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Abstract 

The modeling and analysis of 3D acoustics in CANDU fuel sub-channels are conducted using a 
combined FEM-Ritz method to reduce the number of acoustic degrees of freedom for higher 
computational efficiency. The method uses a prism element by extruding an isoparametric six-
node triangular element along the z-axis and computing the acoustic displacement by combining 
isoperimetric triangular shape functions and a polynomial shape function of n-th order. 
Lagrangian mechanics is utilized to assemble the equations of motion and derive all the system's 
matrices. The acoustic system consists of a cylindrical pressured pipe with rigid walls filled with 
fluid. At the inlet, an acoustic wave is generated by a time-harmonic source and, at the outlet, the 
acoustic wave interacts with a reacting and absorbing material. Numerical results obtained are 
found to be in excellent agreement with the analytic solution. 

Keywords:Finite Element Method, Ritz Method, 3D Acoustics. 

1. Introduction 

Many engineering acousticproblems are modeled and solved usingcommercial software 
packages based on finite elementsthat offer adequate accuracy for an average computational 
time. However, when an acoustic system gets large or requires a fine mesh to capture local 
phenomena at a very detailed scale, the FE analysis becomes computationally expensive since 
the number of degrees of freedom may reach themillions. 

In this paper, a combined FE-Ritz method is proposed and found suitable for handling low 
frequency acoustics in a geometrically complex 3DCANDU fuel channel filled with fuel 
bundles. The idea is to model 3D acoustic systems, where acoustic fluctuations on one plane can 
be captured by means ofFE analysis and the smooth acoustic fluctuations along the third axis can 
be approximated by polynomials of relative low orders. By employing this method, one is able to 
reduce the number of degrees of freedom of the desired problem and the computational time 
without jeopardizing the accuracy of the solution. 

For the finite element formulation, a displacement-based method is proposed in order to examine 
the propagation of three-dimensional acoustic wavesina fluid medium. Compared to the classical 
pressure-based approach used by Craggs[1], Hackett[2], and Gladwell[3],a displacement-
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basedformulation by Yu and Kawall[4] allows the derivation of the equations of motion by 
Hamilton's variation principle, which facilitates the implementationof non-classical boundary 
conditions and interface conditions between distinct domains and media. 

Thesix-node triangular isoparametric elements are used to mesh the geometrically complex 
cross-sectional plane; variations of acoustic displacement in the normal direction of the plane are 
handled using a polynomial interpolation. This method uses the polynomial expansion as a way 
of extruding the 2D mesh, so that the three-dimensional domain is divided into prism 
elements.As an illustrative example,Figure 1 shows a graphical representation of the domain 
discretization for the FE-Ritz method.The domain represents the fluid-filled region in a 36 rod 
fuel channel for a CANDU nuclear reactor. 
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Figure 1:Three-dimensional system meshed with prism elements. 

1.1 Assumptions 

In this study, the following assumptions are made:1) the fluid flow is negligible; 2) the pipe 
walls are smooth, rigid and adiabatic; 3) fluid is invischi; 4) the acoustic source can be modeled 
by a loud speaker at the inlet; 5) sound waves interact with a responsive and absorbing material 
at the outlet, hence an acoustic impedance is prescribed at the outlet. These assumptions are the 
same for every system model in this study. Essentially, these assumptions cause the acoustic 
waves to behave linearly and facilitate the validation of the results with the appropriate analytical 
solution for the system or by comparison against numerical results from a FE software such as 
ANSYS. 
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2. Background 

The motivation for this work comes from the known bundle vibrationproblem in CANDU 
nuclear reactors.Under reactor operation, the bundles are known to vibrate. The sources of 
vibration are fluid flow and acoustic pressure pulsations originated at the main heat transport 
pumps and propagated to the fuel channels. Given the design of the bundles, they can show 
small-scale motions inside the tube such as rolling, sliding and bending vibration with respect to 
the designed equilibrium position. This motion leads to friction and impact between the bundles 
and the pressure pipe which, over a long period of time, appears to be damaging not only the 
pressure pipe but the fuel bundle as well The bundle motion can cause wear and material-loss of 
the pressure pipe also known as fretting, along with endplate cracking. 

