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Abstract 

Super Monte Carlo Simulation Program for Nuclear and Radiation Process (SuperMC) is a CAD 
based Monte Carlo program for integrated simulation of nuclear system by making use of hybrid 
MC and deterministic methods and advanced computer technologies, developed by FDS Team in 
China. The effective neutron multiplication factor keff is a key parameter for criticality 
calculation in safety design and analysis of reactors. In order to validate the correctness of 
criticality calculation of the latest version SuperMC 2.3, Handbook of International Evaluated 
Criticality Safety Benchmark Experiments (ICSBEP) was used for validation the code. Then 117 
representative benchmarks from ICSBEP were selected as a validation suite which gave a broad 
coverage of fissile materials, reflector materials and energy spectrum for criticality safety 
applications. All the calculation results of SuperMC were compared with the experimental values 
and 78% of the results were within one or two a of the experimental values. The average 
deviation between the results of SuperMC and MCNP was 7.034pcm by using the same nuclear 
data library. All the comparisons indicated that SuperMC2.3 worked correctly in the criticality 
safety calculations. 
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1. Background 

Monte Carlo (MC) neutron transport codes are widely used in various applications of reactor 
physics, criticality safety analysis, radiation shielding problems and detector modeling. The 
development of advanced nuclear energy system brings great challenges to current simulation 
methods and tools of nuclear energy system on neutronics, fluids and heat transfer, materials, 
fuels, geometrical modeling, data visualization, etc. To support these studies, a new Monte Carlo 
code named Super Monte Carlo Simulation Program for Nuclear and Radiation Process 
(SuperMC) is under development by the FDS Team in China [1-4]. The latest version SuperMC 
2.3 can perform neutron and photon transport calculation, and integrates geometry and physics 
automatic modeling, and visualization and virtual simulation, assisted with own developed 
nuclear data library. Various fixed source and criticality parameters of reactors can also be 
calculated. It adopts complete and concrete physics model of 10-"MeV to 150 MeV neutron and 
lkeV to 100GeV photon. 

The effective neutron multiplication factor keff which determines how a nuclear chain reaction 
proceeds is an important parameter for criticality calculation in reactor safety design and analysis 
of reactors. Criticality safety practitioners are required to validate the computational tools used in 
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1. Background 

Monte Carlo (MC) neutron transport codes are widely used in various applications of reactor 
physics, criticality safety analysis, radiation shielding problems and detector modeling. The 
development of advanced nuclear energy system brings great challenges to current simulation 
methods and tools of nuclear energy system on neutronics, fluids and heat transfer, materials, 
fuels, geometrical modeling, data visualization, etc. To support these studies, a new Monte Carlo 
code named Super Monte Carlo Simulation Program for Nuclear and Radiation Process 
(SuperMC) is under development by the FDS Team in China [1-4]. The latest version SuperMC 
2.3 can perform neutron and photon transport calculation, and integrates geometry and physics 
automatic modeling, and visualization and virtual simulation, assisted with own developed 
nuclear data library. Various fixed source and criticality parameters of reactors can also be 
calculated. It adopts complete and concrete physics model of 10-11MeV to 150 MeV neutron and 
1keV to 100GeV photon. 
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their work, and so are code developers. Code validation is necessary for evaluating the reliability 
of the simulation system. For criticality safety validation, several MC codes have tested with the 
validation suite chosen from Handbook of International Evaluated Criticality Safety Benchmark 
Experiments (ICSBEP) [5-6], such as MCNP [7], Serpent [8], McCARD [9] and TRIPOLI-4 
[10]. For criticality safety applications, 117 representative benchmarks from ICSBEP were used 
to validate the code. The calculation results were compared with experimental values and MCNP 
results. In Sections 2 and 3, validation suite, simulation methods were respectively introduced in 
detail. The calculation results and comparison of SuperMC with experiments and MCNP were 
presented in Section 4. 

2. Validation Suite 

The handbook is intended to validate calculational techniques that are used to establish minimum 
subcritical margins for operations with fissile materials and determine criticality alarm 
requirements and placements. The data in the handbook are frequently used for validating codes 
and cross section libraries used for reactor physics simulation, especially for criticality safety 
analyses. 

