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Abstract. A series of TOF neutron diffraction in-situ uniaxial compression tests have been carried 
out on textured Zr-2.5Nb. Test samples were prepared from the hot rolled plate with a moderate 
texture where the basal plane normal is mainly distributed between the transverse (TD) and plate 
normal (ND) directions. In a set of tests, load was applied along each of the three principle 
directions, and the evolution of the lattice strain was also measured in these directions. The 
intergranular strain was monitored by single peak fits while the interphase strain was obtained by 
Rietveld refinements. Results show that the load sharing changes between the a- and 0—phases at 
various macroscopic applied loads. The a-phase yields first and then takes a smaller load increment 
for increasing macroscopic stress. The 0—phase yields at a higher applied stress and the load is then 
transferred back to the a-phase. Load partitioning also occurs between differently oriented grain 
families in each phase. This load partitioning produces residual interphase and intergranular stresses 
in Zr-2.5Nb. The average residual phase stress is low in the a-phase, however, the intergranular 
stresses can be significant. 

Introduction 

Used in pressure tubes in the CANDU power generation system [1], the mechanical properties of 
Zr-2.5Nb have attracted researchers for many years [2-6]. Models have been established to predict 
the material's in-situ behavior [2-4]. However, most of this work has focused on the irradiation 
growth or creep behavior [2-4]. In particular the contribution of various slip systems or relative 
contributions of the two phases to the deformation of Zr-2.5Nb has not been thoroughly studied. 
Indeed, most of the studies to date have ignored the cubic 0—phase because of its relatively small 
volume fraction and have treated the material as a single phase polycrystal [2,3,5] with the aim of 
ignoring any related error by fitting to experimental data. However, recent studies [5,6] have 
demonstrated that the overall properties of Zr-2.5Nb are highly dependent on the properties and the 
distribution (both geometric and texture) of the 0—phase. Neglecting the 0—phase is likely to 
introduce significant errors in modeling the deformation response of the overall material [6]. Our 
project is to study the influence of the 0—phase on the deformation mechanisms of this material. 

The internal stresses generated during deformation in multiphase materials can be considered to 
consist of interphase stresses, which are due to the variation in mechanical properties between 
phases, and intergranular stresses, which are caused by the differing mechanical response of 
differently orientated grains [7]. In recent years, neutron diffraction has been used to measure the 
evolution of both types of stresses because of its ability to probe the strain response of bulk material 
[8-10]. At most reactor neutron sources, a monochromatic neutron beam is directed onto the sample 
and the diffracted neutrons are recorded at scattering angles which correspond to groups of grains in 
the polycrystal which have particular orientations, according to Bragg's law. The average phase 
applied stress-internal strain behavior is taken to be that of grain orientationss in the phase whose 
stress and lattice strain curves remain more or less linear even when plasticity is extensive [8]. In 
the time of flight (TOF) technique, a pulsed white beam is used. The diffraction from different 
orientations of grains is determined by the time for the neutron to reach the detector [11]. While the 
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Abstract. A series of TOF neutron diffraction in-situ uniaxial compression tests have been carried 
out on textured Zr-2.5Nb. Test samples were prepared from the hot rolled plate with a moderate 
texture where the basal plane normal is mainly distributed between the transverse (TD) and plate 
normal (ND) directions. In a set of tests, load was applied along each of the three principle 
directions, and the evolution of the lattice strain was also measured in these directions. The 
intergranular strain was monitored by single peak fits while the interphase strain was obtained by 
Rietveld refinements. Results show that the load sharing changes between the α-  and β−phases at 
various macroscopic applied loads. The α-phase yields first and then takes a smaller load increment 
for increasing macroscopic stress. The β−phase yields at a higher applied stress and the load is then 
transferred back to the α-phase. Load partitioning also occurs between differently oriented grain 
families in each phase. This load partitioning produces residual interphase and intergranular stresses 
in Zr-2.5Nb. The average residual phase stress is low in the α-phase, however, the intergranular 
stresses can be significant.  
 

Introduction 

Used in pressure tubes in the CANDU power generation system [1], the mechanical properties of 
Zr-2.5Nb have attracted researchers for many years [2-6]. Models have been established to predict 
the material’s in-situ behavior [2-4]. However, most of this work has focused on the irradiation 
growth or creep behavior [2-4]. In particular the contribution of various slip systems or relative 
contributions of the two phases to the deformation of Zr-2.5Nb has not been thoroughly studied. 
Indeed, most of the studies to date have ignored the cubic β−phase because of its relatively small 
volume fraction and have treated the material as a single phase polycrystal [2,3,5] with the aim of 
ignoring any related error by fitting to experimental data. However, recent studies [5,6] have 
demonstrated that the overall properties of Zr-2.5Nb are highly dependent on the properties and the 
distribution (both geometric and texture) of the β−phase. Neglecting the β−phase is likely to 
introduce significant errors in modeling the deformation response of the overall material [6]. Our 
project is to study the influence of the β−phase on the deformation mechanisms of this material. 

