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Abstract 

A new theoretical approach is presented here to calibrate the HPGe well-type detectors using 
cylindrical sources. This approach depends on the accurate calculation of two important factors; 
the first factor is the average path length (d) covered by the photon inside the active volume of a 
gamma detector, whereas, the second one is the geometrical solid angle (f2geo) subtended by the 
source to the detector. These two factors are theoretically derived in straightforward analytical 
formulae. The present model leads to a direct evaluation of the full energy peak efficiency (e p ) 

for these source-detector geometries. The validity of this work will be clear via systematic 
comparisons for these geometries with the experimental method and the Monte Carlo 
simulations. Also the validity of it over the traditional direct mathematical method reported by 
Abbas [1] and Abbas and Selim [2] will be presented. Simple programming is possible and short 
computer time is needed. 

INTRODUCTION 

Well-type NaI (T1) and HPGe crystals are very useful in low level gamma activity 
measurements due to the near 47( solid angle that can be obtained with them. Recently, absolute 
cross-sections for neutron-induced activation have been measured by gamma activity methods 
using such crystals by Jeronymo et al., [3]. They had indicated a method for absolute calibration 
of well-type crystals and problems connected with it. Based on this method, Redon et al., [4] 
measured the absolute (e p ) as well as the resolution as a function of gamma energy. 

In the applications of well-type crystals, the measurement of gamma activity induced in 
samples due to fast neutron bombardment is not constant along the length of the sample, so the 
variation of the crystal efficiency as a function of well depth as well as the self absorption of 
gamma rays by the sample, which reduces the values of the absolute efficiencies of the measured 
system must be known. 

To determine the sample activity, the (ep ) is needed. The computations of the well-type 

NaI(Tl) and HPGe detectors efficiencies have been reported in literatures [5-11]. In the present 
work we introduce a new technique involving the determination of the average path length ( ) 
covered by a photon inside the detector active volume and the geometrical solid angle (ngeo), 
which is defined as the angle subtended by the detector at the source point, by using a direct 
mathematical formula in three different cases (axial point, non-axial point and cylindrical 
sources). 

Mathematical View Point 
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cross-sections for neutron-induced activation have been measured by gamma activity methods 
using such crystals by Jeronymo et al., [3]. They had indicated a method for absolute calibration 
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system must be known.  

To determine the sample activity, the (Pε ) is needed. The computations of the well-type 

NaI(Tl) and HPGe detectors efficiencies have been reported in literatures [5-11]. In the present 
work we introduce a new technique involving the determination of the average path length (d ) 
covered by a photon inside the detector active volume and the geometrical solid angle (Ωgeo), 
which is defined as the angle subtended by the detector at the source point, by using a direct 
mathematical formula in three different cases (axial point, non-axial point and cylindrical 
sources). 
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The full-energy peak efficiency (cp ) for any source-detector geometry is defined as a 

product of the geometrical efficiency (£g ) and the intrinsic full-energy peak efficiency (dap ), 

which were treated mathematically by Selim and Abbas [12, 13]. Then, for an arbitrarily 
positioned radiating point source placed at any distance from the internal bottom of a well-type 
detector shown in Fig. 1, (cp ) can be represented by the following equation: 

point =  (1— e
 _p.d

4 
(1) 

The The first and the second terms in equation (1) represent the geometrical and the intrinsic 
efficiencies, respectively, and (d) for an isotropic emission from the source is given as: 

d j)dfl d j)sin Bdq5 dB 
d= " .1=1 = e 4 j=1 

do 52 

(2) 

where d1, d2, ......., dn are the possible photon path lengths traveled within the detector active 
volume (we will discuss them in details below). In equation (2), the numerator represents the 
integration of all possible gamma-ray paths in the detector over the subtended solid angle by the 
detector to the source, and the denominator represents the solid angle, which is given as: 

f f fsin(0 ca9d0 (3) 

In equation (1), (0) and (0) are the polar and the azimuthal angle, respectively. pi is the 

attenuation coefficient of the detector's material. For calculating (c p ), p should be replaced by 

the full-energy peak attenuation coefficient (Up) for the detector's material, which represents the 
only part contributing to the full-energy peak ( the photoelectric coefficient + the fractions of the 
Compton and pair production coefficients which represent the photons that have enough energy 
to make photoelectric interaction and subsequently deposit its energy under the full-energy 
peak). The calculated fractions are given in details in [14]. 

