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SUMMARY 

A 20% RIH break with loss of ECC and boiler crash cooldown is simulated with 
CATHENA-ELOCA and CATHENA to assess the fuel and pressure tube temperatures as 
well as the hydrogen production. Six representative channels are selected to represent six 
power groups of channels for each core pass. The maximum temperature predicted 
(1446 °C for the central element sheath of bundle 6 in channel 06 of the broken pass — 5 
g/s) is largely lower than those shown in the 2002 Gentilly-2 Safety Report. The total 
amount of predicted hydrogen produced is also much lower than the values shown in the 
2002 Gentilly-2 Safety Report. 

1.0 Introduction 

This paper documents single channel analyses performed with CATHENA [1] and 
CATHENA-ELOCA for a 20% RIH4 break with a total loss of ECC when the burnup 
distribution in the channel is such that bundles 6 and 7 are at 90 MWh/kg. The 95 
channels in the broken and intact passes of the broken loop are represented by 6 single 
channels. During the post-blowdown phase of the transient, constant steam flowrate of 0, 
5, 10 or 100 g/s are considered. 

An innovative methodology has been introduced to simulate the blowdown phase of the 
transient by coupling the CATHENA-ELOCA code, which allows calculating at each 
time step the gap heat transfer coefficient [2]. Furthermore, a new approach has been 
introduced for simulating without interruption the blowdown and post-blowdown phases 
of the transient [3]. The present analysis is based on the same approach documented in 
[3] although the coupling of CATHENA and ELOCA is now through the software PVM 
(Parallel Virtual Machine). Details of this coupling are explained in another paper 
submitted to the 27th Annual Conference of the CNS [4]. 

The outputs of the simulations are the fuel and fuel channel temperatures as well as the 
hydrogen production from zircaloy water reaction in the fuel sheaths and pressure tube. 
The hydrogen production is calculated under two assumptions: 

• A constant steam flowrate of 5 g/s in both passes of the broken loop; 

• A constant steam flowrate of 5 g/s in the broken pass combined with a constant 
steam flowrate of 0 g/s (or no flow) in the intact pass. 

2.0 Methodology and Assumptions 

The methodology used in this analysis of single channels during a postulated 20% RIH4 
break with total loss of ECC is shown in Figure 1. The 95 channels of each pass of the 
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of the transient [3]. The present analysis is based on the same approach documented in 
[3] although the coupling of CATHENA and ELOCA is now through the software PVM 
(Parallel Virtual Machine). Details of this coupling are explained in another paper 
submitted to the 27th Annual Conference of the CNS [4].   
The outputs of the simulations are the fuel and fuel channel temperatures as well as the 
hydrogen production from zircaloy water reaction in the fuel sheaths and pressure tube.  
The hydrogen production is calculated under two assumptions: 

• A constant steam flowrate of 5 g/s in both passes of the broken loop; 
• A constant steam flowrate of 5 g/s in the broken pass combined with a constant 

steam flowrate of 0 g/s (or no flow) in the intact pass. 

2.0 Methodology and Assumptions 
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broken loop are represented by 6 single channels: B10, G05, L03, 006, S10 and W10 as 
shown in Table 1. A 37-element bundle is shown in Figure 2. 

2.1 CATHENA Steady States 

Headers conditions calculated by SOPHT-G2 (pressure, average fluid enthalpy, void 
fraction) are converted to give the boundary conditions necessary for CATHENA 
(pressure, gas phase enthalpy, liquid phase enthalpy, void fraction) 

The results of the CATHENA steady states are used as boundary conditions for 
ELESTRES calculations of initial conditions. The following parameters are given for 
one element per ring per bundle: 

• Coolant temperature, 

• Pressure, 

• Heat transfer coefficient between the coolant and the sheath. 

CATHENA, because it is coupled with ELOCA, needs the heated length, which is a new 
entry in the CATHENA input file. This entry is necessary in GENHTP because the 
actual heated length in ELOCA is different from the element length in CATHENA. 

2.2 ELESTRES calculations 

ELESTRES calculations are performed to produce initial conditions for the coupled 
CATHENA-ELOCA calculations. ELESTRES produces `eldat' files that are used by 
ELOCA. Furthermore, the heated length, the radial dimensions and the radial power 
distribution of each element are used by CATHENA as initial conditions in the transient 
simulations. 