The internal stresses generated during deformation in multiphase materials can be considered to 
consist of interphase stresses, which are due to the variation in mechanical properties between 
phases, and intergranular stresses, which are caused by the differing mechanical response of 
differently orientated grains [7]. In recent years, neutron diffraction has been used to measure the 
evolution of both types of stresses because of its ability to probe the strain response of bulk material 
[8-10]. At most reactor neutron sources, a monochromatic neutron beam is directed onto the sample 
and the diffracted neutrons are recorded at scattering angles which correspond to groups of grains in 
the polycrystal which have particular orientations, according to Bragg’s law. The average phase 
applied stress-internal strain behavior is taken to be that of grain orientationss in the phase whose 
stress and lattice strain curves remain more or less linear even when plasticity is extensive [8]. In 
the time of flight (TOF) technique, a pulsed white beam is used. The diffraction from different 
orientations of grains is determined by the time for the neutron to reach the detector [11]. While the 
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lattice strains of individual grain families can be monitored from the shift of their individual peak 
positions, it is common practice to define the average phase strains by fitting the whole spectrum 
simultaneously using a multiphase Rietveld refinement [12-13]. 

As part of our larger project, this paper describes preliminary results of experiments where the 
evolution of interphase and intergranular strains developed in Zr-2.5Nb during compression was 
studied by TOF neutron diffraction. 

Materials and experimental method 

The compositions of the experimental material was 2.5wt% Nb, 900-1600ppm 0, 1500ppm Fe, 
400ppm C and balance Zr. Ingots were forged to 4 inches thick at 1065°C and then hot rolled to 2 
inches thick at about 700°C and air cooled to room temperature. Samples of size 08mmx16mm 
were cut out from the rolled plate with the cylinder axial parallel to the rolling (RD), transverse 
(TD) or plate normal direction (ND). While all three principal strains were determined for all three 
loading directions, due to lack of space only some of the data is shown here. The microstructure is 
shown in Figure 1. It can be seen that the predominant hcp a-grains have a plate-like shape with 
length and width about 30µm and thickness around 3µm, giving an aspect ratio about 10 to 1. The 
bcc a—phase, with volume fraction of about 12%, is distributed between the a grains. 

.* a) y 'T(0' b) 

25 

• 

Figure 1 Microstructure of Zr-2.5Nb samples looking from the transverse direction a) and rolling 
direction b). 

Figure 2 shows that the material has a weaker texture than that seen in typical extruded CANDU 
pressure tubes [5]. The a—phase has its basal plane normal mostly orientated towards TD and ND, 
while the a—phase has its (100) plane normal weakly distributed along ND. The resolved fractions 
of basal plane normal in rolling, transverse and normal direction (fR, fT and fN) are 0.27, 0.39 and 
0.34 [14]. 

In-situ neutron diffraction lattice strain measurements were carried out during uniaxial 
compression on ENGIN-X at the ISIS pulsed neutron facility, Rutherford Appleton Laboratory, 
UK. The loading axis is horizontal and at 45° to the incident beam. Two detector banks are set up 
horizontally and at angles ±90° to the incident beam, allowing simultaneous measurement of lattice 
strains in directions both parallel and perpendicular to the applied load [15]. More details can be 
found in [16]. A series of increasing compressive loads were applied along the axial direction to 
produce a final true strain of —10%. The sample strain was kept constant during the time taken for 
the neutron measurement. Unload/reload events were performed in the plastic region to measure the 
evolution of residual strain as a function of plastic strain. An average counting time of about 20 
minutes was used for each applied strain. The macroscopic strain was monitored on the samples 
using a dynamic extensometer clip gauge. The incident beam was 8 mm high and 4 mm wide, the 
radial collimators in use provided a scattered aperture of 4 mm. 
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Figure 1 Microstructure of Zr-2.5Nb samples looking from the transverse direction a) and rolling 
direction b). 
 

Figure 2 shows that the material has a weaker texture than that seen in typical extruded CANDU 
pressure tubes [5]. The α−phase has its basal plane normal mostly orientated towards TD and ND, 
while the β−phase has its (100) plane normal weakly distributed along ND. The resolved fractions 
of basal plane normal in rolling, transverse and normal direction (fR, fT and fN) are 0.27, 0.39 and 
0.34 [14]. 

