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Abstract 

This paper presents a new method for approximate solution of the multigroup neutron transport 
equation. The R-function theory is applied to describe the geometric shape of material regions 
analytically. Resulting formulae form a basis for a mesh-free approximation of the spatial 
neutron flux distribution. The method of moments is applied to transform the integral transport 
equation into a system of linear algebraic equations. Calculations of characteristic two-
dimensional CANDU lattice problems show that the method is capable of accurate modeling of 
the neutron transport with a significant reduction of the number of unknowns compared to 
standard mesh-based approximations. 
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1. Introduction 

A common objective of deterministic transport methods based on the integro-differential form of 
neutron transport equation is to approximate the solution with a set of trial functions from a less 
restrictive class of functions than the class of functions to which the exact solution belongs. This 
approach is mainly due to the inability of conventional numerical mathematics to handle 
complex spatial domains on a whole. Instead, such a domain is usually subdivided into a number 
of subdomains of simple geometric shapes (triangles, rectangles, etc.), to each of which a 
classical approximation (finite difference, finite element, etc.) could be applied. A benefit of 
using the integral form of the transport equation is that the approximate solution can be sought in 
a much less restrictive class of functions than the class of approximate solution of the integro-
differential transport equation. It consists of the class of square-integrable functions that allows 
a large degree of freedom in the choice of trial functions. The simplest form is a constant value 
throughout each subdomain as used in the collision probability method. By lessening the 
requirements on trial functions, however, the number of degrees of freedom (unknown 
coefficients) of the approximate solution may increase significantly. Despite the tremendous 
capabilities of today's computers, this is still a severe limitation in transport calculation of large 
heterogeneous systems. 

The R-Function Theory [1], [2], [3] is a powerful tool to address the geometric part of the 
problem in various scientific and engineering disciplines. Using R-functions one can easily 
construct an analytical, continuous and differentiable function that describes the boundary of a 
semi-analytic object, i.e., a complex spatial domain the boundary of which consist of parts of 
analytic surfaces. In this way, the geometric information can be a priori and analytically 
incorporated in the approximate solution of a boundary problem. Accordingly, the R-function 
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a much less restrictive class of functions than the class of approximate solution of the integro-
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a large degree of freedom in the choice of trial functions.  The simplest form is a constant value 
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requirements on trial functions, however, the number of degrees of freedom (unknown 
coefficients) of the approximate solution may increase significantly.  Despite the tremendous 
capabilities of today’s computers, this is still a severe limitation in transport calculation of large 
heterogeneous systems. 
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method has been efficiently applied to approximate solution of heat transfer, electrostatics, 
theory of plates, and other elliptic boundary value problems [3], including the neutron diffusion 
[4], [5], solid modelling for Monte Carlo calculations [6], analytical modelling of a spiral 
inflector [7], as well analytical representation of the ZED-2 reactor geometry [8]. 

Section 2 presents a mesh-free approximation of the spatial distribution of the scalar neutron 
flux. The trial functions are specified according to the geometric shape of material regions by 
means of the R-function theory. The method of moments is applied to transform the integral 
neutron transport equation into a set of linear algebraic equations and determine the unknown 
coefficients. Section 3 presents the results of calculations of a set of CANDU related two-
dimensional test problems. To assess the accuracy of the solution, the mesh-free results are 
compared with reference Monte Carlo results obtained by the MCNPS code [9] Version 1.40. 
On the other hand, comparisons with collision probability calculations, carried out with the 
lattice cell code WIMS-AECL [10], are given to get an impression about the reduction of the 
number of unknowns. 

2. Theory 

The spatial distribution of the scalar neutron flux is a continuous function over the space and 
differentiable within each material region so that discontinuities of the first derivative occur only 
at interface boundaries. A mesh-free approximation of such a function is presented in what 
follows. 

2.1 Decomposition of spatial flux distribution 

To explain the basic idea of the method, consider a two-region reactor model in one-dimensional 
geometry. Denote by V1, V2, and 170 = V1 U V2 the spatial domains of the core, reflector, and 
entire reactor, respectively. They are bounded by the interface boundary avu between the core 
and reflector, and the outer reactor boundary avo. Accordingly, the boundaries of spatial 
domains of the core and reflector (14 and 172) are avi = _ av 1,2 and 812 = 0V0 U 8112. Suppose 
the scalar flux v(r) in a thermal group has a shape as shown in Figure 1.a. 
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Figure 1 Spatial flux decomposition in a two-region reactor model 
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method has been efficiently applied to approximate solution of heat transfer, electrostatics, 
theory of plates, and other elliptic boundary value problems [3], including the neutron diffusion 
[4], [5], solid modelling for Monte Carlo calculations [6], analytical modelling of a spiral 
inflector [7], as well analytical representation of the ZED-2 reactor geometry [8]. 