For the extended volumetric sources, equation (1) must be multiplied by a factor ( f all ) which 

determines the photon attenuation by the source container, the window and the detector's end 
cap materials and is expressed as: 

-E P1 6.i 

fatt =e (4) 

where, pi is the total attenuation coefficient with coherent scattering of the i th absorber for a 
gamma-ray photon with energy Er [15] and (8, ) is the possible path length of the gamma photon 

through the i th absorber. 
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The full-energy peak efficiency (pε ) for any source-detector geometry is defined as a 
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where d1, d2, ……., dn are the possible photon path lengths traveled within the detector active 
volume (we will discuss them in details below). In equation (2), the numerator represents the 
integration of all possible gamma-ray paths in the detector over the subtended solid angle by the 
detector to the source, and the denominator represents the solid angle, which is given as: 
 

sin( )d d
φ θ

θ θ φΩ=∫ ∫                                                                                               (3) 

 
In equation (1), (θ) and (φ ) are the polar and the azimuthal angle, respectively. µ is the 

attenuation coefficient of the detector’s material. For calculating ( pε ), µ should be replaced by 

the full-energy peak attenuation coefficient (µP) for the detector’s material, which represents the 
only part contributing to the full-energy peak ( the photoelectric coefficient + the fractions of the 
Compton and pair production coefficients which represent the photons that have enough energy 
to make photoelectric interaction and subsequently deposit its energy under the full-energy 
peak). The calculated fractions are given in details in [14]. 

For the extended volumetric sources, equation (1) must be multiplied by a factor (
a ttf ) which 

determines the photon attenuation by the source container, the window and the detector’s end 
cap materials and is expressed as: 
 

i i
i

attf e
µ δ−∑

=                                                                                            (4) 

 
where, µi is the total attenuation coefficient with coherent scattering of the ith absorber for a 
gamma-ray photon with energy Eγ [15] and ( iδ ) is the possible path length of the gamma photon 

through the ith absorber.  
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The calculations of (ii) and (SI ) depend on the source-detector positions. We have two main 
cases to be considered. The first case has two sub-cases to describe the axial position of the 
isotropic radiating point source, shown in Fig. 2, whereas, the second one has three sub-cases to 
describe the non-axial position of the source, shown in Fig. 3. 

The Case of an Axial-Point Source 

If an arbitrarily positioned isotropic radiating point source is placed on the axis of a well-type 
detector at a distance h' from the bottoms, see (Fig. 2). Each striking photon may enter from the 
detector's bottoms or from the detector's side-El (or side-s). The two cases are described as: 
1- If the photon enters from the detector's bottoms, it may emerge from its bottom2 or from its 

side2. The distances traveled by the photon in both cases are given by the following 
equations: 

d = 
R h' 

and d 2 = (6) 
c o s sin cos0 

2- If the photon enters from the detector's side-El (or side-1), it may emerge from its bottom2, from 
its side2, or from its top+ (or top) surface. The distances traveled by the photon in these cases are 
given by the following equations: 

d 3 = 
h'+ L R R - R K - h' R i 

cos 9 sin Z8
  ' d 4 

sin 
and d 5 = — 

cos 8 sin 8 (7) 

The steps of the polar angles (0) are declared in [1]. The azimuthal angle (0) takes always the 
value 27( for all values of the polar angle 0 . Taking these situations into consideration, the final 
expression for equation (2) depends on the relation between (02 ) and (03 ) as shown in (Fig. 2), 

and we have two sub-cases discussed as follow: 

The Axial Point Source lies in Zone- I (03 <02) 

Equation (2) turns to bed = I, , where / 1 is given as; 
IZ

4 4 4 

A= f 4 shot) -F. 4 Sin0d0+14 Shavtic4sinede 

o e, e 

The Axial Point Source lies in Zone- III (03 > 02) 