In-situ neutron diffraction lattice strain measurements were carried out during uniaxial 
compression on ENGIN-X at the ISIS pulsed neutron facility, Rutherford Appleton Laboratory, 
UK. The loading axis is horizontal and at 450 to the incident beam. Two detector banks are set up 
horizontally and at angles ±900 to the incident beam, allowing simultaneous measurement of lattice 
strains in directions both parallel and perpendicular to the applied load [15]. More details can be 
found in [16]. A series of increasing compressive loads were applied along the axial direction to 
produce a final true strain of ~10%. The sample strain was kept constant during the time taken for 
the neutron measurement. Unload/reload events were performed in the plastic region to measure the 
evolution of residual strain as a function of plastic strain. An average counting time of about 20 
minutes was used for each applied strain. The macroscopic strain was monitored on the samples 
using a dynamic extensometer clip gauge. The incident beam was 8 mm high and 4 mm wide, the 
radial collimators in use provided a scattered aperture of 4 mm. 

27th Annual CNS Conference &
30th CNS/CNA Student Conference
June 11-14, 2006
Toronto, ON, Canada

LOAD PARTITIONING IN ZR-2.5%NB DURING COMPRESSION
S. Cai, M.R. Daymond, et al.

Page 2 of 7



27th Annual CNS Conference & 
30th CNS/CNA Student Conference 
June 11-14, 2006 
Toronto, ON, Canada 

LOAD PARTITIONING IN ZR-2.5%NB DURING COMPRESSION 
S. Cai, M.R. Daymond, et al. 

25 

55/ 

---- '4 .25 

25 

5

Figure 2 Pole figures of a) a—phase basal plane and b) (3—phase (100) plane. ND is in the center, 
TD is vertical and RD is horizontal. 

Results and Discussions 

Macroscopic response. Figure 3 shows the 
macroscopic stress strain behavior obtained 
in the three testing directions. The ND and 
TD samples have a similar mechanical 
response to each other, with Young's 
modulus —100GPa and yield stresses 00.2 
4430MPa and —420MPa respectively. The 
Young's modulus of the RD sample is 
—86GPa and ao.2 —350MPa. The anisotropic 
properties of hcp polycrystalline materials 
are mainly determined by the orientation of 
the c-axis. It is thus not surprising that the 
TD and ND samples, which have larger 
resolved fraction of basal plane, have a 
higher yield strength than RD sample. A 
similar relationship between strength and 
texture was found in [5]. The work 
hardening rate is similar for all the three test 
directions. 
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Figure 3 The macroscopic response of samples 
testing from three directions. The stress and strain 
are reversed to positive for convenience. 

Evolution of interphase strain. Figure 4 shows examples of neutron diffraction spectra prior to 
deformation acquired from two directions. The stronger a—basal texture in ND direction is shown 
in Fig. 4a) corresponding a strong [10-10] distribution in RD direction (Fig. 4b). A weak (3-(110) 
texture can be seen in the ND direction. Fig 4a) also shows the result of a conventional two-phase 
Rietveld refinement [12,13], while Fig. 4b) shows the result of independent peak fitting [12,13]. 
Despite their different principles, it can be seen that both methods fit the experimental data very 
well at this zero load. While as the load increase, the error between Rietveld fit and experimental 
data will increase due to the plasticity anisotropy of the a—phase. 

The elastic phase strains measured parallel and perpendicularto the applied stress, as determined 
by a conventional two-phase Rietveld refinement [12,13], are plotted as a function of applied stress 
in Fig. 5. The average strain in the a—phase is calculated as (2Ea+Ec)/3; this has been shown to be a 
good approximation to the mean phase strain in the case of near random textures [13]. The 
measured yield stress determined is also shown in Fig. 5 by dashed line. Since the material has a 
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macroscopic stress strain behavior obtained 
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Evolution of interphase strain. Figure 4 shows examples of neutron diffraction spectra prior to 
deformation acquired from two directions.  The stronger α−basal texture in ND direction is shown 
in Fig. 4a) corresponding a strong [10-10] distribution in RD direction (Fig. 4b). A weak β−(110) 
texture can be seen in the ND direction.  Fig 4a) also shows the result of a conventional two-phase 
Rietveld refinement [12,13], while Fig. 4b) shows the result of independent peak fitting [12,13]. 
Despite their different principles, it can be seen that both methods fit the experimental data very 
well at this zero load. While as the load increase, the error between Rietveld fit and experimental 
data will increase due to the plasticity anisotropy of the α−phase.  

The elastic phase strains measured parallel and perpendicularto the applied stress, as determined 
by a conventional two-phase Rietveld refinement [12,13], are plotted as a function of applied stress 
in Fig. 5. The average strain in the α−phase is calculated as (2εa+εc)/3; this has been shown to be a 
good approximation to the mean phase strain in the case of near random textures [13]. The 
measured yield stress determined is also shown in Fig. 5 by dashed line. Since the material has a  
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ponse in the RD sample at a load of about 
4430MPa. The parallel direction 0 strain shifts 
back, indicating yield of the (3 phase, the load 
shared by the a-phase then increases, producing a 
slight increase in the lattice strain. A similar 
observation can be made at —500MPa in the TD 
and ND samples. 