Section 2 presents a mesh-free approximation of the spatial distribution of the scalar neutron 
flux.  The trial functions are specified according to the geometric shape of material regions by 
means of the R-function theory.  The method of moments is applied to transform the integral 
neutron transport equation into a set of linear algebraic equations and determine the unknown 
coefficients.  Section 3 presents the results of calculations of a set of CANDU related two-
dimensional test problems.  To assess the accuracy of the solution, the mesh-free results are 
compared with reference Monte Carlo results obtained by the MCNP5 code [9] Version 1.40.  
On the other hand, comparisons with collision probability calculations, carried out with the 
lattice cell code WIMS-AECL [10], are given to get an impression about the reduction of the 
number of unknowns. 

2. Theory 

The spatial distribution of the scalar neutron flux is a continuous function over the space and 
differentiable within each material region so that discontinuities of the first derivative occur only 
at interface boundaries.  A mesh-free approximation of such a function is presented in what 
follows. 

2.1  Decomposition of spatial flux distribution 

To explain the basic idea of the method, consider a two-region reactor model in one-dimensional 
geometry.  Denote by 𝑉𝑉1, 𝑉𝑉2, and 𝑉𝑉0 = 𝑉𝑉1 ∪ 𝑉𝑉2 the spatial domains of the core, reflector, and 
entire reactor, respectively.  They are bounded by the interface boundary 𝜕𝜕𝜕𝜕1,2 between the core 
and reflector, and the outer reactor boundary 𝜕𝜕𝑉𝑉0.  Accordingly, the boundaries of spatial 
domains of the core and reflector (𝑉𝑉1 and 𝑉𝑉2) are 𝜕𝜕𝜕𝜕1 = 𝜕𝜕𝜕𝜕1,2 and 𝜕𝜕𝜕𝜕2 = 𝜕𝜕𝑉𝑉0 ∪ 𝜕𝜕𝜕𝜕1,2.  Suppose 
the scalar flux 𝜑𝜑(𝒓𝒓) in a thermal group has a shape as shown in Figure 1.a. 

 
a) Scalar flux and decomposition functions

 
b) Decomposition components

Figure 1   Spatial flux decomposition in a two-region reactor model
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Denote by b(r) a smooth positive function that is equal to the neutron flux at the outer (vacuum) 
boundary, i.e., b(r0) = (p(r0), r 0 E avo. In the particular case of a symmetric reactor model in 
one-dimensional geometry, as considered here, the function b(r) may be represented as a 
constant. Thus, the problem reduces now to determination of the function (p (r) — b (r) that is 
equal to zero at the outer boundary. 

As a next step of the flux decomposition, denote by u0 (r) a smooth positive function that is 
equal to (p (r) — b(r) at both boundaries 0170 and a V1,2 as shown in Figure 1.a. Consider the 
properties of the function f (r) = q  — b (r) — u0 (r). In region V1 it is a smooth negative 
function that vanishes at the boundary a V1. Similarly, in region V2 it is also a smooth but 
positive function that vanishes at 0172. Instead of a single function f (r), one may specify two 
continuous positive functions u1 (r) and u2 (r) as follows: 

(r) — (r) = { 
(1(1)(r) — b (r) — uo(r) I r E V1 

U2
(r) — b (r) — uo(r) I r E V2 

(1) , 0, rEV1 0, rEV2

Hence, the neutron flux distribution can be represented as a linear combination of the functions 
u0 (r), u1(r) and u2 (r) plus the boundary term b (r), i.e., 

2 

(p (r) = b(r) + si ui(r) 
= o 

(2) 

where the coefficients si specify the sign (+1 or —1) of the related contribution. Note that, as 
shown in Figure 1.b, each function ui (r) is a smooth positive function within the related domain 
Vi (i = 0,1,2) and equal to zero on its boundary 8Vi and everywhere else. In a general case of a 
multi-region problem, the summation in equation (2) should be carried out over all material 
regions as well as a number of spatial domains that represent unions of two or more material 
regions up to the spatial domain of the entire reactor model. 

2.2 Approximate solution of two-region problem 

According to equation (2), one may look for an approximate solution of the two-region problem 
in the following form: 

2 ni 

(p (r) c(r) + cp • f ii (r) 
i=o j =1 

(3) 

where c(r) is an approximation of the boundary term b(r), cou are unknown coefficients to be 
determined, and fij (r) are basis functions of a set of ni functions intended to approximate the 
corresponding functions ui (r). Accordingly, each function f ij (r) is a smooth positive function 
within the related domain vi and vanishes on its boundary OK and outside K. 