2.3 CATHENA-ELOCA Transients (Blowdown) 

The CATHENA and ELOCA codes are coupled through the PVM program [4]. The 
coupled program is used to perform the detailed calculations of temperature and 
hydraulic conditions in each single channel for the blowdown portion of the transient. 
The transient thermalhydraulic boundary conditions at headers 4 and 1 (pressure, 
enthalpies, void fraction) for CATHENA come from SOPHT-G2 transient simulation for 
the 20% RIH4 break with failure of the ECC injection. The pressure boundary conditions 
in outlet header 1 and inlet header 4 are shown in Figure 3. CATHENA and ELOCA 
exchange data at each time step. 

The coupled calculations give two parameters that will be used in the subsequent 
independent CATHENA transient calculation: the flowrate at the inlet feeder and the gap 
heat transfer coefficient for each element of each bundle. 

2.4 CATHENA Transients (Blowdown and Post-Blowdown) 

CATHENA is used to perform detailed temperature calculations and hydraulic conditions 
in the channels for a 5000 seconds transient. The hydrogen source term is determined in 
the same transient analysis. The initial conditions used are the same as those of the 
coupled calculation. The transient boundary conditions come from SOPHT-G2 results 
(for the pressure, enthalpy and void fraction at the outlet header) and from CATHENA-
ELOCA (for the flowrate in/out of the inlet header). For the first 262 seconds after the 
break, a flowrate boundary condition is imposed at the inlet header using the flowrate 
calculated in the coupled transient as discussed in section 2.3. After 300 seconds, a 
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constant steam flowrate (0, 5, 10 or 100 g/s) is imposed until the end of the transient. For 
the broken pass, the constant steam flowrate boundary condition is negative, since the 
flow is toward the break in the inlet header. A linear transition is made on the flowrate 
boundary condition between 262 and 300 seconds. The temperature of the steam is a 
boundary condition from the SOPHT-G2 simulation. After 262 seconds it is fixed at a 
constant value, which is slightly superheated. 

The transient gap heat transfer coefficients calculated by ELOCA as discussed in section 
2.3, are used by CATHENA for the first 262 seconds of the transient. After 262 seconds, 
the gap heat transfer coefficient values are assumed constant at their values at 262 
seconds. 

2.5 Modelling 

Each bundle is modelled with 19 cylinders in CATHENA, i.e. with a vertical symmetry. 
The top element of each ring is modelled by ELOCA in the coupled calculations. The 
pressure tube and the calandria tube are divided into 12 circumferential sectors. The 
thermal radiation between the elements and the pressure tube as well as between the 
pressure tube and the calandria tube is modelled. 

2.6 Main Assumptions 

The default CATHENA correlations are used, except as discussed below. 

Pressure tube deformation with eventual contact with the calandria tube is modelled. 
CATHENA assumes that the pressure tube retains its circular shape. When contact with 
the calandria tube by ballooning is predicted, it is assumed to occur on the whole 
circumference. The ballooning contact conductance is assumed to be 2.5 kW/m2/°C. 
This value corresponds to the long-term contact conductance between the pressure tube 
and the calandria tube. At the time of initial contact, the conductance is higher at 11.0 
kW/m2/°C., but very rapidly, the pressure tube cools down and the contact is not as good, 
which has the effect of reducing the conductance to 2.5 kW/m2/°C. For our calculations, 
it is the long-term conductance that is important, as long as there is no dryout on the 
calandria tube. 

Contact by sag is modelled and assumed to occur for the bottom 60° of both tubes when 
the pressure tube temperature is higher than 850 °C. The sag contact conductance is 
assumed to be 6.5 kW/m2/°C. This value is inferred from full-scale contact experiments. 

Two radii are used for the calandria tube in the present analysis. The nominal radius of 
0.0645 m is used for the coupled calculations during the blowdown phase of the transient. 
A higher inside radius of 0.0731 m is used during the 5000 seconds transients. This 
larger radius takes into account the fact that the contacts by sag happen during the 
blowdown phase and after that, the distance between the top of the pressure tube and the 
calandria tube is higher than initially. 

The decay power is from the ANS 5.1 data shown in the Gentilly-2 Safety Report 
(Reference [5], Figure 1-30). 

