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ABSTRACT 

As new technologies are introduced into the nuclear industry, there is increasing interest 
in replacing existing hardwired monitoring systems in nuclear power plant control rooms 
with innovative human-machine interface (HMI) graphical displays. However, 
investigations into past accidents at nuclear generating facilities have identified human 
performance limitations arising from HMI design as one of the most important factors in 
plant safety. Ecological Interface Design (ED) is a design methodology for HMI 
graphical displays that attempts to support operator performance for both anticipated and 
unanticipated events, which are often precursors to serious accidents. 

The University of Waterloo and the University of Toronto are collaborating with the 
Norwegian Institute for Energy Technology (IFE) to examine the application of EID in 
the Swedish Forsmark 3 boiling water reactor nuclear power plant. This paper focuses on 
the design of advanced graphical displays for the turbine-generator systems. 
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INTRODUCTION 

Recent field studies of operator monitoring strategies in nuclear power plant control 
rooms have revealed that performance is limited by the need to identify relevant 
information against a noisy background [1]. Much of the information related to the plant 
process is presented to the operators via a human-machine interface (HMI). In many 
existing nuclear power plants, operators rely primarily on HMIs that consist of hardwired 
indicators and alarms to determine the state of the plant. Secondary sources of 
information include status logs, maintenance records, and field personnel. Given the large 
amount of information that needs to be processed by the operators, human information 
processing limitations become apparent: attention, perception, problem solving, and 
decision making are some of the abilities affected. It is widely acknowledged that such 
abilities can be enhanced or restricted by the design of the HMI with which the operators 
interact. 

Errors resulting from design deficiencies in the HMI at the Three Mile Island nuclear 
facility contributed significantly to the accident [2]. It was found that a major pressure 
relief valve indicator failed to reflect the actual position of the valve. As well, no 
indicator existed to show the exact water level in the reactor core. Various design 
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guidelines have been established as a result of the Three Mile Island incident. With the 
introduction of modern display technologies (e.g. LCD monitors, large-screen projectors) 
in existing nuclear power plant control rooms, there is growing interest in the design of 
HMI graphical displays. It is hoped that the graphical displays will be able to convey 
relevant information needed by operators in a more efficient and reliable manner than 
previously with hardwired monitoring systems. In addition to design guidelines, a 
number of design methodologies for HMIs have been developed over the decade in order 
to overcome a variety of known human performance limitations and improve safety. 
Ecological Interface Design (EID) is one such design methodology that aims to support 
operator information processing in safety critical situations. 

The OECD Halden Reactor Project hosted by the Norwegian Institute for Energy 
Technology (IFE) seeks to design and evaluate innovative HMI graphical displays for 
next-generation nuclear power plant controls rooms. The University of Waterloo and the 
University of Toronto are collaborating with IFE to determine the practical benefits of 
ED in the evolving nuclear industry. To date, we have designed and implemented ED 
graphical displays for the secondary systems (i.e. turbine-generator, condenser, and 
feedwater systems) in the Swedish Forsmark 3 boiling water reactor nuclear power plant 
simulator. The displays are currently undergoing a high-fidelity evaluation involving 
licensed nuclear power plant operators. This paper will discuss the design of the ED 
graphical displays for the turbine-generator systems. 

ECOLOGICAL INTERFACE DESIGN 

Ecological Interface Design (EID) is a relatively new interface design approach for 
complex socio-technical systems [3]. It has been applied to a variety of domains 
including process control, military, and medicine. EID differs from other design 
methodologies (e.g. User-Centered Design, task analysis) in that the constraints and 
complex relationships of the work environment are made perceptually evident to the 
users against a noisy background. By easing the acquisition of information, more 
cognitive resources such as attention can be allocated to more important processes in 
safety critical situations like problem solving and decision making. 

Current empirical evidence suggests that ED is an effective approach for designing HMI 
graphical displays that support both anticipated and unanticipated events (i.e. untrained 
situations) [4]. Although EID graphical displays have previously been successfully 
implemented in simulator [5] and commercial [6] settings, most EID implementations 
have not been evaluated in representative industrial settings with trained operators [7]. 
The current study hopes to evaluate EID graphical displays for secondary systems with a 
state-of-the art simulated control room environment (HAMMLAB) and licensed 
Forsmark 3 operators. 