The R-function theory provides a simple mathematical apparatus to construct a continuous and 
differentiable function co (r) for an arbitrary semi-analytic domain in order to describe the 
domain analytically as follows: 
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Denote by 𝑏𝑏(𝒓𝒓) a smooth positive function that is equal to the neutron flux at the outer (vacuum) 
boundary, i.e., 𝑏𝑏(𝒓𝒓0) = 𝜑𝜑(𝒓𝒓0), 𝒓𝒓0 ∈ 𝜕𝜕𝑉𝑉0.  In the particular case of a symmetric reactor model in 
one-dimensional geometry, as considered here, the function 𝑏𝑏(𝒓𝒓) may be represented as a 
constant.  Thus, the problem reduces now to determination of the function 𝜑𝜑(𝒓𝒓) − 𝑏𝑏(𝒓𝒓) that is 
equal to zero at the outer boundary. 

As a next step of the flux decomposition, denote by 𝑢𝑢0(𝒓𝒓) a smooth positive function that is 
equal to 𝜑𝜑(𝒓𝒓) − 𝑏𝑏(𝒓𝒓) at both boundaries 𝜕𝜕𝑉𝑉0 and 𝜕𝜕𝑉𝑉1,2 as shown in Figure 1.a.  Consider the 
properties of the function 𝑓𝑓(𝒓𝒓) = 𝜑𝜑(𝒓𝒓) − 𝑏𝑏(𝒓𝒓) − 𝑢𝑢0(𝒓𝒓).  In region 𝑉𝑉1 it is a smooth negative 
function that vanishes at the boundary 𝜕𝜕𝑉𝑉1.  Similarly, in region 𝑉𝑉2 it is also a smooth but 
positive function that vanishes at 𝜕𝜕𝑉𝑉2.  Instead of a single function 𝑓𝑓(𝒓𝒓), one may specify two 
continuous positive functions 𝑢𝑢1(𝒓𝒓) and 𝑢𝑢2(𝒓𝒓) as follows: 

𝑢𝑢1(𝒓𝒓) = �|𝜑𝜑(𝒓𝒓) − 𝑏𝑏(𝒓𝒓) − 𝑢𝑢0(𝒓𝒓)| , 𝒓𝒓 ∈ 𝑉𝑉1 
0 ,   𝒓𝒓 ∉ 𝑉𝑉1 

� ,    𝑢𝑢2(𝒓𝒓) = �|𝜑𝜑(𝒓𝒓) − 𝑏𝑏(𝒓𝒓) − 𝑢𝑢0(𝒓𝒓)| , 𝒓𝒓 ∈ 𝑉𝑉2 
0 ,   𝒓𝒓 ∉ 𝑉𝑉2 

� (1) 

Hence, the neutron flux distribution can be represented as a linear combination of the functions 
𝑢𝑢0(𝒓𝒓),  𝑢𝑢1(𝒓𝒓) and 𝑢𝑢2(𝒓𝒓) plus the boundary term 𝑏𝑏(𝒓𝒓), i.e., 

𝜑𝜑(𝒓𝒓) = 𝑏𝑏(𝒓𝒓) + �𝑠𝑠𝑖𝑖

2

𝑖𝑖=0

𝑢𝑢𝑖𝑖(𝒓𝒓)                                                        (2) 

where the coefficients 𝑠𝑠𝑖𝑖  specify the sign (+1 or –1) of the related contribution.  Note that, as 
shown in Figure 1.b, each function 𝑢𝑢𝑖𝑖(𝒓𝒓) is a smooth positive function within the related domain 
𝑉𝑉𝑖𝑖  (𝑖𝑖 = 0,1,2) and equal to zero on its boundary 𝜕𝜕𝑉𝑉𝑖𝑖  and everywhere else.  In a general case of a 
multi-region problem, the summation in equation (2) should be carried out over all material 
regions as well as a number of spatial domains that represent unions of two or more material 
regions up to the spatial domain of the entire reactor model. 

2.2  Approximate solution of two-region problem 

According to equation (2), one may look for an approximate solution of the two-region problem 
in the following form: 

𝜑𝜑(𝒓𝒓) ≈ 𝑐𝑐(𝒓𝒓) + ��𝜑𝜑𝑖𝑖,𝑗𝑗

𝑛𝑛𝑖𝑖

𝑗𝑗=1

∙
2

𝑖𝑖=0

𝑓𝑓𝑖𝑖,𝑗𝑗 (𝒓𝒓)                                                 (3) 

where 𝑐𝑐(𝒓𝒓) is an approximation of the boundary term 𝑏𝑏(𝒓𝒓), 𝜑𝜑𝑖𝑖,𝑗𝑗  are unknown coefficients to be 
determined, and 𝑓𝑓𝑖𝑖,𝑗𝑗 (𝒓𝒓) are basis functions of a set of 𝑛𝑛𝑖𝑖  functions intended to approximate the 
corresponding functions 𝑢𝑢𝑖𝑖(𝒓𝒓).  Accordingly, each function 𝑓𝑓𝑖𝑖,𝑗𝑗 (𝒓𝒓) is a smooth positive function 
within the related domain 𝑉𝑉𝑖𝑖   and vanishes on its boundary 𝜕𝜕𝑉𝑉𝑖𝑖  and outside 𝑉𝑉𝑖𝑖 . 