The moderator subcooling is shown in Table 2. 

For the Zircaloy-steam reaction, the Urbanic-Heidric correlation is used [6]. 
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3.0 Results of the 20% RIH Break with Loss of ECC with a Constant Vapour 
Flow of 5 g/s 

The temperature predictions for the 20% RIH break with loss of ECC injectin and crash 
cooldown, assuming a constant steam flowrate of 5 g/s during the post-blowdown phase 
of the transient are presented below. 

3.1 Base Case, Channel 06 in the Broken Pass 

Results for channel 06, which is a high-power channel, are presented first. Channel 06, 
and 017 have the same geometry but are located in different core passes. For simplicity, 
both of these channels are called 06. For example, channel 06 of the broken pass is in 
reality channel 017. 

3.1.1 Steady State 

The steady state is used to produce boundary conditions for ELESTRES. Table 3 shows 
these boundary conditions. The last three columns are the fluid temperature in °C, the 
pressure in kPa(a) and the gap heat transfer coefficient in kW/m2/°C. 

3.1.2 CATHENA-ELOCA Results 

CATHENA-ELOCA was run for 262 seconds after the break. Figure 4 shows the bundle 
6 sheath temperatures and the temperature of the pressure tube at that location for the first 
100 seconds of the transient. Detailed results will be discussed in section 3.1.3. Figure 5 
shows the gap heat transfer coefficient of the outer ring top element; the break initiation 
is at 200 s. This gap heat transfer coefficient is calculated by ELOCA using boundary 
conditions from CATHENA at each time step. In steady state, the gap heat transfer 
coefficient is about 17 kW/m2/°C (during the first 200 s). During the power pulse, it 
increases to almost 40 kW/m2/°C, and decreases near the end of the transient to a value 
just above 0.3 kW/m2/°C. This low value is due to the channel blowdown and to the 
large quantity of gaseous fission products in the gap. 

3.1.3 CATHENA Results for 5000 Seconds 

Figure 6 shows the sheath temperatures of bundle 6. As expected, during the power 
pulse, the temperatures of the outer ring elements (which have a higher power than the 
elements in other rings) are much higher than those of the other rings. On the other hand, 
during the constant steam flowrate phase, the temperature of the central element 
approaches that of the other elements and eventually becomes higher. This is due to the 
fact that during this phase, the heat is almost completely transferred by thermal radiation 
from the elements (especially the outer fuel pins) to the pressure tube and from the 
pressure tube to the calandria tube. 

Figure 7 shows the sheath temperature of the central elements of bundles 6 to 8. During 
the power pulse the sheath temperatures increase very rapidly. After this, they increase 
steadily until the power transferred through thermal radiation to the pressure tube is equal 
to the decay power. The maximum temperature is reached for bundle 6 at 1446.2 °C. 
The temperatures then start to go down because of the decrease in power until the 
pressure tube balloons into contact with the calandria tube, showing an abrupt drop in 
temperatures to the 900 °C range. 
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Figure 8 and Figure 9 shows the pressure tube top and bottom sectors temperatures for 
bundle 6, 7 and 8. Table 4 shows the time of contact by ballooning and sag, as well as 
the heatup rate at each segment of channel 06. The pressure tube contacts the calandria 
tube by sag from bundle 2 to bundle 10. The pressure tube around bundles 1, 11 and 12 
does not reach 850 °C during the transient. Contact occurs by sag before it occurs by 
ballooning for bundles 6, 7 and 8. 

Contact by ballooning occurs after the temperatures have reached their maximum. In the 
CATHENA simulations, the heatup rate can be negative because of the thermal radiation 
between the pressure tube and the calandria tube. To evaluate the calandria tube integrity 
following contact by ballooning, we use the criteria proposed by J. Luxat in [7]. As a 
conservative assumption, we have used the heatup rate of the pressure tube between 400 
and 600 °C (or equivalently between 215 and 250 seconds). With a moderator 
subcooling of 23.6 °C for channel 06, there is a large margin to prolonged dryout without 
rewet, according to Figure 15 of [7]. 

From Figure 10 to Figure 14, we can see the evolution of the axial temperature 
distribution in the elements and the pressure tube at different times after the end of the 
blowdown (100 seconds after the break). 