In this case, I is given as; 
4 

A= f 4 sinedot i 4 Sin0d0+14 Sin0d0+1 4 shed° 
0 9 

In the two sub-cases, / 2 is given as; 

(8) 

(9) 

Page 3 of 9 3  3 

The calculations of (d ) and (Ω ) depend on the source-detector positions. We have two main 
cases to be considered. The first case has two sub-cases to describe the axial position of the 
isotropic radiating point source, shown in Fig. 2, whereas, the second one has three sub-cases to 
describe the non-axial position of the source, shown in Fig. 3. 
 
The Case of an Axial-Point Source 
 
If an arbitrarily positioned isotropic radiating point source is placed on the axis of a well-type 
detector at a distance h′ from the bottom1, see (Fig. 2). Each striking photon may enter from the 
detector’s bottom1 or from the detector’s side+

1 (or side-1). The two cases are described as: 
1- If the photon enters from the detector’s bottom1, it may emerge from its bottom2 or from its 

side2. The distances traveled by the photon in both cases are given by the following 
equations: 

 

1 c o s
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θ θ
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2- If the photon enters from the detector’s side+

1 (or side-1), it may emerge from its bottom2, from 
its side2, or from its top+ (or top-) surface. The distances traveled by the photon in these cases are 
given by the following equations: 
 

θθ sincos
'

3
iRLh

d −+= , 4 s i n
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θ
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'

5
iRhK

d −−−=     (7) 

 
The steps of the polar angles (θ ) are declared in [1]. The azimuthal angle (φ ) takes always the 
value 2π for all values of the polar angleθ . Taking these situations into consideration, the final 
expression for equation (2) depends on the relation between ( 2θ ) and ( 3θ ) as shown in (Fig. 2), 

and we have two sub-cases discussed as follow: 
 
The Axial Point Source lies in Zone- I (3 2θ θ< ) 

Equation (2) turns to be 1

2

I
d

I
= , where 1I is given as; 

3 52 4

3 2 4

1 1 3 4 5

0

sin sin sin sinI d d d d d d d d
θ θθ θ

θ θ θ

θ θ θ θ θ θ θ θ= + + +∫ ∫ ∫ ∫                                                                                (8) 

 
The Axial Point Source lies in Zone- III (3 2θ θ> ) 

In this case, 1I is given as; 

                 
3 52 4

2 3 4

1 1 2 4 5

0

sin sin sin sinI d d d d d d d d
θ θθ θ

θ θ θ

θ θ θ θ θ θ θ θ= + + +∫ ∫ ∫ ∫                                                             (9) 

In the two sub-cases, 2I is given as; 
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BS

/ 2 = Isint9d0 =(1— cos 0 5 ) 

0 

The Case of a Non-Axial Point Source 

(10) 

If an arbitrarily positioned isotropic radiating point source is placed at a lateral distance p from 

the axis of the detector, see (Fig. 3). Each striking photon may enter from the detector's bottoms 

or from the detector's side-El (or side-s). The two cases are described as: 

1- If the photon enters from the detector's bottoms, it may emerge from its bottom2 or from its 

side2, the distances traveled by the photon in both cases are given by the following equations: 

d = 
L 

c o s 0 

, 
d2= 

p cos0 + VR.2 —p2 sin2 0 h' and
sing cost 

2- If the photon enters from detector's side-El (or side-1), it may emerge from its bottom2, from its 

side2, or from its top+ (or top) surface. The distances traveled by the photon in these cases are 

given by the following equations: 

1+ h+L -‘1R,2 + p2 ± 2Rip cos0 R — R K +hi VA + p2 ±2Ripcos0 
d- 

— 
3 

d 4 - and d: = (12) 
cos9 sing s in B cog9 sing 

The steps of the polar angle 0 and the corresponding values of the azimuthal angles 0 are also 

declared in [1]. There will be three sub-cases according to the previous situations for getting the 
fmal expression of equation (2), described as follow: 