The R-function theory provides a simple mathematical apparatus to construct a continuous and 
differentiable function 𝜔𝜔(𝒓𝒓) for an arbitrary semi-analytic domain in order to describe the 
domain analytically as follows: 
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> 0 , r E V 
(DW = 0 , r E OV 

<0, rEVuolf 
(4) 

Having specified a function cui(r) for each domain Vi (i = 0,1,2), one can easily construct 
functions cut (r) that satisfy the requirements of the approximate solution (3) as follows: 

1 > r E 
cut (r) = 2 (coi(r) + lcui(r)l) = {0 0 , , r Vi (5) 

To get a set of functions Li  (r) for each domain VL, one may either apply a set of power function 

(cot )j or a product of cot with a set of continuous positive functions, or both. 

2.3 Approximate solution of a CANDU lattice cell model 

Consider an infinite lattice of a periodically repeating lattice cell, for instance the 37-element 
CANDU lattice cell as depicted in Figure 2.a. The fuel (natural uranium) is arranged in fuel 
bundles that consist of a central pin surrounded with three rings of fuel pins. There are six pins 
in the inner ring, 12 pins in the middle ring and 18 pins in the outer ring. Fuel bundles are 
loaded in a pressure tube surrounded by air gap and a calandria tube to physically separate the 
moderator from the coolant. Owing to the physical properties of the problem, the approximate 
solution does not necessarily need to treat explicitly each material region. For instance, optically 
thin regions, such as the cladding and the gap, do not affect significantly the flux distribution. 
They can be accounted for by using a union of an optically thin domain and another adjacent 
material region. Suppose that functions co (r) are constructed for the following spatial domains: 

col All fuel regions 
cot Coolant and cladding regions 
co3 Fuel channel interior (everything inside the inner boundary of the pressure tube) 
co4 Fuel channel exterior (everything outside the inner boundary of the pressure tube) 
cos Pressure and calandria tubes including the air gap between them 
cob Calandria tube interior (everything inside the outer boundary of the calandria tube) 
co7 Moderator 

The above functions co i(r) must obey the same periodicity as the infinite reactor lattice itself. 
Details about their construction can be found in Reference [8]. The following set of N = 15 
basis functions was used for the calculation of single cell test problems presented in Section 3: 

{ cut, 404, coL ((.0')2, (04)3, ffn} = , 
coZ, (4)2, (.0 , (07E, (4)2, (4)3, (0)7')4) 

(6) 

Here, a single function is used for certain regions (V$ and V6), while two or more functions are 
necessary for spatial domains of large flux variations (fuel, coolant, fuel channel and moderator). 
Also, all basis functions are assembled in a single set of functions, instead of separate sets for 
each spatial domain as used in equation (3). Accordingly, the approximate solution can be 
represented in the following form, where the boundary term is omitted since there is no vacuum 
boundary in the infinite lattice model: 
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𝜔𝜔(𝒓𝒓) �  
> 0 ,   𝒓𝒓 ∈ 𝑉𝑉           
= 0 ,   𝒓𝒓 ∈ 𝜕𝜕𝜕𝜕         
< 0 ,   𝒓𝒓 ∉ 𝑉𝑉 ∪ 𝜕𝜕𝜕𝜕 

�                                                   (4) 

Having specified a function 𝜔𝜔𝑖𝑖(𝒓𝒓) for each domain 𝑉𝑉𝑖𝑖  (𝑖𝑖 = 0,1,2), one can easily construct 
functions 𝜔𝜔𝑖𝑖

+(𝒓𝒓) that satisfy the requirements of the approximate solution (3) as follows: 

𝜔𝜔𝑖𝑖
+(𝒓𝒓) =

1
2

(𝜔𝜔𝑖𝑖(𝒓𝒓) + |𝜔𝜔𝑖𝑖(𝒓𝒓)|) = �> 0 ,   𝒓𝒓 ∈ 𝑉𝑉𝑖𝑖 
0 ,      𝒓𝒓 ∉ 𝑉𝑉𝑖𝑖

�                                 (5) 

To get a set of functions 𝑓𝑓𝑖𝑖,𝑗𝑗 (𝒓𝒓) for each domain 𝑉𝑉𝑖𝑖 , one may either apply a set of power function 
(𝜔𝜔𝑖𝑖

+)𝑗𝑗  or a product of 𝜔𝜔𝑖𝑖
+ with a set of continuous positive functions, or both. 