In order to study this phenomenon, many numericaland experimental models have been 
developed(Bhattacharya[5], Paidoussis[6]; Zhang and Yu[7])to look at the effects of fluid-elastic 
instability, vibration induced by vortex shedding and turbulence-induced vibration. Other than 
experimental results such as those documented by Misra et al.[8],little work has been done in the 
area of computational acoustics, the main reason being the fact that constructing an acoustic 
model that can be easily coupled with a structural model is computationally challenging given 
the degrees of freedom of the system and the high resolution required to model the bundle 
system. The FE-Ritz method is adequate to solve this problem since it can reduce the degrees of 
freedom of the bundle system and it can be easily adapted to account for structure interaction due 
to its displacement based formulation. 

3. Finite Element Formulation of Acoustic System 

The acoustic system component is modeled using six-node isoparametricthree-dimensional prism 
elements, as seen in Figure 2. 

4 

Figure 2: FE-Ritz three-dimensional prism element. 

Within each element, the acoustic displacement varies with local coordinates, k, and ;, 
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Once the formulation for one element component vector is determined, one can relate the 
element displacement vector to the global component vector through a transformation matrix 
[Te_,g] , as follows 
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3.1 Prescribed Acoustic Impedance 

When acoustic impedance is imposed at one of the system's boundaries (i.e. the outlet of the 
pressure pipe), the boundary will dynamically affect the system as it responds to incoming 
acoustic energy. In a sense, this boundary absorbs and reflects some of the incoming acoustic 
wave which generates a pressure at all points on the boundary. This pressure can be interpreted 
as a generalized forcetQp le , for a virtual displacement 6{Ue}T, whose work done is defined as 
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Where, I' is the cross-sectional area at the boundary 6We T = 6fuer. [N2]1. [Ni] T is the element 
virtual work and p is the generated pressure. The generalized forces are defined by the 
boundary's behavior or, in this case, the pressure generated by the specified acoustic impedance 
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(Pe) = ka[we) + da[viie) (14) 

wherethe stiffness ka and damping da coefficientscorrespond to the imaginary and real parts of 
the acoustic impendence, 

PL 
PcVL

= Zr + iZi
(15) 

Wherek is the complex velocity at the boundary, Zr is the real part of the acoustic impedance, 
Z' is the imaginary part of the acoustic impedance, p is the density of the medium, c is the speed 
of the wave in the medium and co is the frequency. 
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= 𝑍𝑍𝑟𝑟 + 𝑖𝑖𝑍𝑍𝑖𝑖  
(15) 

 

Where,v�L  is the complex velocity at the boundary, Zr  is the real part of the acoustic impedance, 
Zi is the imaginary part of the acoustic impedance,ρ is the density of the medium, c is the speed 
of the wave in the medium and ω is the frequency. 
 

 𝑘𝑘𝑎𝑎 = 𝑍𝑍𝑖𝑖𝜌𝜌𝜌𝜌𝜌𝜌 (16) 
 

 𝑑𝑑𝑎𝑎 = 𝑍𝑍𝑟𝑟𝜌𝜌𝜌𝜌 (17) 
 

Note that the pressure generated only depends on the axial displacement variation w. Therefore, 
the work done is calculated as: 

 
 

𝑊𝑊 = −�� 𝛿𝛿{𝑤𝑤�𝒆𝒆}𝑇𝑇[𝑁𝑁2]𝑇𝑇[𝑁𝑁1]𝑇𝑇|𝑧𝑧=𝐿𝐿(𝑘𝑘𝑎𝑎 [𝑁𝑁1]|𝑧𝑧=𝐿𝐿[𝑁𝑁2]{𝑤𝑤�𝑒𝑒}
Γ

𝑁𝑁𝑒𝑒

𝑒𝑒=1
+ 𝑑𝑑𝑎𝑎 [𝑁𝑁1]|𝑧𝑧=𝐿𝐿[𝑁𝑁2]{𝑤𝑤�̇𝑒𝑒})𝑑𝑑𝑑𝑑 

(18) 

