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Abstract

This paper presents a new method for approximate solution of the multigroup neutron transport
equation. The R-function theory is applied to describe the geometric shape of material regions
analytically. Resulting formulae form a basis for a mesh-free approximation of the spatial
neutron flux distribution. The method of moments is applied to transform the integral transport
equation into a system of linear algebraic equations. Calculations of characteristic two-
dimensional CANDU lattice problems show that the method is capable of accurate modeling of
the neutron transport with a significant reduction of the number of unknowns compared to
standard mesh-based approximations.
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1. Introduction

A common objective of deterministic transport methods based on the integro-differential form of
neutron transport equation is to approximate the solution with a set of trial functions from a less
restrictive class of functions than the class of functions to which the exact solution belongs. This
approach is mainly due to the inability of conventional numerical mathematics to handle
complex spatial domains on a whole. Instead, such a domain is usually subdivided into a number
of subdomains of simple geometric shapes (triangles, rectangles, etc.), to each of which a
classical approximation (finite difference, finite element, etc.) could be applied. A benefit of
using the integral form of the transport equation is that the approximate solution can be sought in
a much less restrictive class of functions than the class of approximate solution of the integro-
differential transport equation. It consists of the class of square-integrable functions that allows
a large degree of freedom in the choice of trial functions. The simplest form is a constant value
throughout each subdomain as used in the collision probability method. By lessening the
requirements on trial functions, however, the number of degrees of freedom (unknown
coefficients) of the approximate solution may increase significantly. Despite the tremendous
capabilities of today’s computers, this is still a severe limitation in transport calculation of large
heterogeneous systems.

The R-Function Theory [1], [2], [3] is a powerful tool to address the geometric part of the
problem in various scientific and engineering disciplines. Using R-functions one can easily
construct an analytical, continuous and differentiable function that describes the boundary of a
semi-analytic object, i.e., a complex spatial domain the boundary of which consist of parts of
analytic surfaces. In this way, the geometric information can be a priori and analytically
incorporated in the approximate solution of a boundary problem. Accordingly, the R-function
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method has been efficiently applied to approximate solution of heat transfer, electrostatics,
theory of plates, and other elliptic boundary value problems [3], including the neutron diffusion
[4], [5], solid modelling for Monte Carlo calculations [6], analytical modelling of a spiral
inflector [7], as well analytical representation of the ZED-2 reactor geometry [8].

Section 2 presents a mesh-free approximation of the spatial distribution of the scalar neutron
flux. The trial functions are specified according to the geometric shape of material regions by
means of the R-function theory. The method of moments is applied to transform the integral
neutron transport equation into a set of linear algebraic equations and determine the unknown
coefficients. Section 3 presents the results of calculations of a set of CANDU related two-
dimensional test problems. To assess the accuracy of the solution, the mesh-free results are
compared with reference Monte Carlo results obtained by the MCNP5 code [9] Version 1.40.
On the other hand, comparisons with collision probability calculations, carried out with the
lattice cell code WIMS-AECL [10], are given to get an impression about the reduction of the
number of unknowns.

2. Theory

The spatial distribution of the scalar neutron flux is a continuous function over the space and
differentiable within each material region so that discontinuities of the first derivative occur only
at interface boundaries. A mesh-free approximation of such a function is presented in what
follows.

2.1 Decomposition of spatial flux distribution

To explain the basic idea of the method, consider a two-region reactor model in one-dimensional
geometry. Denote by V;,V,,and V, = V; UV, the spatial domains of the core, reflector, and
entire reactor, respectively. They are bounded by the interface boundary oV , between the core
and reflector, and the outer reactor boundary dV,. Accordingly, the boundaries of spatial
domains of the core and reflector (V; and V,) are dV; = 0V, , and dV, = dV, U dV;,. Suppose
the scalar flux ¢ (r) in a thermal group has a shape as shown in Figure 1.a.
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Figure 1 Spatial flux decomposition in a two-region reactor model
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Denote by b (1) a smooth positive function that is equal to the neutron flux at the outer (vacuum)
boundary, i.e., b(ry) = @(ry), ro € dV,. In the particular case of a symmetric reactor model in
one-dimensional geometry, as considered here, the function b(r) may be represented as a
constant. Thus, the problem reduces now to determination of the function ¢ (r) — b(r) that is
equal to zero at the outer boundary.