2.3  Approximate solution of a CANDU lattice cell model 

Consider an infinite lattice of a periodically repeating lattice cell, for instance the 37-element 
CANDU lattice cell as depicted in Figure 2.a.  The fuel (natural uranium) is arranged in fuel 
bundles that consist of a central pin surrounded with three rings of fuel pins.  There are six pins 
in the inner ring, 12 pins in the middle ring and 18 pins in the outer ring.  Fuel bundles are 
loaded in a pressure tube surrounded by air gap and a calandria tube to physically separate the 
moderator from the coolant.  Owing to the physical properties of the problem, the approximate 
solution does not necessarily need to treat explicitly each material region.  For instance, optically 
thin regions, such as the cladding and the gap, do not affect significantly the flux distribution.  
They can be accounted for by using a union of an optically thin domain and another adjacent 
material region.  Suppose that functions 𝜔𝜔𝑖𝑖(𝒓𝒓) are constructed for the following spatial domains: 

𝜔𝜔1  All fuel regions 
𝜔𝜔2  Coolant and cladding regions 
𝜔𝜔3  Fuel channel interior (everything inside the inner boundary of the pressure tube) 
𝜔𝜔4  Fuel channel exterior (everything outside the inner boundary of the pressure tube) 
𝜔𝜔5  Pressure and calandria tubes including the air gap between them 
𝜔𝜔6  Calandria tube interior (everything inside the outer boundary of the calandria tube) 
𝜔𝜔7  Moderator 

The above functions 𝜔𝜔𝑖𝑖(𝒓𝒓) must obey the same periodicity as the infinite reactor lattice itself.  
Details about their construction can be found in Reference [8].  The following set of 𝑁𝑁 = 15 
basis functions was used for the calculation of single cell test problems presented in Section 3: 

{𝑓𝑓𝑛𝑛} = �
𝜔𝜔1

+ ,   𝜔𝜔1
+𝜔𝜔3

+ ,   𝜔𝜔2
+ ,   𝜔𝜔2

+𝜔𝜔3
+ ,   𝜔𝜔3

+ ,   (𝜔𝜔3
+)2,   (𝜔𝜔3

+)3,
𝜔𝜔4

+ ,   (𝜔𝜔4
+)2,   𝜔𝜔5

+ ,   𝜔𝜔6
+ ,   𝜔𝜔7

+ ,   (𝜔𝜔7
+)2,   (𝜔𝜔7

+)3,   (𝜔𝜔7
+)4�                      (6) 

Here, a single function is used for certain regions (𝑉𝑉5 and 𝑉𝑉6), while two or more functions are 
necessary for spatial domains of large flux variations (fuel, coolant, fuel channel and moderator).  
Also, all basis functions are assembled in a single set of functions, instead of separate sets for 
each spatial domain as used in equation (3).  Accordingly, the approximate solution can be 
represented in the following form, where the boundary term is omitted since there is no vacuum 
boundary in the infinite lattice model: 
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N 

(P (r) = (Pn fn (r) (7) 
n=1 

2.4 Determination of unknown coefficients 

For a given energy group, the integral neutron transport equation can be written in the following 
general form, where the group index is omitted for simplicity: 

co(r) = J d3r'K(r,r') [ Es (r) co(r) + s(r)] (8) 

V denotes the spatial domain where neutron transport occurs (entire three-dimensional space for 
the infinite lattice model or a finite domain of a reactor model), r = {x, y, z} and r' = {x' ,y', z'} 
are radius vectors, Es (r) is the scattering cross section, and s(r) is the scattering and fission 
source in considered group. The explicit shape of the integral kernel K (r, r) is as follows: 

, exp[—T(r,r )] Ir—r'I r — r' 
K(r,r ) =  T(r,r') = Et (r 

4n- Ir — 12 1r — r' 1 

where is the geometrical distance along the direction I/ = (r — r') / 1r — r' 1. 

The neutron source s(r) can be expanded over the same set of basis functions as the neutron flux 
presented in equation (7). Denote by sn the corresponding expansion coefficients. The method 
of moments can be applied to determine the unknown coefficients. To this end, the neutron flux 
and neutron source approximations are substituted into Eq. (8), which is then multiplied by a 
basis function fm (r) and integrated over a spatial domain V*, which is equal to a repeating part 
of the infinite lattice model or the spatial domain V of the full reactor model, i.e., 

L d3 r f„, (r) (Pnfn (T) = d3r fm, (r) f d37-'1((r, r') (Pnfn (r) [ Es (r) (Pn + sn)1 (10) * v* n=1 n=1 

(9) 