3.2 The Other Channels of the Broken Pass 

Figure 15 shows the comparison between central element sheath temperatures of all 
channels of the broken pass. The highest temperature is reached in channel 06. We see 
that there is an important decrease in sheath temperatures only for channels 06, S10 and 
L03. These are the channels with the highest powers and it is only in these channels that 
there is contact by ballooning at bundle 6. Consequently the temperatures in channels 
B10, G05 and W10 are higher at the end of the transient even though the power in these 
channels is smaller than the other channels. Figure 16 shows the comparison between 
pressure tube temperatures of all channels of the broken pass. We see again that only 
channels 06, S10 and L03 contact the calandria tube by ballooning. 

3.3 The Intact Pass of the Broken Loop 

Figure 17 shows the comparison between the central element sheath temperatures of 
bundle 6 in channel 06 using 5 g/s steam flow for each of both passes. The sheath 
temperatures in the intact pass decrease to a much lower value after the power pulse 
because there is a complete rewet of the channel in the intact pass. After the start of the 
constant steam flowrate the temperatures follow generally the same trend as those of the 
broken pass. There is no ballooning contact in the intact pass, which explains the higher 
temperatures at the end of the transient. 

4.0 Sensitivity Results on the Constant Steam Flowrate 

Figure 18 shows the maximum fuel temperature versus the steam flowrate in each 
channel of the broken pass. Figure 19 shows the comparison of central elements sheath 
temperatures of bundle 6 of channel 06 for different steam flowrates. The temperatures 
for the 5 g/s and 10 g/s flowrates are very similar. The temperatures for the 10 g/s 
flowrate are slightly lower because of the better heat transfer caused by the increased 
flow. This better heat transfer is more pronounced for the 100 g/s flowrate. In this case, 
the temperatures do not reach 1000 °C. In the case of 0 g/s, the exothermic reaction 
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L03.  These are the channels with the highest powers and it is only in these channels that 
there is contact by ballooning at bundle 6.  Consequently the temperatures in channels 
B10, G05 and W10 are higher at the end of the transient even though the power in these 
channels is smaller than the other channels.  Figure 16 shows the comparison between 
pressure tube temperatures of all channels of the broken pass. We see again that only 
channels O6, S10 and L03 contact the calandria tube by ballooning. 
 

3.3 The Intact Pass of the Broken Loop 

Figure 17 shows the comparison between the central element sheath temperatures of 
bundle 6 in channel 06 using 5 g/s steam flow for each of both passes.  The sheath 
temperatures in the intact pass decrease to a much lower value after the power pulse 
because there is a complete rewet of the channel in the intact pass.  After the start of the 
constant steam flowrate the temperatures follow generally the same trend as those of the 
broken pass.  There is no ballooning contact in the intact pass, which explains the higher 
temperatures at the end of the transient. 

4.0       Sensitivity Results on the Constant Steam Flowrate 
Figure 18 shows the maximum fuel temperature versus the steam flowrate in each 
channel of the broken pass.  Figure 19 shows the comparison of central elements sheath 
temperatures of bundle 6 of channel O6 for different steam flowrates.  The temperatures 
for the 5 g/s and 10 g/s flowrates are very similar.  The temperatures for the 10 g/s 
flowrate are slightly lower because of the better heat transfer caused by the increased 
flow.  This better heat transfer is more pronounced for the 100 g/s flowrate.  In this case, 
the temperatures do not reach 1000 °C. In the case of 0 g/s, the exothermic reaction 

27th Annual CNS Conference &
30th CNS/CNA Student Conference
June 11-14, 2006
Toronto, ON, Canada

EVALUATION OF HYDROGEN PRODUCTION USING CATHENA-ELOCA
DURING A LOCA/LOECC SCENARIO

G. Sabourin, G. Parent, et al.

Page 5 of 23



27th Annual CNS Conference & 
30th CNS/CNA Student Conference 
June 11-14, 2006 
Toronto, ON, Canada 

EVALUATION OF HYDROGEN PRODUCTION USING CATHENA-ELOCA 
DURING A LOCA/LOECC SCENARIO 

G. Sabourin, G. Parent, et al. 

between the zirconium and vapour is rapidly exhausted because of the lack of available 
oxygen, which decreases the heat production in comparison to the 5 or 10 g/s cases. 