As a next step of the flux decomposition, denote by uy () a smooth positive function that is
equal to ¢(r) — b(r) at both boundaries dV, and dV; , as shown in Figure 1.a. Consider the
properties of the function f(r) = @(r) — b(r) —uy(r). In region V; it is a smooth negative
function that vanishes at the boundary aV;. Similarly, in region V, it is also a smooth but
positive function that vanishes at dV,. Instead of a single function f(r), one may specify two
continuous positive functions u; (r) and u, () as follows:

uy (1) = {Ico(r) — b((;”’) ;léol(/:)l, rev 1y (1) = {Ico(r) — b((;”’) ;1;01(/12*)|, rev, M

Hence, the neutron flux distribution can be represented as a linear combination of the functions
ugy(r), uy (r) and u, (r) plus the boundary term b(r), i.e.,

2
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where the coefficients s; specify the sign (+1 or —1) of the related contribution. Note that, as
shown in Figure 1.b, each function u; () is a smooth positive function within the related domain
V; (i = 0,1,2) and equal to zero on its boundary dV; and everywhere else. In a general case of a
multi-region problem, the summation in equation (2) should be carried out over all material
regions as well as a number of spatial domains that represent unions of two or more material
regions up to the spatial domain of the entire reactor model.

2.2 Approximate solution of two-region problem

According to equation (2), one may look for an approximate solution of the two-region problem
in the following form:

2 n
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where c(r) is an approximation of the boundary term b(r), ¢, ; are unknown coefficients to be
determined, and f; ; () are basis functions of a set of n; functions intended to approximate the
corresponding functions w; (r). Accordingly, each function f; ; () is a smooth positive function
within the related domain V; and vanishes on its boundary dV; and outside V;.

The R-function theory provides a simple mathematical apparatus to construct a continuous and
differentiable function w(r) for an arbitrary semi-analytic domain in order to describe the
domain analytically as follows:
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Having specified a function w;(r) for each domain V; (i = 0,1,2), one can easily construct
functions w; () that satisfy the requirements of the approximate solution (3) as follows:

1 .
ol ) =5 @@ +lo@h =37 T o) ®)

To get a set of functions f; ; (r) for each domain V;, one may either apply a set of power function
() oraproduct of w;" with a set of continuous positive functions, or both.

2.3  Approximate solution of a CANDU lattice cell model

Consider an infinite lattice of a periodically repeating lattice cell, for instance the 37-element
CANDU lattice cell as depicted in Figure 2.a. The fuel (natural uranium) is arranged in fuel
bundles that consist of a central pin surrounded with three rings of fuel pins. There are six pins
in the inner ring, 12 pins in the middle ring and 18 pins in the outer ring. Fuel bundles are
loaded in a pressure tube surrounded by air gap and a calandria tube to physically separate the
moderator from the coolant. Owing to the physical properties of the problem, the approximate
solution does not necessarily need to treat explicitly each material region. For instance, optically
thin regions, such as the cladding and the gap, do not affect significantly the flux distribution.
They can be accounted for by using a union of an optically thin domain and another adjacent
material region. Suppose that functions w;(r) are constructed for the following spatial domains:

w1 All fuel regions

% Coolant and cladding regions

w3 Fuel channel interior (everything inside the inner boundary of the pressure tube)
Wy Fuel channel exterior (everything outside the inner boundary of the pressure tube)
Ws Pressure and calandria tubes including the air gap between them

W Calandria tube interior (everything inside the outer boundary of the calandria tube)
ay Moderator

The above functions w; (1) must obey the same periodicity as the infinite reactor lattice itself.
Details about their construction can be found in Reference [8]. The following set of N = 15
basis functions was used for the calculation of single cell test problems presented in Section 3:

{f}—{ wi, wiwi, 0i, wiei, 0, (0% (0T)3 } ©)

o ef, (0D ol of, 0F, (0% (1), ()*

Here, a single function is used for certain regions (Vs and V), while two or more functions are
necessary for spatial domains of large flux variations (fuel, coolant, fuel channel and moderator).
Also, all basis functions are assembled in a single set of functions, instead of separate sets for
each spatial domain as used in equation (3). Accordingly, the approximate solution can be
represented in the following form, where the boundary term is omitted since there is no vacuum
boundary in the infinite lattice model:
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2.4 Determination of unknown coefficients