Repeating this procedure for each basis function fm (r), m = 1,2, ... N, one gets a system of N 
linear equations that determine the unknown coefficients (pn, n = 1,2, ... N: 

am ,n (Pn bm,n(Pn crnn sn , m= 1,2, ... N (11) 
n=1 n=1 n=1 

where the coefficients am.,„, brn,n and crn,n are specified as follows: 

amm. = f d3r fm (T) fn (r) 
v* 

brnm = f d3r J d3r' K (r,r)f rn(r)fn(r) Es (r') 
v* 

cm, n = f d3r J d3r' K (r,r')frn (r)fn(r') 
v * V 

(12) 

(13) 

(14) 
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are radius vectors,  𝛴𝛴s(𝒓𝒓) is the scattering cross section, and 𝑠𝑠(𝒓𝒓) is the scattering and fission 
source in considered group.  The explicit shape of the integral kernel 𝐾𝐾(𝒓𝒓, 𝒓𝒓′) is as follows: 

𝐾𝐾(𝒓𝒓, 𝒓𝒓′) =
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|𝒓𝒓−𝒓𝒓′|

0
(𝒓𝒓 − 𝜉𝜉

𝒓𝒓 − 𝒓𝒓′
|𝒓𝒓 − 𝒓𝒓′|
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where 𝜉𝜉 is the geometrical distance along the direction 𝛀𝛀 = (𝒓𝒓 − 𝒓𝒓′)/|𝒓𝒓 − 𝒓𝒓′|.   
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presented in equation (7).  Denote by 𝑠𝑠𝑛𝑛  the corresponding expansion coefficients.  The method 
of moments can be applied to determine the unknown coefficients.  To this end, the neutron flux 
and neutron source approximations are substituted into Eq. (8), which is then multiplied by a 
basis function 𝑓𝑓𝑚𝑚(𝒓𝒓) and integrated over a spatial domain 𝑉𝑉∗, which is equal to a repeating part 
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Repeating this procedure for each basis function 𝑓𝑓𝑚𝑚(𝒓𝒓), 𝑚𝑚 = 1,2, …𝑁𝑁, one gets a system of N 
linear equations that determine the unknown coefficients 𝜑𝜑𝑛𝑛 , 𝑛𝑛 = 1,2, …𝑁𝑁: 
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(11) 

where the coefficients 𝑎𝑎𝑚𝑚,𝑛𝑛 , 𝑏𝑏𝑚𝑚,𝑛𝑛  and 𝑐𝑐𝑚𝑚,𝑛𝑛  are specified as follows: 

𝑎𝑎𝑚𝑚,𝑛𝑛 = � 𝑑𝑑3𝑟𝑟 𝑓𝑓𝑚𝑚(𝒓𝒓)
 

𝑉𝑉∗
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�𝑑𝑑3𝑟𝑟′𝐾𝐾(𝒓𝒓, 𝒓𝒓′)𝑓𝑓𝑚𝑚(𝒓𝒓)𝑓𝑓𝑛𝑛(𝒓𝒓′)

 

𝑉𝑉
𝛴𝛴s(𝒓𝒓′)                                     (13) 
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�𝑑𝑑3𝑟𝑟′𝐾𝐾(𝒓𝒓, 𝒓𝒓′)𝑓𝑓𝑚𝑚(𝒓𝒓)𝑓𝑓𝑛𝑛(𝒓𝒓′)
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3. Results 

A prototype computer program has been written in Fortran 95 to test the method. The code 
includes a number of modules of the WIMS-AECL code to carry out the following tasks: read 
input data, retrieve library data, prepare macroscopic cross sections, perform resonance self-
shielding, and do the ray tracing for numerical integration of the necessary space integrals. Thus, 
the prototype code uses identical multigroup cross sections as the WIMS-AECL code. 

3.1 Test problems 

A set of test problems were specified using the 37-element CANDU lattice cell as the basic 
element of the models. Figure 2.a shows the geometric model of the 37-element lattice cell, 
which is used as is by the mesh-free approach without any subdivision except the fuel 
subdivision for resonance self-shielding. For the sake of comparison with a mesh based 
approach, Figure 2.b presents the mesh subdivision as used for routine collision probability 
calculations by the WIMS-AECL code. Three groups of problems were specified as follows: 

A. Three single cell models representing infinite lattices of periodically repeating cells: 

1. Lattice cell with fresh fuel at regular operating conditions. 
2. Lattice cell with fresh fuel and voided coolant. 
3. Lattice cell with discharge (burnt) fuel at regular operating conditions. 

B. Two checkerboard lattices each of which contains two types of fuel channels as follows: 

1. Cooled and voided fuel channels with fresh fuel. 
2. Fuel channels with fresh and burnt fuel in a checkerboard pattern. 