5.0 Hydrogen Production 

Hydrogen production (or hydrogen source term) is an integrated value over all channels 
of both passes. The hydrogen production of one channel is multiplied by the number of 
channels it represents (see Table 1) and this production is added to the production of the 
other channels of the same pass as well as to that of the other pass. 

The hydrogen production depends strongly on the assumed constant steam flowrate. 
Figure 20 shows the total hydrogen production (in kg) for different flowrates. The total 
mass of hydrogen produced is almost equal for 5 and 10 g/s, but slightly higher in the 5 
g/s case. For the 0 g/s case, the hydrogen production stops early in the transient. For the 
100 g/s case, the hydrogen production continues longer but stays under 0.05 kg at the end 
of the transient. Detailed results for the 5 g/s case in the broken pass are presented in 
Figure 21. Channel 06 initially produces the highest quantity of hydrogen because its 
fuel sheath temperatures are the highest. It is eventually exceeded by channel S10 
because there are fewer contacts between the pressure tube and the calandria tube in 
channel S10. 

The hydrogen source term is maximum if we assume that all channels of the broken loop 
have a constant steam flowrate of 5 g/s in the post-blowdown phase. We could also 
assume that only the broken pass receives a flowrate of 5 g/s, the intact pass having a 
flowrate of 0 g/s (which is equivalent to saying that the ECC valves are not leaking for 
the intact pass). The hydrogen source term, in this case, is the sum of the broken pass 
hydrogen production at 5 g/s, plus the intact pass hydrogen production at 0 g/s. Figure 22 
compares the hydrogen source term of the case 5 g/s in both passes (5g/s —5g/s) to the 
case 5 g/s in the broken pass and 0 g/s in the intact pass (5g/s — Og/s). As the hydrogen 
production is much lower in the 0 g/s case, the source term is reduced by 41%. 

6.0 Conclusions 

The maximum pressure tube and fuel sheath temperatures for 6 channels of each pass of 
the broken loop have been simulated with CATHENA-ELOCA for a 20% RIH4 break 
with total loss of ECC. The hydrogen source term for this scenario has also been 
predicted. 

The maximum temperatures predicted in the present analysis (1446.2 °C for the central 
element sheath of bundle 6 of channel 06 of the broken loop at 5 g/s) are largely lower 
than those shown in the 2002 Edition of the Gentilly-2 Safety Report. This is due to a 
number of factors, mainly: 

• The use of CATHENA-ELOCA for a more realistic representation of the bundle 
from the point of view of thermal radiation and gap heat transfer than was allowed 
by CHAN; 

• The constant steam flowrate phase is modelled more realistically. In the present 
analysis it starts at 262 seconds after the break when the flowrates predicted by 
the circuit calculations are low and the void fraction is high. In the previous 
analysis of the Safety Report, the constant steam flowrate phase started 40 
seconds after the break. 

The total amount of hydrogen predicted in the present analysis is also largely lower than 
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the values stated in the 2002 Safety Report. As the amount of hydrogen produced 
depends on the sheath and pressure tube temperatures, it is normal that largely lower 
temperatures lead to a largely lower hydrogen production. The amount of hydrogen 
produced is several times ( 5 times for the case 5 — 0 g/s or 2.5 times for the case 5 — 5 
g/s) lower than that stated in the 2002 G2 Safety Report. 

Because of this much lower amount of hydrogen produced, the risk of detonation in the 
containment is nonexistent. 
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Table 1 Single Channel Powers for the broken pass 

Single Channels 

006 S10 L03 G05 B10 W10 

Nb of 
channels 

2 9 37 16 14 17 

Power 
range 
(MW) 

7.0-7.3 6.6-7.0 6.0-6.6 5.0-6.0 4.0-5.0 < 4.0 

Table 2 Moderator Subcooling 

Single Channel Row of the 
highest channel 
of the group 

Moderator 
saturation 
temperature 

Local 
moderator 
temperature 

Moderator 
subcooling 

°C °C °C 

B10 B 104.1 83.1 21.0 

G05 C 104.7 83.1 21.6 

L03 D 105.4 82.9 22.5 

006 E 106.0 82.4 23.6 

S10 E 106.0 82.4 23.6 

W10 A 103.4 82.6 20.8 
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Table 3 ELESTRES Boundary Conditions - Channel 06 - Broken Pass 

grappe anneau xeq tempt tempg tsatf tsatg Tparoi flux total tEl press heq 
°C °C °C °C °C W/m2 °C kPa kW/m2/°C 