 

And thus the generalized force can be written as 
 

�𝑸𝑸𝒑𝒑�𝑒𝑒 , = ��𝛿𝛿{𝑤𝑤�𝒆𝒆}𝑇𝑇 �𝐾𝐾�𝑧𝑧𝑧𝑧� {𝑤𝑤�𝑒𝑒} + 𝛿𝛿{𝑤𝑤�𝑒𝑒}�𝐶̃𝐶 𝑧𝑧𝑧𝑧 � �𝑤̇𝑤�����𝑒𝑒��
𝑁𝑁𝑒𝑒Γ

𝑒𝑒=1

 

 

(19) 

 
Note that the generalized force can be separated into two non-conservative damping and stiffness 
forces respectively, which are defined as: 

 
�𝐶̃𝐶 �𝑒𝑒 = �

0 0 0
0 0 0
0 0 �𝐶̃𝐶 𝑧𝑧𝑧𝑧 �𝑒𝑒 

� 
 
(20) 

where 
 

�𝐶̃𝐶 𝑧𝑧𝑧𝑧 �𝑒𝑒 = � 𝑑𝑑𝑎𝑎 [𝑁𝑁2]𝑇𝑇[𝑁𝑁1]𝑇𝑇|𝑧𝑧=𝐿𝐿[𝑁𝑁1]|𝑧𝑧=𝐿𝐿[𝑁𝑁2]|𝐽𝐽|𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑
Γ

 

 

 
(21) 

And 
 

�𝐾𝐾��𝑒𝑒 = �
0 0 0
0 0 0
0 0 𝐾𝐾�𝑧𝑧𝑧𝑧𝑒𝑒

� 
 
(22) 

where 
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[17 „]e = 11 k a [N 2]T [Mr' iz=L[Ni] iz=L[N2]1J14 dn (23) 
r

Since the generalized force only acts with respect to axial variations, the other components are 
zero. One can then add the stiffness contribution of the reacting boundary to the component 
stiffness matrix [K]. The global generalized forces can write as follows 

[Q7,1= —Ve itu. )— [ e ]{ti. ) 

For which the component non-conservative stiffness and damping matrices are 

[K ] 

[C ] 

3.2 Equations of Waves 

Ne
— 

=1[T e, g] T [K ]e [Te, g] 
e=1 

Ne
- 

=1[T e, g] T [C ]e [Te, g] 
e=1 

(24) 

(25) 

(26) 

The equations of waves in the fuel string acoustic system may be obtained from the following 
Lagrange equations: 

d (  al, ) al, 
dtaft })+ atu ) IQ 1

Substituting Equations(9), (10) and (24) into Equation (27) yields the following equations of 
motion for the unconstrained system 

4. Plane Wave Solution 

(27) 

[nip. ) + [K]M ) = —[k ][1.i. ) — [C ift. ) (28) 

In order to test the previous FE formulation, one can manipulate the boundary conditions to 
model simple systems whose solution is already known. Ideally, if sound were to travel through 
a pipe with smooth and rigid walls, its behavior would be that of a plane wave. Hence, imposing 
these conditions to the proposed model should yield the same results as those from a plane wave 
case. Sinceit is assumed that, at the outlet of the system, the wave will interact with a reacting 
and absorbing wall, the pressure along the pipe is given byYu[4]as 

(Zr. + iZi) cos k(L — z) — i sin k(L — z) 
73L(z) = PcVo cos kL — i(Z, + iZ1) sin kL (29) 

Eq. (29)is the analytical solution for the acoustic complex pressure everywhere if the walls of the 
pipe are smooth and rigid. For this test case, 
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Γ
 

 
(23) 

Since the generalized force only acts with respect to axial variations, the other components are 
zero. One can then add the stiffness contribution of the reacting boundary to the component 
stiffness matrix [K].  The global generalized forces can write as follows 
 