For a given energy group, the integral neutron transport equation can be written in the following
general form, where the group index is omitted for simplicity:

o) = [ & K@) [5,0) 0) + 5] ®)
74

IV denotes the spatial domain where neutron transport occurs (entire three-dimensional space for
the infinite lattice model or a finite domain of a reactor model), r = {x,y,z} and r' = {x',y', z'}
are radius vectors, X, (r) is the scattering cross section, and s(r) is the scattering and fission
source in considered group. The explicit shape of the integral kernel K (r, ") is as follows:

_expl=t(r,r)] b=l r—r

’

K(rr
( 7]

where ¢ is the geometrical distance along the direction @ = (r — ") /|r — r'|.

The neutron source s(r) can be expanded over the same set of basis functions as the neutron flux
presented in equation (7). Denote by s,, the corresponding expansion coefficients. The method
of moments can be applied to determine the unknown coefficients. To this end, the neutron flux
and neutron source approximations are substituted into Eq. (8), which is then multiplied by a
basis function f;, (r) and integrated over a spatial domain V*, which is equal to a repeating part
of the infinite lattice model or the spatial domain V' of the full reactor model, i.e.,

N N
J @t COXTICE | @rme | ke SPNACIEICEAENNED

Repeating this procedure for each basis function f,, (), m = 1,2,... N, one gets a system of N
linear equations that determine the unknown coefficients ¢,,, n = 1,2, ... N:

N

N N
Z AnnPn = Z bm,n(pn + Z CanSn,», M= 1,2,..N (11)
n=1 n=1

n=1

where the coefficients a,, ,,, b;, ,, and c,, ,, are specified as follows:
ann = | 1@ ) (12)
V*
b = | &1 | K@@ 00 20) (13)
* %4

Cnn = f dr f &7 K () fn (1f, () (14)
* 74
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3. Results

A prototype computer program has been written in Fortran 95 to test the method. The code
includes a number of modules of the WIMS-AECL code to carry out the following tasks: read
input data, retrieve library data, prepare macroscopic cross sections, perform resonance self-
shielding, and do the ray tracing for numerical integration of the necessary space integrals. Thus,
the prototype code uses identical multigroup cross sections as the WIMS-AECL code.

3.1  Test problems

A set of test problems were specified using the 37-element CANDU lattice cell as the basic
element of the models. Figure 2.a shows the geometric model of the 37-element lattice cell,
which is used as is by the mesh-free approach without any subdivision except the fuel
subdivision for resonance self-shielding. For the sake of comparison with a mesh based
approach, Figure 2.b presents the mesh subdivision as used for routine collision probability
calculations by the WIMS-AECL code. Three groups of problems were specified as follows:

A. Three single cell models representing infinite lattices of periodically repeating cells:

1. Lattice cell with fresh fuel at regular operating conditions.
2. Lattice cell with fresh fuel and voided coolant.
3. Lattice cell with discharge (burnt) fuel at regular operating conditions.

B. Two checkerboard lattices each of which contains two types of fuel channels as follows:

1. Cooled and voided fuel channels with fresh fuel.
2. Fuel channels with fresh and burnt fuel in a checkerboard pattern.

C. Core-reflector interface problem represented by a row of fuelled cells surrounded by two
reflector cells. Four cases are considered varying the number of fuelled cells from 2 to 5.

a) Geometric model b) Mesh subdivision

Figure 2 Geometric model and a typical mesh subdivision of 37-element lattice cell
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3.2 The shape of spatial flux distribution

The mesh free-approximation produces an approximate solution that is continuous in space and
differentiable within each material region. To illustrate the solution shape, Figure 3 shows three-
dimensional plots of spatial flux distributions in energy groups 11 and 76 as two characteristic
groups (peak flux values of the fast and thermal neutron flux, respectively) of the 89-group
approximation. For comparison, Figure 4.a presents a three-dimensional plot of the MCNP-
calculated flux distribution in energy group 76. The plots are very similar to each other, except
that a granular structure is visible in MCNP results. It is due to the uncertainties in the mesh flux
tallies, which is still visible despite one billion active histories were used in this calculation. In
contrast to the continuous solution of the mesh-free approximation, the collision probability
method produces a step-wise approximation of the neutron flux as presented in Figure 4.b. The
visual impression is quite different from both mesh-free and MCNP results.