In order to validate the code for criticality safety applications, a set of 117 representative 
benchmarks has been selected from ICSBEP. The cases of the validation suite were chosen to 
include a wide variety of fissile materials, reflector materials and energy spectrum. The selected 
benchmarks in the validation suite are divided into three categories by major isotopes: 233U, 235U, 

and 239Pu. The benchmarks in the 235U category are further divided into three categories 
according to the enrichment of 235U in fuel: highly enriched uranium ( HEU ?60 wt.% ), 
intermediate enriched uranium ( 10 wt.% < IEU < 60 wt.% ) and low enriched uranium ( LEU 

10 wt.% ). The suite also covers a wide range of neutron energy spectra and is categorized by 
fast, intermediate and thermal spectrum. The fast spectrum benchmarks are those the majority of 
fissions are caused by neutrons with energy greater than 100keV. Thermal spectrum benchmarks 
are those the majority of fissions are caused by neutrons with energy lower than 0.625eV. The 
intermediate spectrum benchmarks are those in which more than half of the fissions are caused 
by neutrons with energy between 0.625eV and 100keV. It is noted that the LEU category only 
contains thermal cases because the systems cannot reach criticality with intermediate and fast 
spectrum. The cases in the validation suite in each of these categories were shown in Table I. 

Table I Criticality validation suite from ICSBEP. 

Principal Number of benchmarks by spectrum 
Fuel Fast Intermediate Thermal Total 
LEU 0 0 8 8 
IEU 10 0 6 16 
HEU 29 5 6 40 
233u

10 1 7 18 
Plutonium 21 1 13 35 

Total 70 7 40 117 
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3. Simulation and Analysis Method 

Each benchmark from ICSBEP has all of the evaluated experimental data, benchmark 
specifications which contain geometry model, material data, temperature data and etc. The 
automatic functions of the models conversion and construction of SuperMC were used to greatly 
reduce the human power and enhance the reliability of the calculation models [11-15]. In the 
validation suite, there are a series of low enriched uranium reactor benchmarks with large amount 
of repeat structure description in the geometry model. The automatic converting function of 
SuperMC from MCNP input files to SuperMC input files was used to effectively  enhance the 
benchmarking efficiency. Repeat structure construction of reactor cores based on the assigned 
parameters and the conversion between CAD models and MC calculation geometry models were 
also adopted in the validation process. Besides, physics attributes including materials, sources, 
tallies, and temperature data were assigned graphically to form complete calculation input files. 

The calculations used more than total of 30000 generations with 3000 histories per generation. 
The results from the first 100 generations were excluded from the statistics. The calculation was 
run in the k-eigenvalue criticality mode. The nuclear data library named Hybrid Evaluated 
Nuclear Data Library (HENDL) in SuperMC for nuclear analysis which can provide fine-group, 
come-group and point-wise nuclear data to fulfill the requirements of advanced reactor design 
and the relevant studies (Xu et at, 2010) was used for validation the code. The evaluated data in 
the nuclear library were selected from international evaluated nuclear data source-, such as ENDF, 
JENDL, and JEFF. The data library had also been extensively tested [17]. All contrast simulation 
was done with the same nuclear data library and under the same computing configuration. 

With using the same ACE format library files, it significantly reduced the uncertainties between 
the two codes by eliminating all discrepancies originating from the fundamental interaction data. 
The calculation results reflected discrepancies between two codes directly. Comparing with the 
benchmark experimental measurement data, following equations were used to evaluate the 
deviations between the calculation results and experimental data. 

The relative difference was defined by [10]: 

x (xbenchmark or mcnp x SuperM Cy x benchmark or mcnp 

Where X was the analyzed parameter. The relative combined statistical uncertainty (°), was 

defined by: 

a ..A a benchmark or mcnp)2 ( ciSuperMC ): 

Where 
benchmark or mcnp and astiperMC 

were benchmark experimental uncertainties and 
statistical uncertainties of SuperMC results. 

 
 
7th International Conference on Modelling and Simulation in Nuclear Science and Engineering (7ICMSNSE) 
Ottawa Marriott Hotel, Ottawa, Ontario, Canada, October 18-21, 2015 

3. Simulation and Analysis Method 

Each benchmark from ICSBEP has all of the evaluated experimental data, benchmark 
specifications which contain geometry model, material data, temperature data and etc. The 
automatic functions of the models conversion and construction of SuperMC were used to greatly 
reduce the human power and enhance the reliability of the calculation models [11-15]. In the 
validation suite, there are a series of low enriched uranium reactor benchmarks with large amount 
of repeat structure description in the geometry model. The automatic converting function of 
SuperMC from MCNP input files to SuperMC input files was used to effectively enhance the 
benchmarking efficiency. Repeat structure construction of reactor cores based on the assigned 
parameters and the conversion between CAD models and MC calculation geometry models were 
also adopted in the validation process. Besides, physics attributes including materials, sources, 
tallies, and temperature data were assigned graphically to form complete calculation input files. 