 �𝑸𝑸𝒑𝒑� = −�𝐾𝐾� �{𝒖𝒖� } − �𝐶̃𝐶 ��𝒖𝒖�̇ � (24) 
 
For which the component non-conservative stiffness and damping matrices are 

 
�𝐾𝐾� � = ��𝑇𝑇𝑒𝑒→𝑔𝑔�

𝑇𝑇�𝐾𝐾� �𝑒𝑒 �𝑇𝑇𝑒𝑒→𝑔𝑔�
𝑁𝑁𝑒𝑒

𝑒𝑒=1

 
 
(25) 

 
 

�𝐶̃𝐶 � = ��𝑇𝑇𝑒𝑒→𝑔𝑔�
𝑇𝑇�𝐶̃𝐶 �𝑒𝑒 �𝑇𝑇𝑒𝑒→𝑔𝑔�

𝑁𝑁𝑒𝑒

𝑒𝑒=1

 
 
(26) 

 
3.2 Equations of Waves 
 
The equations of waves in the fuel string acoustic system may be obtained from the following 
Lagrange equations: 

 𝑑𝑑
𝑑𝑑𝑑𝑑 �

𝜕𝜕𝐿𝐿
𝜕𝜕�𝒖𝒖�̇ �

�+
𝜕𝜕𝐿𝐿
𝜕𝜕{𝒖𝒖� } = {𝑸𝑸 } 

 
(27) 

 
Substituting Equations(9), (10) and (24) into Equation (27) yields the following equations of 
motion for the unconstrained system  
 

 [𝑀𝑀]�𝒖𝒖�̈ � + [𝐾𝐾]{𝒖𝒖� } = −�𝐾𝐾� �{𝒖𝒖� } − �𝐶̃𝐶 ��𝒖𝒖�̇ � (28) 
 
 
4. Plane Wave Solution 
 
In order to test the previous FE formulation, one can manipulate the boundary conditions to 
model simple systems whose solution is already known. Ideally, if sound were to travel through 
a pipe with smooth and rigid walls, its behavior would be that of a plane wave. Hence, imposing 
these conditions to the proposed model should yield the same results as those from a plane wave 
case. Sinceit is assumed that, at the outlet of the system, the wave will interact with a reacting 
and absorbing wall, the pressure along the pipe is given byYu[4]as 

 
 

𝑝̂𝑝𝐿𝐿(𝑧𝑧) = 𝜌𝜌𝜌𝜌𝑉𝑉0
(𝑍𝑍𝑟𝑟 + 𝑖𝑖𝑍𝑍𝑖𝑖) cos𝑘𝑘(𝐿𝐿 − 𝑧𝑧) − 𝑖𝑖 sin𝑘𝑘(𝐿𝐿 − 𝑧𝑧)

cos𝑘𝑘𝑘𝑘 − 𝑖𝑖(𝑍𝑍𝑟𝑟 + 𝑖𝑖𝑍𝑍𝑖𝑖) sin𝑘𝑘𝑘𝑘
 

 
(29) 

 

Eq. (29)is the analytical solution for the acoustic complex pressure everywhere if the walls of the 
pipe are smooth and rigid. For this test case, 
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it is not necessary to completely discretize an entire domain, but rather use one element as 
depicted in Figure 2, which essentially models a prismatic pipe. 

5. Results 

This section presents the results obtained from the plane wave test case within one prism element 
and the results for a global system that simulates the propagation of acoustic waves throughout a 
one-sixth sector of the cylindrical domain depicted in Figure 1. 

5.1 Plane Wave Results 

Numerical results are compared against the analytical solution in both space and time domain, 
where the space domain illustrates the steady state solution of the system after iteration time and 
the time domain illustrates the convergence time for the acoustic response. 

Within one FE-Ritz element, the plane wave results are calculated using the 
followingparameters: 

Table 1: Values of Geometric Properties Used for Plane Wave Test Case in Air. 