The Non-Axial Point Source lies in Zone-I (03± < 0 2±

Equation (2) turns to bed = I3 , where 1 3 is given as; 

9 3 83  82+ 7C 8 2 7C 

I 3  = 2 ir f di sin OdO + 2 f 0,„4x (h')di sin OdO + f f d+3 sin OdO d0 + f f d -3 sin OdO d0 
0 83 93* 0 83 0 

[

8 4+ 8 4 85 + , 85 ,

+7r f d 4 sin OdO + f d 4 sin OdO + f fd+, sin OdO d0 + f f d -, sin Od0d0 
8  2 + 8  2 94* 0 84- 0 

The Non-Axial Point Source lies in Zone-II (03+ > 02+ and03- < 02-) 

Equation (2) turns to bed = I3 , where 1 3 is given as; 
14

8 3 82+ 82 7r 83+ 04. 4 (W) 

1 3 = 2/1- J di sin OdO + 2 J 0 (1i)di sin OdO + J f d2 sin Och9 +2 f J d2 sin Od0d0 
0 83 83 0 82+ 0 
84+ 

[ 
84 83+ n- 85 n-

+ g f d4 sin OdO + f d4 sin OdO + f fd+5 sinOdOd0+ f f d-,sinOdOd0 
83+ 9Z 94* 0 94 0 

(13) 

(14) 
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The Case of a Non-Axial Point Source 
 
If an arbitrarily positioned isotropic radiating point source is placed at a lateral distance ρ from 

the axis of the detector, see (Fig. 3). Each striking photon may enter from the detector’s bottom1 

or from the detector’s side+
1 (or side-1). The two cases are described as: 

1- If the photon enters from the detector’s bottom1, it may emerge from its bottom2 or from its 

side2, the distances traveled by the photon in both cases are given by the following equations: 
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2- If the photon enters from detector’s side+

1 (or side-1), it may emerge from its bottom2, from its 

side2, or from its top+ (or top-) surface. The distances traveled by the photon in these cases are 

given by the following equations: 

θ
φρρ

θ sin
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cos
' 22

3
ii RRLh

d
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−+=± , 4 s in
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d
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θ
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' 22

5
ii RRhK

d
±+

−+−=±   (12)  

The steps of the polar angle θ  and the corresponding values of the azimuthal angles φ  are also 
declared in [1]. There will be three sub-cases according to the previous situations for getting the 
final expression of equation (2), described as follow: 
 

The Non-Axial Point Source lies in Zone-I ( )3 2θ θ± ±<  

Equation (2) turns to be 3

4

I
d

I
= , where 3I  is given as; 
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The Non-Axial Point Source lies in Zone-II 3 2 3 2( )andθ θ θ θ+ + − −> <  

Equation (2) turns to be 3
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I
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                              (14) 
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The Non-Axial Point Source lies in Zone-III (03' > B2± 
) 

Equation (2) turns to bed = I3 , where / 3 is given as; 
14

0-3 0-3 , 
1 3 = 27z- 1 di sinech9+211d2 sinede +2 

0 0-2 0 

6e2 (11„,,o,(h' +L) \ 

1 (0.(X + L)di sine— 1 d2 sint9d0 
0-2 0 j 

de 
j (15) 

9.3 96,...(H) 6e4 60-4 61'5 A. 60-5 yr 

+21 1 d2 sint9d0d9+71-(1 d4 sint9d9+1 d4 sint9d9) + 1 1 d+ 5 sint9d9+ 1 1 d-5 sinede 
0-3 0 9 3 9 3 0.4 0 0-4 0 

In the last three sub-cases, I 4 is given as; 

/4=27z (1—ocsq)+05(ar4—ar4)+05(ar4—ocsq)1+210.(h)shi0 dO (21) 

The case of a cylindrical source 

The efficiency of a well-type detector arising from a cylindrical source, with radius (S) and 
height (H) placed at distance ( k ) from the core of the detector is given by equation (22). 