C. Core-reflector interface problem represented by a row of fuelled cells surrounded by two 
reflector cells. Four cases are considered varying the number of fuelled cells from 2 to 5. 

a) Geometric model b) Mesh subdivision 

Figure 2 Geometric model and a typical mesh subdivision of 37-element lattice cell 
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Figure 2   Geometric model and a typical mesh subdivision of 37-element lattice cell
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3.2 The shape of spatial flux distribution 

The mesh free-approximation produces an approximate solution that is continuous in space and 
differentiable within each material region. To illustrate the solution shape, Figure 3 shows three-
dimensional plots of spatial flux distributions in energy groups 11 and 76 as two characteristic 
groups (peak flux values of the fast and thermal neutron flux, respectively) of the 89-group 
approximation. For comparison, Figure 4.a presents a three-dimensional plot of the MCNP-
calculated flux distribution in energy group 76. The plots are very similar to each other, except 
that a granular structure is visible in MCNP results. It is due to the uncertainties in the mesh flux 
tallies, which is still visible despite one billion active histories were used in this calculation. In 
contrast to the continuous solution of the mesh-free approximation, the collision probability 
method produces a step-wise approximation of the neutron flux as presented in Figure 4.b. The 
visual impression is quite different from both mesh-free and MCNP results. 

0 
on,

03. 

a) Neutron flux in energy group 11 b) Neutron flux in energy group 76 

Figure 3 Mesh-free approximation of neutron flux distribution in two characteristic energy groups 

3.3 Accuracy of mesh-free approximation 

To get an insight into the accuracy of the spatial and energy approximations, 89-group reference 
MCNP results were obtained for the single-cell test problem. The FMESH option was applied to 89 
energy bins having the same structure as the 89-group library of WIMS-AECL in order to get the 
spatial flux distribution in each energy group as flux tallies on a rectangular mesh of lmmx 1 mm size. 
Figure 5.a shows the root mean square (RMS) values of the uncertainties in mesh flux tallies for each 
energy group. Three calculations were carried out using 20 million, 100 million, and 1 billion active 
histories. The results show that 20 million histories produce an average uncertainty of about 2.9% with 
a maximum value of 10%. Increasing the number of histories to 100 million, the average uncertainty 
reduces to 1.3% with a maximum of 4.5%. One billion histories are necessary for an average 
uncertainty of 0.5%. 
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a) MCNP mesh flux tallies b) Collision probability approximation 

Figure 4 Monte Carlo and collision probability solutions in energy group 76 

Figure 5.b presents the RMS error of the mesh-free approximation. The first group exhibits the 
maximum error of 15%. In other groups the error varies around 1-2% with a few exceptions 
where it reaches higher values up to 5%. 
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Figure 5 MCNP uncertainty versus RMS error of mesh-free approximation 

90 

As a visual illustration of the agreement/discrepancy between the mesh-free approximation and 
MCNP results, Figure 6 presents the flux distribution along the central line across the cell of the 
test problem A.1 as calculated by both methods for a number of selected energy groups. For fast 
and thermal energy groups (Figure 6.a and Figure 6.d), the results of both methods visually 
almost coincide with each other. A slight increase of the discrepancy can be observed in the 
resonance groups (Figure 6.b and Figure 6.c), which is likely due to the resonance self-shielding. 
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Figure 4   Monte Carlo and collision probability solutions in energy group 76 
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where it reaches higher values up to 5%.   

 
a) Uncertainty of MCNP flux tallies 

 
b) RMS error of mesh-free approximation 

Figure 5   MCNP uncertainty versus RMS error of mesh-free approximation 

As a visual illustration of the agreement/discrepancy between the mesh-free approximation and 
MCNP results, Figure 6 presents the flux distribution along the central line across the cell of the 
test problem A.1 as calculated by both methods for a number of selected energy groups.  For fast 
and thermal energy groups (Figure 6.a and Figure 6.d), the results of both methods visually 
almost coincide with each other.  A slight increase of the discrepancy can be observed in the 
resonance groups (Figure 6.b and Figure 6.c), which is likely due to the resonance self-shielding. 