The ED design process consists of two key stages: the Work Domain Analysis (WDA) 
and the Skills, Rules, and Knowledge (SRK) framework. In the WDA, models are 
developed to illustrate the physical and functional aspects of the system. Information 
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relating to the system constraints and complex relationships are subsequently extracted 
from the WDA models. The extracted information is converted or mapped (i.e. designed) 
into graphical forms such that the constraints and complex relationships are visually 
salient to the operators. Much of the design is accomplished following the SRK 
framework, which describes the different kinds of behaviour or psychological processes 
present in operator information processing. For example, skill-based behaviour can be 
supported by designing a graphic that shows the difference between two values (see 
Figure 4) rather than requiring the operator to perform the calculation. The visual pattern 
is easy to see and requires minimal cognitive resources. Many advanced visualisation 
techniques have been established to achieve the jump from analysis to design [8]. 

WORK DOMAIN ANALYSIS 

System Boundary 

Given the complexity of the nuclear power plant in question, it was first necessary to 
define the physical boundaries of the secondary systems: turbine-generator, condenser, 
and feedwater systems. Recall that the scope of the study is limited to the secondary, non-
reactor, side of the plant. The turbine-generator system consists of a number of physical 
components: one high-pressure turbine, three low-pressure turbines, a moisture separator 
reheater, a generator, and various control valves (see Figure 1). Because the operators are 
largely concerned with monitoring and controlling the plant process, specific components 
and subsystems were excluded from the boundary: control systems (e.g. governor), 
actuators (e.g. electro-hydraulic valve actuators), and sensors (e.g. pressure). 
Troubleshooting of the excluded components is typically carried out by maintenance and 
field personnel. Once the above items were established, the physical and functional 
attributes of the system were modelled following two WDA processes: part-whole 
decomposition and abstraction hierarchy, respectively. 
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Figure 1: Turbine-Generator, Condenser, and Feedwater System Boundaries 
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Part-Whole Decomposition 

A part-whole decomposition analysis yields a hierarchical model of the system at three 
different levels of detail: (1) system, (2) subsystem, and (3) component [8]. The model 
allows designers to determine how information can be grouped in the graphical displays. 
For example, high-level information found at the system level of detail (e.g. electrical 
output) is typically shown on overview or status displays. On the other hand, lower-level 
information found at the component level of detail (e.g. valve position) should be shown 
on detailed displays. The model also provides designers with a better understanding of 
the system from a physical stand-point. A variety of resources were used at this stage of 
the analysis including plant specifications, piping and instrumentation diagrams (P&ID), 
existing mimic displays, and process experts. 

The turbine-generator system is represented by a black box at the highest-level of the 
part-whole model. Process materials flowing into and out of the system are illustrated. 
Essentially, the reactor transfers steam into the turbine-generator system for electrical 
power generation. Electricity is transferred out of the black box to various switchyards 
for consumer distribution. Exhaust steam and drain water also flow out of the turbine-
generator system to other secondary systems including the condenser and feedwater 
systems. After identifying the system inputs and outputs, the black box was opened up to 
reveal numerous supporting subsystems: steam reheat system, seal and leakage steam 
system, lubrication and jacking oil system, seal oil system, and generator cooling system. 
The flow of process materials is again emphasised at the subsystem detail level. For 
instance, exhaust steam from the high-pressure turbine enters the steam reheat system 
before reaching the low-pressure turbines as superheated steam. The lowest level of detail 
was modelled by breaking down the subsystems into individual physical components; the 
resulting model is quite similar to a P&ID. The steam reheat system is comprised of a 
moisture separator, shell and tube heat exchangers, tanks and numerous valves (e.g. 
control, stop, check valves). 

Abstraction Hierarchy 

While a part-whole model provides details concerning the physical attributes of the 
system, an abstraction hierarchy (AH) focuses on the functional attributes. The AH 
analysis examines the means and ends (i.e. how and why, respectively) of the system by 
modelling it at five distinct levels of abstraction: (1) Functional Purpose, (2) Abstract 
Function, (3) Generalised Function, (4) Physical Function, and (5) Physical Form [3]. 
Elements at lower levels of abstraction provide the means to which elements at higher 
levels are achieved. The model is used at the design phase to determine what information 
to display along with the associated constraints and relationships. In addition, the 
information is organised based on the different levels of abstraction to promote 
knowledge-based behaviour as described in the SRK framework. The AH is one of the 
key defining characteristics of the ED methodology in contrast to other design 
approaches. Resources used at this stage of analysis include operator training manuals, 
textbooks, prior research, and process experts. 
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Figure 2: Abstraction Hierarchy at Part-Whole System Level [9] 