Parameters 

Density p (mg) 1.2 

Length L (m) 
1.705 m 

Speed of sound c e) 341 m/s 

Piston velocity Vo (S) 0.01 m/s 

Real acoustic impedance ZR 4 
Imaginary acoustic impedance Z1 3 

Excitation frequency u (
rad
—, ) 270 

Time step 0.001 sec 
Total time 

0.2 sec 

Order of polynomial n 5 
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Figure 3: Time domain convergence of FE-Ritz Figure 4: Steady state acoustic pressure for 
method for plane wave test case in air. plane wave test case in air. 

In Figures 3 and 4, it can be seen that both the analytical and numerical solution are in excellent 
agreement. 

The time domain results inFigure 3 and Figure 5 show that the computed solution converges 
within the first three oscillations; hence the computed responses are phase-shifted in order to 
numerically compare the results against the analytical solution. The acoustic impedance for both 
water and air are arbitrarily calculated based on the media in which sound propagates and then 
stiffness and damping characteristics of the material at the outlet. 

5.2 3D Acoustic System Results 

The following results are computed using the parameters fromTable 2,for the assumptions stated 
in the introductory sectionand in afraction of the domain depicted inFigure 1.The numerical 
results are then compared against numerical results obtained from ANSYS for a model with the 
same characteristics. 

Table 2: Values of Geometric Properties in water. 

Parameters 

Density p C3) 1000 

Length L (m) 
0.5 m 

Radius r (m) 0.06 

Piston pressure on inlet areaPo (II:4n ) 5 
Kgm 

52 

Real acoustic impedance ZR 4 
Imaginary acoustic impedance Z1 0 
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Figure 5 Steady state cross-section pressure at different z locations: L/12, L/8, L/4,L/2, 3L/4 and 

7L/8. 

For simplicity, the boundaries have been assumed to be smooth and rigid. Note that the pressure 
distribution on each cross-section changes along the length of the pipe. Thus, one can see that the 
pressure decreases smoothly from the inlet to the outlet. 
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pressure decreases smoothly from the inlet to the outlet. 
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Using ANSYS to compute the pressure after 0.1 seconds with the same characteristics and the 
same incident pressure generates the following pressure distribution: 

ST, 1 

SUB .911 
TWE ..0911 
PPM (AVG) 
R.9Y9=0 
caw ..7976-04 
SW =4.99996 

ifiLC 

ANSY 
N35.I 

Academic 

AVG 6 2015 
01;4205 

.'9,E-04 '.1111, 2.22226 9.99991 4.44443 
4.99998 

Figure 6: Steady state for pressure 
distribution along sector (ANSYS solution). 

— FE-Ritz — ANSYS 5011 

Acoustic Pressure P(1/2,t) vs Time , n=5 

- 

-3 
0.00 0.02 0.04 0.06 

Time (5) 
0.08 0.10 0.12 

Figure 7: Time domain response for one node 
comparison (FE-Ritz vs. ANSYS). 

The results depicted in Figure 5 are within the same range of values at the corresponding cross-
section when compared to the results in Figure 6. Further, the results in Figure 7 appear to be 
shifted by a face angle. This is because the results from ANSYS converge after 4 cycles due to 
the low order element (8-node bricks) used while the FE-Ritz method achieves convergence 
within the first 2. 

6. Conclusion 

In this study, the acoustic behavior of fluid particles inside a pressure pipe is investigated using a 
combination Finite Element method and Ritz method. The theoretical procedure presented in this 
paper has been implemented into a Fortran 77 code and a Python code in order to facilitate the 
use for a wide range of applications including the bundle vibration problem of the CANDU 
system. Also, the code can be easily modified in order to study three dimensional acoustic-
structure interactions with the help of an automated mesh generator or by using stating meshing, 
which may only apply for low frequency excitations. Additionally, the analysis done by the code 
is faster than the analysis done by a regular 3D finite element module, simply because the FE-
Ritz method reduces the degrees of freedom and therefore requires less memory and CPU. The 
plane wave test case and the sector model haves shown to accurately match the analytic solution 
obtained from Yu[41 and the ANSYS numerical results, which validates the method and its 
implementation. 

7. Acknowledgements 
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