21. 

[He La =[Hel. v.„ F — E.) 

RT 
(20) 

k r = k r exp(— (1.—OFE IRT) (21) 

The equilibrium concentration of dissolved iron, or solubility, at the oxide-solution interface., 
which affects dissolution/precipitation en the oxide surface, is adjusted by the Nernst equation (equation 
17) and the potential at the oxide-solution interface. 

Results and Discussion 

With the combination of above the mechanisms and the effects of electrochemical potential, the 
predicted corrosion rate and oxide film thickness after exposed in the system 10,000 hours are consistent 
with the plant data. The corrosion rate of outlet feeder named S08, at pH 10.2 and fluid velocity of 16 
m/s, is 1101.4m/a with an oxide film 0.81.4m thick The estimated potential is -970 mV and -700 mV at the 
metal-oxide interface and at the oxide-solution interface., respectively. The corrosion potential or 
potential at the metal-oxide interface should be lower than -900 mV, based on a Pourbaix diagram of the 
iron system at 310°C constructed from thermodynamic data [Beverskog and Puigdomenech, 1996] and 
expressions [Shock and Helgeson, 1988; Shock, Helgeson, and Sverjensky, 1989; Archer and Wang, 
1990] to estimate some thermodynamic parameters at elevated temperature. 
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Figure 2. Pourbaix diagram of iron-water system at 310°C, 10'8 molar 

The potential affects the concentration of hydrogen ion at the metal surface and it was found to be 
1.20c mol/kg and the hydrogen ion concentration at the oxide-solution interface is 1.84x10-3 mol/kg. 
The concentrations of dissolved iron at the metal-oxide interface and at the oxide-solution interface are 
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the Nernst-Planck equation [Cussler, 1984].  Moreover, the local potential has the effect on the 
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1.37x10-7 mol/kg and 3.64x 10-8 mol/kg, respectively. However, it was found that the computed 
electrochemical solubility of magnetite is very high, 1.4x 10-6 mol/kg after 10,000 exposure hours. This is 
almost 100 times the initial solubility and is worth further investigation. 

In this work, the effect of pH was also investigated. The results are shown in figures 3 and 4. 
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Figure 4. Oxide thickness at different pH 

From figures 3 and 4, it was found that corrosion rate increased with pH in the pH range of 9-11. 
The oxide thickness decreases when pH increases. The thicker oxide, the less the corrosion rate since 
magnetite is the protective oxide and the thick film causes a barrier to mass transport. 

Conclusion 

The predicted corrosion rate and thickness of the oxide film are in a good agreement with 
measurements on a removed feeder. The other parameter values such as potentials, concentrations of 
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hydrogen ion, are concentrations of dissolved iron, etc., are reasonable. However, more investigations on 
the equilibrium concentration of dissolved iron or magnetite are interesting for future work. 

It can be concluded that in the range of pH from 9 to 11, the higher the pH, the greater the 
corrosion rate and the thinner the oxide film. 
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