The system was examined at each of the part-whole levels of detail yielding three 
separate AH models. At the part-whole system level of detail, the AH provides an 
overview of the black box (see Figure 2). Elements at the Function Purpose level describe 
the goals and purposes of the turbine-generator system. In a complex system, there are 
typically multiple goals that constrain one another due to practical limitations and 
tradeoffs. In the turbine-generator system, the goal of generating electricity is constrained 
by other safety targets such as maintaining safe reactor pressure. At the Abstract Function 
level, the laws and principles governing the goals are described. In this case, the first and 
second laws of thermodyrupics along with the Faraday-Lenz law underlie the goal of 
electricity generation. Processes located at the Generalised Function level describe how 
the aforementioned goals and principles are achieved. The process of steam throttling and 
expansion is associated with the first and second laws of thermodrilipics Likewise, the 
process of electromagnetic induction is associated with the Faraday-Lenz law. Physical 
components or equipment related to the above processes, as previously identified in the 
part-whole decomposition analysis (e.g. turbines, generator), are shown at the Physical 
Function level. The physical properties for each piece of equipment (e.g. size, location, 
capacity) are then specified at the Physical Form level; note that this level was omitted 
from the current model for practical purposes. 

Similar models were constructed from the subsystem and component part-whole levels. 
As expected, the results of the AH analyses at these two levels were of greater 
complexity, spanning several pages. One of the major challenges encountered due to the 
modularisation of the secondary systems was consistency between each subsystem. In 
effect, specific outputs of the turbine-generator system should be consistent with the 
inputs to the condenser or feedwater systems. For example, the energy sink representing 
steam discharge in the turbine-generator system should be shown as an energy source in 
the condenser system. The interactions between the systems were emphasised to avoid 
"losing" information during the design phase of the project The AH models at the system 
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part-whole level for the turbine-generator, condenser, and feedwater systems were in the 
end combined to aid the design of a large-screen overview graphical display. 

GRAPHICAL DISPLAY DESIGN 

Information Analysis 

The information analysis stage attempts to bridge the gap between analysis (i.e. models) 
and design (i.e. graphical displays). Unlike other design approaches, EID relies primarily 
on the AH models to determine what information needs to be included in the displays. 
The information is based solely on the known capabilities of the system rather than on 
user experience or specific operating tasks. In a large system such as a nuclear power 
plant, it is often not possible to ask operators what they would like to see on the HMIs. 
The suggestions tend to vary widely based on expertise, while some operators feel that 
there is no need to include more information. Furthermore, information based on task 
analyses does not necessarily support unanticipated events; tasks are known anticipated 
events. The EID methodology concentrates on obtaining information that supports both 
anticipated and unanticipated events. However, it is possible to combine multiple design 
approaches to provide complementary information in the HMIs [8]. 

Information to be translated on to the ED graphical displays is obtained by extracting 
variables from the AH models developed in the previous phase [8]. The variables are 
identified by asking how each element in the AH can be measured. For instance, the goal 
of generating electricity to a specified set point can be measured by real and reactive 
power output variables. Measures related to flow, balance, and conservation were 
extracted from elements at the Abstract Function level. Likewise, process related 
variables such as temperature and pressure were identified at the Generalised Function 
level. At the Physical Function level, equipment can be measured, in a sense, by looking 
at its capacity and capability. 

Each extracted variable contains additional information regarding its availability, 
constraints, and relationships with other variables. These attributes serve as design 
parameters for creating graphical elements and were recorded in tables for easy 
referencing (see Table 1 for an example entry). Variables can be measured via sensors, 
calculated from other variables, or are simply not available in which case cannot be 
designed into the displays. Like many existing power plants, energy cannot be measured 
through sensors. Instead, the value must be obtained through a steam table lookup using 
temperature or pressure values. Two types of constraints exist for variables: single 
variable constraints and multivariate constraints. The range-limit of a particular variable 
(i.e. maximum and minimum values) is considered a single variable constraint. The 
relationships between multiple variables are considered multivariate constraints. Energy 
leaving the reactor is related to energy into the high-pressure turbine in that the two are 
approximately equal (see Table 1). It is possible for one variable to be related to another 
through complex mathematical expressions as dictated by known physical models. 
Apparent power, for example, is equal to the hypotenuse of a right-angle triangle 
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consisting of real and reactive power (see Figure 6). The relationship is known as the 
power triangle. The following section describes how the extracted variables and related 
properties were transformed into graphical forms. 