1 centre -0.240 264 318 318 318 266 157000 264 10940 60.9 
interne -0.240 264 318 318 318 266 165000 264 10940 60.9 
median -0.240 264 318 318 318 267 189000 264 10940 60.8 
externe -0.240 264 318 318 318 267 232000 264 10940 60.9 

2 centre -0.223 267 317 318 318 274 399000 267 10890 61.2 
interne -0.223 267 317 318 318 274 422000 267 10890 61.2 
median -0.223 267 317 318 318 275 484000 267 10890 61.2 
externe -0.223 267 317 318 318 277 596000 267 10890 61.2 

3 centre -0.199 273 317 318 318 283 619000 273 10830 61.7 
interne -0.199 273 317 318 318 283 656000 273 10830 61.7 
median -0.199 273 317 318 318 285 750000 273 10830 61.7 
externe -0.199 273 317 318 318 288 924000 273 10830 61.7 

4 centre -0.171 279 317 317 317 291 730000 279 10780 62.2 
interne -0.171 279 317 317 317 291 773000 279 10780 62.3 
median -0.171 279 317 317 317 293 883000 279 10780 62.2 
externe -0.171 279 317 317 317 296 1086000 279 10780 62.3 

5 centre -0.138 286 316 317 317 300 867000 286 10720 63.0 
interne -0.138 286 316 317 317 301 917000 286 10720 63.0 
median -0.138 286 316 317 317 303 1045000 286 10720 63.0 
externe -0.138 286 316 317 317 307 1283000 286 10720 63.0 

6 centre -0.104 294 316 316 316 309 927000 294 10660 63.9 
interne -0.104 294 316 316 316 309 980000 294 10660 63.9 
median -0.104 294 316 316 316 312 1116000 294 10660 63.9 
externe -0.104 294 316 316 316 315 1367000 294 10660 63.9 

7 centre -0.069 301 315 316 316 316 927000 301 10600 64.8 
interne -0.069 301 315 316 316 317 980000 301 10600 64.8 
median -0.069 301 315 316 316 319 1116000 301 10600 65.2 
externe -0.069 301 315 316 316 322 1367000 301 10600 66.4 

8 centre -0.037 308 315 316 316 321 868000 308 10540 67.7 
interne -0.037 308 315 316 316 322 918000 308 10540 68.1 
median -0.037 308 315 316 316 323 1046000 308 10540 69.1 
externe -0.037 308 315 316 316 326 1284000 308 10540 71.1 

9 centre -0.011 313 315 315 315 323 699000 313 10480 71.2 
interne -0.011 313 315 315 315 323 738000 313 10480 71.6 
median -0.011 313 315 315 315 324 838000 313 10480 72.6 
externe -0.011 313 315 315 315 326 1024000 313 10480 74.4 

10 centre 0.010 316 314 315 315 323 582000 315 10420 67.6 
interne 0.010 316 314 315 315 324 612000 315 10420 68.1 
median 0.010 316 314 315 315 325 689000 315 10420 69.5 
externe 0.010 316 314 315 315 326 836000 315 10420 71.8 

11 centre 0.025 315 314 314 314 321 396000 314 10360 59.5 
interne 0.025 315 314 314 314 321 416000 314 10360 60.2 
median 0.025 315 314 314 314 322 466000 314 10360 61.8 
externe 0.025 315 314 314 314 323 563000 314 10360 64.3 

12 centre 0.032 315 313 314 314 317 160000 314 10280 51.3 
interne 0.032 315 313 314 314 317 168000 314 10280 52.1 
median 0.032 315 313 314 314 317 188000 314 10280 53.7 
externe 0.032 315 313 314 314 318 228000 314 10280 56.4 
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Table 4 Contacts between the pressure tube and the calandria tube — channel 06 — broken 
pass — 5 g/s 

Ballooning Contact 

Bundle Position Time Pressure tube 
temperature 

Applied 
Pressure 
(int.-ext.) 