2  ho +H s 
s Cyl = H S.2 J f e point p dp dh 

h0 0 

(22) 

In equation (22), (E) is the full-energy peak efficiencies of an off-axis isotropic radiating point 
source. The path lengths of the gamma photon through the source container, the absorber, the 
window material and the detector end-cap are given in [1]. 

Results 

The full energy peak efficiency (e,) is calculated using our present approach and tested 

against the published data for two HPGe well—type detectors of different sizes, with parameters 
listed in table 1. The calculations are done for energy ranges from several KeV to several MeV, 
and the related radioactive nuclides are listed in table 1 for the two detectors. The discrepancy 

l e ref) between our calculations and the reference data sets is calculated as ( (eca %). The source-
cal 

detector geometries are described as follow: 
For the first detector, the efficiency values are calculated in the energy range 0.46- 1.836 

MeV for a 5 mL cylindrical source and compared with the results obtained experimentally by 
Hernandez and El-Daoushy [16], in Fig (4). In addition, the efficiency values are calculated for 
the second detector using two cylindrical sources of 3 and 8 cm3 and compared with the 
experimental and simulated data (GEANT code) obtained by Laborie et al., [11, 17], as in Figs (5 
and 6), respectively. The discrepancies were less than 3% on average in all cases, while it was 
4% as reported in [1, 2]. 

Page 5 of 9 5  5 

The Non-Axial Point Source lies in Zone-III ( )3 2θ θ± ±>  

Equation (2) turns to be 3

4

I
d

I
= , where 3I  is given as; 

 

3 3 max2

2 2

3 max 54 4

3 3 3 4

( )

3 1 2 max 1 2

0 0 0

( )

2 4 4 5 5

0 0 0

2 sin 2 sin 2 ( ) sin sin

2 sin ( sin sin ) sin sin

h L

h

I d d d d h L d d d d

d d d d d d d d d d d

θ θ φθπ

θ θ

θ φ θθ θ π π

θ θ θ θ θ

π θ θ θ θ φ θ θ φ θ

θ φ θ π θ θ θ θ θ θ θ θ

− − +

− −

+ −+ −

− + − −

′+

′
+ −

  
′ = + + + −     

+ + + + +

∫ ∫ ∫ ∫ ∫

∫ ∫ ∫ ∫ ∫ ∫ ∫
5

4

θ+

+
∫

               (15)  

 
In the last three sub-cases, 4I is given as;  
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θ

θ

π θ θ θ θ θ φ θ θ
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−
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The case of a cylindrical source 
 

The efficiency of a well-type detector arising from a cylindrical source, with radius (S) and 
height (H) placed at distance (h

�
) from the core of the detector is given by equation (22). 

 
0

i n t2
0

2

o

h H S

c y l p o

h

d d h
H S

ε ε ρ ρ
+
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In equation (22), (ε) is the full-energy peak efficiencies of an off-axis isotropic radiating point 
source. The path lengths of the gamma photon through the source container, the absorber, the 
window material and the detector end-cap are given in [1]. 
 
Results 
 

The full energy peak efficiency (pε ) is calculated using our present approach and tested 

against the published data for two HPGe well–type detectors of different sizes, with parameters 
listed in table 1. The calculations are done for energy ranges from several KeV to several MeV, 
and the related radioactive nuclides are listed in table 1 for the two detectors. The discrepancy 

between our calculations and the reference data sets is calculated as (
( )

%cal ref

cal

ε ε
ε
−

). The source-

detector geometries are described as follow: 
For the first detector, the efficiency values are calculated in the energy range 0.46- 1.836 

MeV for a 5 mL cylindrical source and compared with the results obtained experimentally by 
Hernández and El-Daoushy [16], in Fig (4). In addition, the efficiency values are calculated for 
the second detector using two cylindrical sources of 3 and 8 cm3 and compared with the 
experimental and simulated data (GEANT code) obtained by Laborie et al., [11, 17], as in Figs (5 
and 6), respectively. The discrepancies were less than 3% on average in all cases, while it was 
4% as reported in [1, 2]. 
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Table 1 
Parameten of the detectors aged in the resat work nd the related radioactive Enclitics 