The calculations used more than total of 30000 generations with 3000 histories per generation. 
The results from the first 100 generations were excluded from the statistics. The calculation was 
run in the k-eigenvalue criticality mode. The nuclear data library named Hybrid Evaluated 
Nuclear Data Library (HENDL) in SuperMC for nuclear analysis which can provide fine-group, 
coarse-group and point-wise nuclear data to fulfill the requirements of advanced reactor design 
and the relevant studies (Xu et al., 2010) was used for validation the code. The evaluated data in 
the nuclear library were selected from international evaluated nuclear data source, such as ENDF, 
JENDL, and JEFF. The data library had also been extensively tested [17]. All contrast simulation 
was done with the same nuclear data library and under the same computing configuration.  

With using the same ACE format library files, it significantly reduced the uncertainties between 
the two codes by eliminating all discrepancies originating from the fundamental interaction data. 
The calculation results reflected discrepancies between two codes directly. Comparing with the 
benchmark experimental measurement data, following equations were used to evaluate the 
deviations between the calculation results and experimental data. 

The relative difference was defined by [10]: 

 

Where X was the analyzed parameter. The relative combined statistical uncertainty ( ), was 
defined by: 

                       

Where were benchmark experimental uncertainties and 
statistical uncertainties of SuperMC results. 

 

http://www.marriott.com/hotels/travel/yowmc-ottawa-marriott-hotel/


7th International Conference on Modelling and Simulation in Nuclear Science and Engineering (7ICMSNSE) 
Ottawa Marriott Hotel, Ottawa, Ontario, Canada, October 18-21, 2015 

4. Calculation Results and Analysis 

The results of keff and its statistics uncertainty in each case were collected and presented in Figs. 
2-6. The average statistical error for SuperMC and MCNP were 25pcm (from 20 to 33pcm) and 
26pcm (from 22 to 35pcm) respectively. The statistical error was much smaller than the errors of 
benchmark value which the average value was 502pcm. So the statistical error for MCNP and 
SuperMC were not presented in Figs. 

We also compared and analyzed the calculation results as well as the benchmark experimental 
measurements to determine whether the code works well for a wide range of problems. The 
benchmark name is abbreviated to use the first letter of ICSBEP name, which gives HEU-MET-
FAST-001 for hmfl . 

The difference of key- between SuperMC and MCNP for this suite using the same data library was 
shown in Fig. 1. While interfacing the same nuclear data library, the differences of results were 
due to the differences of codes. The average deviations between SuperMC and MCNP were 
7.034pcm (from 0 to 28pcm) by using the same data library. There was a good agreement 
between the results of two codes. According to the equations in section 3, compared with the 
experimental data, about 78% of the cases simulated by SuperMC were within one or two a of 
the experimental data. 

The Figs. 2-6 showed a comparison of keff between the experimental data and calculation results. 
It was noted that also the calculation results of MCNP using the ENDF/B-VII.0 data library were 
presented in Figs. 2-6 [6]. The aim was to confirm whether the different data libraries would 
have a greater impact on calculation results with using one code. The average deviation 
calculated by MCNP with using two data libraries was about 0.0037. 

By analyzing the distribution of key- in the results, some key- from the calculation results were 
higher than experimental data: umf04, pmf05 and pmfD8 were 300-400 pcm above the 
experimental data, and the results for pst09 were even higher. On the other hand, some results 
were relatively lower than experimental data: mct02-case-pn1-30, pnl-31, pnl-32, pnl-33, and pnl-
35 which had large amount of repeat structure description in the geometry model. The 
benchmark pst09 calculated by SuperMC owned the maximum deviation which was 2118pcm 
compared with the experimental data while the previous data calculated by MCNP which 
interfaced to ENDF/B-VII.0 data library was 1900pcm from the experimental data. The isotopes 
of data library in these cases might influence the final results: an absorber such as Gd, a 
moderator such as C, or structural materials such as Ni, stainless steel, Mo, Cr, Zr in between 
fuel plates. The reason of the discrepancies may be due to the elements' data that were specific to 
these cases. More cases were needed to be simulated to find the specific reasons. 
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5. Conclusions 

ICSBEP was adopted to validate the criticality calculations of SuperMC and 117 representative 
benchmarks were selected to present the calculation results. All the calculation results of SuperMC 
were compared with the experimental values and 78% of the results were within one or two a of the 
experimental values. The average deviation between the results of SuperMC and MCNP using the same 
nuclear data library was 7.034pcm (from 0 to 28pcm). The conclusion can be drawn that the criticality 
safety calculation capacity and correctness of SuperMC2.3 were proved in a manner. 
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