Heating rate*

Seconds °C MPa °C/s 

7 1116.6 1196.0 0.129 7.0 

6 1327.5 1157.4 0.129 5.4 

8 1466.9 1107.5 0.129 5.9 

Contact by sag 

Bundle Position Time 

Seconds 

7 397.0 

6 402.7 

8 406.9 

5 426.1 

9 464.7 

4 484.9 

3 577.2 

10 584.8 

2 844.8 

* Average heating rate when the pressure tube temperature increases from 400 to 600 °C 
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Boundary 
Conditions from 
SOPHT-G2 

Establish the axial power and burnup 
distribution in steady state for 
channels B10, G05, L03, 006, S10 and 
w10 

CATHENA — steady state — single 
channels B10, G05, L03, 006, S10 
and W10 

ELESTRES — eldat files calculations —
48 elements per channel — single 
channels B10, G05, L03, 006, S10 and 
IAT 1 0 

• 
CATHENA-ELOCA — transient 

  calculations — 0 to 262 seconds 
(blowdown) 

Production of flowrate boundary 
conditions, and gap heat transfer 
coefficients 

CATHENA — transient calculations 
— 0 to 5000 seconds (blowdown and 
post blowdown) 

Production of boundary conditions 
for ELOCA, SOURCE and 
GOTHIC 

Figure 1: Methodology for CATHENA and CATHENA-ELOCA calculations with 
single channels. 
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Figure 1: Methodology for CATHENA and CATHENA-ELOCA calculations with 
single channels. 
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Figure 6 Bundle 6 sheath temperatures – channel O6 – broken pass – 5 g/s. 
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Figure 8 Pressure tube top sector temperatures – channel O6 – 5 g/s 
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Figure 7 Central elements sheath temperatures – channel O6 – 5 g/s. 
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Figure 12 Axial distribution of the pressure tube and element temperatures – channel O6 
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Figure 13 Axial distribution of the pressure tube and element temperatures – channel O6 
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Figure 14 Axial distribution of the pressure tube and element temperatures – channel O6 
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Figure 16 Pressure tube temperature – bundle 6 – comparison between channels – 
broken pass – 5 g/s 
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Figure 15 Central element sheath temperature – bundle 6 – comparison between 
channels – broken pass – 5 g/s 
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Bris de 20% CE4 avec perte de RUC - passe brisée - canal O6 - température de gaine de 
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Figure 19 Comparison between the central element sheath temperatures of bundle 6 
channel O6 for different constant steam flowrate 

27th Annual CNS Conference &
30th CNS/CNA Student Conference
June 11-14, 2006
Toronto, ON, Canada

EVALUATION OF HYDROGEN PRODUCTION USING CATHENA-ELOCA
DURING A LOCA/LOECC SCENARIO

G. Sabourin, G. Parent, et al.

Page 21 of 23



27th Annual CNS Conference & 
30th CNS/CNA Student Conference 
June 11-14, 2006 
Toronto, ON, Canada 

EVALUATION OF HYDROGEN PRODUCTION USING CATHENA-ELOCA 
DURING A LOCA/LOECC SCENARIO 

G. Sabourin, G. Parent, et al. 

is 
E 

0.25 

0.2 

0.15 

0.1 

0.05 

bris de 20% CE4 avec perte du RUC - passe brisk) - canal L03 - masse cumulative 
d'hydrogene 

5 g/s 
10 g/s 

100 g/s 

0 g/s 

0 1000 2000 3000 4000 5000 

temps (s) 

Figure 20 Comparison of the cumulative hydrogen mass produced for different steam 
flowrate in channel L03. 

0.3 

0.25 

0.2 

S 0.15 
is 
E 

0.1 

0.05 

0 

Bris de 20% CE4 avec perte de RUC - passe brisk) - masse cumulative d'hydrogene - 5 g/s 

2

group 1 - channel 06 
group 2 - channel S10 

group 3 - channel L03 
group 4 - channel G05 

' 'group 5 - channel B10 

group 6 - channel W10 
3

5 

0 1000 2000 

temps (s) 

3000 

Figure 21 Hydrogen production by channel in the broken pass 

4000 5000 

Page 22 of 23 

 

Figure 20 Comparison of the cumulative hydrogen mass produced for different steam 
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Bris de 20% CE4 avec perte de RUC - terme source d'hydrogène
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