Parameten of the detectors (cm) Radioactive nuclides 
Detector 1 Detector 2 Detector 1 Detector 2 

Crystal Radius 5.3 3.75 211)Pb, 
141Arn,

407.,
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daughters, 
6to, 
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r39 e

maple, 
Ulm ;

"ca, 
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54M; 
113Sn 

Crystal Lag* 5.8 7.5 

Well Radhm 0.5 1 

Well Loath 4 5.4 

Window Material Al Al 

Window 
'Thickness 

0.1 0.05 
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The theoretical calculation of the average path length covered by an blob:bre photon and the 
geometrical solid angle lead to a straightforward mathematical formula to calculate the diftrent 
efficiencies for the well-type detectors. This approach off rs a good method to calibrate the 
Rite Well-Tyge detectors over the entire energy range without the need of using standard 
sources, as in case of operimental method, nor optimizing the detector parameters as in the 
Monte Carlo simulations. The new method shows validity more than that by the original direct 
mathematical method reported in 2] as it reduces the discrepancies with the experimental 
method to less than 3% for extended sources in the case of the calculation of the (e,). For 

comparison, the beet accuracy using the Monte Carlo simulations was less than 5% by 
optimizing the detector parameters. 
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Fig. 1. Schematic diagram of a well-type detector, 
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Table 1 
Parameters of the detectors used in the present work and the related radioactive nuclides 
 

Parameters of the detectors (cm) Radioactive nuclides 
 Detector 1 Detector 2 Detector 1 Detector 2 

Crystal Radius 5.3 3.75 

Crystal Length 5.8 7.5 

Well Radius 0.5 1 

Well Length 4 5.4 

Window Material Al Al 

Window 
Thickness 

0.1 0.05 

210Pb, 
241Am, 
40K, 
226Ra-
daughters, 
60Co, 
 88Y, 
139Ce 
 

210Pb, 
241Am, 
109Cd, 
57Co, 
60Co, 
 88Y, 137Cs 
139Ce 
203Hg, 
54Mn, 
113Sn 

 
Conclusions 
 

The theoretical calculation of the average path length covered by an incident photon and the 
geometrical solid angle lead to a straightforward mathematical formula to calculate the different 
efficiencies for the well-type detectors. This approach offers a good method to calibrate the 
HPGe Well-Type detectors over the entire energy range without the need of using standard 
sources, as in case of experimental method, nor optimizing the detector parameters as in the 
Monte Carlo simulations. The new method shows validity more than that by the original direct 
mathematical method reported in [1, 2] as it reduces the discrepancies with the experimental 
method to less than 3% for extended sources in the case of the calculation of the (pε ). For 

comparison, the best accuracy using the Monte Carlo simulations was less than 5% by 
optimizing the detector parameters.  

 
 
 

    
 
 

                                     
                                 
 

Fig. 1.  Schematic diagram of a well-type detector. 
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Fig. 4.  Photopeak efficiency for a cylindrical source in the case of a HPGe well detector; 

squares represent the experimental work in [16], solid line represents the calculated efficiency 

values using the present approach. 
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Fig. 5. Photopeak efficiency for a 3 cm3 cylindrical source with a HPGe well detector; squares 

and circles represent the experimental and simulated work in [17], solid line represents the 

calculated efficiency values using the present approach. 

• 

• measured values in [17] 
o simulated values in [17] 
 present calculation 

0.01  
10 100 

Energy (KeV) 
1000 

Fig. 6. Photopeak efficiency for a 8 cm3 cylindrical source with a HPGe well detector; squares 

and circles represent the experimental and simulated work in [17], solid line represents the 

calculated efficiency values using the present approach. 
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Fig. 5.  Photopeak efficiency for a 3 cm3 cylindrical source with a HPGe well detector; squares 

and circles represent the experimental and simulated work in [17], solid line represents the 

calculated efficiency values using the present approach. 
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Fig. 6.  Photopeak efficiency for a 8 cm3 cylindrical source with a HPGe well detector; squares 

and circles represent the experimental and simulated work in [17], solid line represents the 

calculated efficiency values using the present approach. 
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