A behavior corresponding to the Poisson 
response is observed in the direction 
perpendicular to the applied load. The a-phase 
shows deviation from linearity at the same applied 
stresses as seen in the parallel direction. Again at 
higher applied stresses, the yield of the (3-phase 
causes a second inflection. 

Comparison between Fig. 5a) and 5b) shows 
that when the applied load is in the RD, the 
responses in TD and ND perpendicular to the 
applied load are very similar, which again is due 
to their similar basal plane distributions. Thus 
only the results of one perpendicular direction (the 
TD) are given below. 
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ponse in the RD sample at a load of about 
~430MPa. The parallel direction β strain shifts 
back, indicating yield of the β phase, the load 
shared by the α-phase then increases, producing a 
slight increase in the lattice strain. A similar 
observation can be made at ~500MPa in the TD 
and ND samples.   

A behavior corresponding to the Poisson 
response is observed in the direction 
perpendicular to the applied load. The α-phase 
shows deviation from linearity at the same applied 
stresses as seen in the parallel direction. Again at 
higher applied stresses, the yield of the β-phase 
causes a second inflection.  

Comparison between Fig. 5a) and 5b) shows 
that when the applied load is in the RD, the  
responses in TD and ND perpendicular to the 
applied load are very similar, which again is due 
to their similar basal plane distributions. Thus 
only the results of one perpendicular direction (the 
TD) are given below. 
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and more load and yield once the basal 
grains in the a phase yield. Due to their 
lower stiffness and small volume fraction, 
they develop a larger lattice strain of 

16000 microstrain before yield. The kink 
back of the {0002} a grains at yield is 
observed by others and was attributed to 
the tensile twinning [18], while the big 
jump of {110} grains close to yield might 
be caused by the fitting. As shown in Fig. 
4b), at a high strain level, the {110} peak is 
hided totally inside the {10-11} peak, 
making it difficult to obtain an accurate 
value. 

Figure 7c shows the evolution of 
intergranular residual strain in a- and 
0-phases during deformation. Despite the 
small average residual phase strain in the 
a-phase (see Fig. 6), large intergranular 
strains were obtained after 2% macroscopic 
strain. The grain families, which have a 
large portion of c-axis component such as 
{0002} and {10-13}, developed a large 
compressive residual strain (3000x10-6), 
while the others such as {10-10} and {10-
11} experience a tensile residual strain 
(1000 x10-6) . Even larger intergranular 
compression strains were observed in the 
0-phase after unload. The softer {100} 
grains have residual strains -8000-
9000x10-6, while grain orientations with 
{110} and {211} parallel to the loading 
direction have similar values of close to 
5000-6000x10-6. Assuming an average 
elastic stiffness of a-phase of -100GPa 
and 0-phase as 80GPa, the residual 
stresses can be roughly estimated as -100 
to -300 MPa in a-phase and 400-640MPa 
in the 0-phase, which implies that the 
Bauschinger effect is expected to be 
evidenced in these highly stressed grains if 
subsequent tensile test were carried out. 

Summary 

The evolution of interphase and 
intergranular stresses in Zr-2.5Nb was 
investigated during compression by in-situ 
TOF neutron diffraction. Load partitioning 
occurs between grains of the a-phase and 
also between a- and 0-phases. The 
prismatic grains yield at lower applied 
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intergranular residual strain in α− and 
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compressive residual strain (~3000×10-6), 
while the others such as {10-10} and {10-
11} experience a tensile residual strain
(~1000×10-6). Even larger intergranular 
compression strains were observed in the 
β-phase after unload. The softer {100} 
grains have residual strains ~8000-
9000×10-6, while grain orientations with
{110} and {211} parallel to the loading 
direction have similar values of close to 
5000-6000×10-6. Assuming an average 
elastic stiffness of α−phase of ~100GPa 
and β−phase as 80GPa, the residual 
stresses can be roughly estimated as ~100 
to -300 MPa in α−phase and 400-640MPa 
in the β−phase, which implies that the 
Bauschinger effect is expected to be 
evidenced in these highly stressed grains if 
subsequent tensile test were carried out.  
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stresses. With increasing macroscopic strain, more and more load increment was taken by the basal 
grains and the 0—phase. The basal grains yield at higher applied stresses, transfer load to the 
0—phase and cause the yield of 0—phase. The load is then transferred back to the a—phase causing a 
second reflection in the stress strain curve. It is the load partitioning that produces the large residual 
interphase and intergranular stresses in Zr-2.5Nb. The average residual stress is low in the a—phase, 
however, the intergranular stresses are still very high. 
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