a) Neutron flux in energy group 11 b) Neutron flux in energy group 76

Figure 3 Mesh-free approximation of neutron flux distribution in two characteristic energy groups
3.3 Accuracy of mesh-free approximation

To get an insight into the accuracy of the spatial and energy approximations, 89-group reference
MCNP results were obtained for the single-cell test problem. The FMESH option was applied to 89
energy bins having the same structure as the 89-group library of WIMS-AECL in order to get the
spatial flux distribution in each energy group as flux tallies on a rectangular mesh of Immx1mm size.
Figure 5.a shows the root mean square (RMS) values of the uncertainties in mesh flux tallies for each
energy group. Three calculations were carried out using 20 million, 100 million, and 1 billion active
histories. The results show that 20 million histories produce an average uncertainty of about 2.9% with
a maximum value of 10%. Increasing the number of histories to 100 million, the average uncertainty
reduces to 1.3% with a maximum of 4.5%. One billion histories are necessary for an average
uncertainty of 0.5%.
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Figure 4 Monte Carlo and collision probability solutions in energy group 76
Figure 5.b presents the RMS error of the mesh-free approximation. The first group exhibits the

maximum error of 15%. In other groups the error varies around 1-2% with a few exceptions
where it reaches higher values up to 5%.
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Figure 5 MCNP uncertainty versus RMS error of mesh-free approximation

As a visual illustration of the agreement/discrepancy between the mesh-free approximation and
MCNP results, Figure 6 presents the flux distribution along the central line across the cell of the
test problem A.1 as calculated by both methods for a number of selected energy groups. For fast
and thermal energy groups (Figure 6.a and Figure 6.d), the results of both methods visually
almost coincide with each other. A slight increase of the discrepancy can be observed in the
resonance groups (Figure 6.b and Figure 6.c), which is likely due to the resonance self-shielding.
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Figure 6 Comparison of MCNP mesh flux tallies and mesh-free flux approximation along the
central line across the lattice cell for a set of selected energy groups

Due to MCNP5 limits, 89-group mesh flux tallies could not be calculated for multicell test
problems B and C. Instead, two-group tallies were used to determine the spatial distribution of
the fast and thermal neutron groups, which cover the energy ranges above and below 4 eV,
respectively. The neutron flux is normalized to k fission neutrons in entire system, where k
stands for the neutron multiplication factor. To illustrate the agreement between mesh-free and
MCNP results, Figure 7 shows the fast and thermal neutron fluxes in the checkerboard lattice
model of fresh and burnt fuel (test problem B.2). The spatial variation of the two-group flux is
given as a function of the x-coordinate (the distance from the y-axis that passes though a cell
centre) along two lines, the central line (y = 0) and the cell edge line (y = p/2, where p stands
for the lattice pitch). For the sake of visual clarity, vertical lines show the intersections of the x-z
plane with the boundaries of the central fuel pin, a fuel pin of the inner and a fuel pin of the outer
ring. The intersections with the outer and inner boundaries of pressure and calandria tubes are
also presented. Figure 8 shows the spatial variation of fast and thermal neutron fluxes along two
lines of two core-reflector interface models represented by two/three fueled cells and two
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reflector cells. The figures show that the results of mesh-free approximation are in very good
agreement with MCNP results.
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Figure 7 Mesh-free approximation versus MCNP mesh flux tallies in a checkerboard lattice of
fresh and burnt fuel channels
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Figure 8 Mesh-free approximation versus MCNP mesh flux tallies in two models of
the core-reflector interface problem

3.4 Reduction of the number of unknowns

To compare the mesh-free method with a mesh-based approximation, collision probability
calculations were carried out with a developmental version of the lattice cell code WIMS-AECL
for all test problems considered. Table 1 summarizes the results of the three methods using
MCNP values of the neutron multiplication factor as the reference ones. The discrepancy of
collision probability results ranges from -0.58 to 0.08 mk, while the mesh-free method produces
a slightly smaller discrepancy that ranges from -0.13 to 0.34 mk. The number of unknowns per
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group in collision probability calculations varies from 142 to 4702 depending on the test problem
considered. For the same test problems, the number of unknowns per group of the mesh-free
method varies from 15 to 61. Thus, a significant reduction is achieved by the mesh-free method.
Increasing the complexity of the problem, the reduction factor increases from 9.5 for the single-
cell problems to 77 for the core-reflector interface model C.4.