Table 1: Extracted Variable at the Abstract Function Level 

Variable Energy in from the reactor 
Description Specific enthalpy of steam leaving the reactor 
Units kJ/kg 
Availability Calculated: steam table lookup 
Constraints Max: —2,772.1 kJ/kg 

Min: 0 kJ/kg 
Normal: —2,742.1 kJ/kg 

Relationships Approximately equal to energy into high-pressure 
turbine 

Graphical Forms and Organisation 

As indicated above, the table of variables provided the designers with parameters for 
graphical visualisation. Specifically, the constraints and relationships of the variables 
were incorporated into the graphical forms and organised in a manner to conform to the 
SRK framework. In the turbine-generator displays, a number of advanced visualisation 
techniques such as emergent features were used to emphasise variable constraints and 
relationships. A single variable such as turbine vibration (see Figure 3) is limited by a 
maximum and minimum value. The two vertical bars in the middle are a visual indication 
of the maximum value; if the middle black vertical bar representing the current value 
deviates (i.e. rotates) too much, it will hit the two surrounding constraint bars. For 
multiple variables such as mass flow (see Figure 4), generator-grid parameters (see 
Figure 5), and power (see Figure 6), the relationship between the variables were made 
apparent. In the mass balance graphic, the balance between the two bars is accentuated by 
a horizontal bar containing a bubble. According to the conservation of mass, the two bars 
should be equal in height and the horizontal line should not be tilted. The bubble is 
analogous to a carpenter's level, rising when the line is tilted, and providing a visual 
indication of the mass flow rate of change. The variables involved in the synchronisation 
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Figure 3: Single Variable at the Physical Figure 4: Multiple Variables at the Abstract 
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of the generator to the grid are traditionally shown in an indicator known as a 
synchroscope. The voltage, frequency, and phase differences are associated with different 
aspects of the synchroscope dial (e.g. spin direction, speed). Rather than requiring 
operators to memorise the relationship of each dial aspect, the parameters can be mapped 
graphically on a sinusoidal wave. The generator is synchronised with the grid when the 
black sinusoid (i.e. generator voltage) matches the grey sinusoid (i.e. grid voltage). The 
differences between the generator and grid parameters are also emphasised in the 
graphics found below the sinusoids. 
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Figure 5: Multiple Variables at the Figure 6: Multiple Variables at the 
Generalised Function Level (Synchrometer) Functional Purpose Level (Power) 

The graphical elements representing single and multiple variables are intended to 
promote skill- and rule-based behaviour described in the SRK framework. In order to 
support knowledge-based behaviour, as discussed earlier, the graphical elements can be 
arranged according to the AH [4]. The graphical elements representing variables at the 
Functional Purpose level were organised mainly along the top of the displays (see Figure 
7, 8). The balance, flow, and process variables were grouped together by abstraction level 
and distributed throughout the rest of the display. The associated equipment and physical 
properties were placed between the higher-level information in a mimic fashion. The 
salience of the mimic graphics in the turbine subsystem display was reduced to reflect the 
level of the information due to large amount of information. The embedded structure of 
the AH allows operators to create an appropriate mental model of the information being 
processed. 

CONCLUSIONS AND FUTURE WORK 

Unlike other design approaches, the EID methodology follows a well-formulated 
engineering process involving both analysis and modelling. Often times, the analysis 
provides more information than desired by the operators. It was argued that since mass 
flow information is not traditionally available in control rooms, operators would overlook 
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or ignore the information. However, it is this type of information that provides operators 
with a visual indication of the plant process limitations. A fault occurs when one or more 
of the limitations (i.e. constraints) are violated. Accordingly, operators are expected to 
more readily detect faults in EID graphical displays for both anticipated and 
unanticipated events [4]. Given that the deviations from normal operating conditions can 
be easily perceived, more cognitive resources are available to the operators for 
determining the underlying cause. The problem solving process is particularly important 
in unfamiliar events as there are no procedures to follow. An empirical evaluation of the 
ED graphical displays is currently under way to determine whether the aforementioned 
benefits are applicable in representative industrial settings. 

The study will compare the existing mimic displays on the Forsmark 3 simulator to the 
ED graphical displays discussed in this paper. The existing mimic displays were 
designed primarily through a user-centered approach, which relied on the expertise of the 
consulted operators. Trained and licensed operators from the Forsmark 3 nuclear power 
plant have volunteered to test the displays on a high-fidelity simulator (HAMMLAB). 
Operators will be using the displays to monitor and control the system under various 
anticipated and unanticipated events. Quantitative measures will include operator 
performance (e.g. response times) and situation awareness. Interviews will also be 
conducted to obtain usability and acceptance data. We expect the results of the study to 
provide practical feedback on the viability of the ED methodology in next-generation 
nuclear power plant control rooms. 
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