Table1 A summary of the results

MCNP WIMS-AECL Mesh-free approximation
Test > Nep
k-inf (mk) CPU k-inf (mk) Nep () k-inf (mk) Nt () mf

Al |1.11423| £0.01 | 1week |1.11431| 0.08 | 142 11 ]1.11449| 0.26 | 15 | 47 | 9.5

A.2 |1.13586| +0.04 | 2days |1.13534| -0.52 | 142 12 J1.13573|-0.13 [ 15 | 49 ] 9.5

A.3 10.98544 | +0.01 | 2 weeks |0.98578| 0.34 | 142 17 10.98561| 0.17 [ 15 | 53 | 9.5

B.1 |1.12528| +0.09 | 13 hours |1.12503| -0.25 | 284 44 11.12524] -0.04 | 26 | 137 | 10.9

B.2 |1.04635| +0.10 | 44 hours |1.04669 | 0.34 | 284 50 |1.04664| 0.29 | 26 | 141] 10.9

C.1 ]1.03149| +0.05 | 36 hours |1.03170| 0.21 | 2086 | 135 |1.03176| 0.27 | 34 | 314|614

C.2 |11.06375| £0.10 | 8 hours ]|1.06356| -0.19 | 2958 | 280 |1.06403| 0.28 | 43 | 574 | 68.8

C.3 ]11.07985| +£0.10 | 8 hours |1.07940| -0.45 | 3830 | 493 |1.08016| 0.31 | 52 | 688 | 73.6

C.4 11.08926| +0.10 | 8 hours |1.08868| -0.58 | 4702 | 846 |1.08960| 0.34 | 61 [1090| 77.1

N¢p = Number of unknowns in collision probability solution
N+ = Number of unknowns in mesh-free approximation
Ne / N = Reduction factor in the number of unknowns

Compared to the standard collision probability approximation, the mesh-free method applies an
additional two-fold numerical integration for the calculation of the space integrals specified by
equations (12) — (14). Thus, the calculation of matrix coefficients is computationally more
intensive than the calculation of collision probabilities, so that an increase in related computing
time should be expected. This component of the total computing time is dominant in collision
probability calculation of small-size problems. Increasing the problem size, however, the
solution of the system of linear equations becomes a dominant component of the total computing
time. On the other hand, due to the significant reduction of the number of unknowns, the
solution time of the mesh-free method is very fast. Accordingly, Table 1 shows that the mesh-
free computing time of the single-cell cases is about 4 times longer than the WIMS-AECL
computing time. However, the difference in CPU times decreases with the increase of the
problem complexity, so that for the C.4 case the CPU time ratio falls down to ~1.3. Regarding
the timing results, it is worth mentioning that the version of the WIMS-AECL code used here is
highly optimized concerning the computing speed, while mesh-free calculations were carried out
with a prototype code without substantial attempts to speed up the calculations.

4. Conclusion

A mesh-free method is developed for approximate solution of the multigroup neutron transport
equation. The approximate solution is presented as a linear combination of analytic functions
that are specified according to the geometric properties of the problem and constructed by means
of the R-function theory. Owing to the analytic form, the solution is convenient for visual
presentation and, as such, facilitates the analysis of the spatial flux behaviour in various physics
phenomena. The results of calculations of three sets of characteristic test problems show that the
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method is capable of accurate modelling of the neutron transport in CANDU related physics
phenomena. The results are in a very good agreement with reference Monte Carlo calculations.
Compared to the standard collision probability approximation, the same accuracy is achieved
with a significant reduction of the number of unknowns. The reduction factors ranges from 9 to
77, depending on the test problem considered. It increases with the complexity of the problem
so that the higher the number of unknowns in the mesh-based collision probability solution, the
higher is the reduction factor of the mesh-free approximation.
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