  

http://www.marriott.com/hotels/travel/yowmc-ottawa-marriott-hotel/


t h International Conference on Modelling and Simulation in Nuclear Science and Engineering (7ICMSNSE) 
Ottawa Marriott Hotel, Ottawa, Ontario, Canada, October 18-21, 2015 

0.0052 

0.010 0.0050 
Group MCNP R-func 

1 0 — 0.0098 
2 0 —

0.008 3 0 — 0.0046 
4 0 —
5 o — 0.0044 
8 0 — 

LL 0.006 LL 0.0042 

2 0.0040 

0 9S/ 0.0038 
Z Cla04 

0.0036 

0.0034 
0.002 

0.0032 

0.0030 
0.000 

a 6 8 10 12 14 0.0028 

0.0020 

0.0018 

0.0016 

z 
LT_ 0.0014 

o • 

0.0012-
2

Distance From Cell Centre (cm) 

Group MCNP R-func 
25 —
26 
27 
28 
30 
32 

0 2 4 6 8 10 12 14 

Distance From Cell Cen re (cm) 

a) Fast energy groups b) High energy resonance groups 

0.0010 

0.0008 

0.0006 

Group MCNP R-func 
— 
—
—
— 

41 0 
42 0 
43 0 
45 0 

0.030 

0.025 

0.020 — 
=x 
7- 

2 0.015- 

0.010 

0.005 

0.000 
4 6 8 10 12 14 0 2 4 6 8 10 12 14 

Distance F om Cell Centre (cm) Distance From Cell Centre (cm) 

Group MCNP R-func 
81 0 
82 0
83 0 
86 0 

88 0 

-
— 
— 

c) Low energy resonance groups d) Thermal energy groups 

Figure 6 Comparison of MCNP mesh flux tallies and mesh-free flux approximation along the 
central line across the lattice cell for a set of selected energy groups 

Due to MCNP5 limits, 89-group mesh flux tallies could not be calculated for multicell test 
problems B and C. Instead, two-group tallies were used to determine the spatial distribution of 
the fast and thermal neutron groups, which cover the energy ranges above and below 4 eV, 
respectively. The neutron flux is normalized to k fission neutrons in entire system, where k 
stands for the neutron multiplication factor. To illustrate the agreement between mesh-free and 
MCNP results, Figure 7 shows the fast and thermal neutron fluxes in the checkerboard lattice 
model of fresh and burnt fuel (test problem B.2). The spatial variation of the two-group flux is 
given as a function of the x-coordinate (the distance from the y-axis that passes though a cell 
centre) along two lines, the central line (y = 0) and the cell edge line (y = p/2, where p stands 
for the lattice pitch). For the sake of visual clarity, vertical lines show the intersections of the x-z 
plane with the boundaries of the central fuel pin, a fuel pin of the inner and a fuel pin of the outer 
ring. The intersections with the outer and inner boundaries of pressure and calandria tubes are 
also presented. Figure 8 shows the spatial variation of fast and thermal neutron fluxes along two 
lines of two core-reflector interface models represented by two/three fueled cells and two 
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Figure 6   Comparison of MCNP mesh flux tallies and mesh-free flux approximation along the 

central line across the lattice cell for a set of selected energy groups 
 

Due to MCNP5 limits, 89-group mesh flux tallies could not be calculated for multicell test 
problems B and C.  Instead, two-group tallies were used to determine the spatial distribution of 
the fast and thermal neutron groups, which cover the energy ranges above and below 4 eV, 
respectively.  The neutron flux is normalized to k fission neutrons in entire system, where k 
stands for the neutron multiplication factor.  To illustrate the agreement between mesh-free and 
MCNP results, Figure 7 shows the fast and thermal neutron fluxes in the checkerboard lattice 
model of fresh and burnt fuel (test problem B.2).  The spatial variation of the two-group flux is 
given as a function of the x-coordinate (the distance from the y-axis that passes though a cell 
centre) along two lines, the central line (𝑦𝑦 = 0) and the cell edge line (𝑦𝑦 = 𝑝𝑝/2, where p stands 
for the lattice pitch).  For the sake of visual clarity, vertical lines show the intersections of the x-z 
plane with the boundaries of the central fuel pin, a fuel pin of the inner and a fuel pin of the outer 
ring.  The intersections with the outer and inner boundaries of pressure and calandria tubes are 
also presented.  Figure 8 shows the spatial variation of fast and thermal neutron fluxes along two 
lines of two core-reflector interface models represented by two/three fueled cells and two 
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reflector cells. The figures show that the results of mesh-free approximation are in very good 
agreement with MCNP results. 
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3.4 Reduction of the number of unknowns 

To compare the mesh-free method with a mesh-based approximation, collision probability 
calculations were carried out with a developmental version of the lattice cell code WIMS-AECL 
for all test problems considered. Table 1 summarizes the results of the three methods using 
MCNP values of the neutron multiplication factor as the reference ones. The discrepancy of 
collision probability results ranges from -0.58 to 0.08 mk, while the mesh-free method produces 
a slightly smaller discrepancy that ranges from -0.13 to 0.34 mk. The number of unknowns per 
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group in collision probability calculations varies from 142 to 4702 depending on the test problem 
considered. For the same test problems, the number of unknowns per group of the mesh-free 
method varies from 15 to 61. Thus, a significant reduction is achieved by the mesh-free method. 
Increasing the complexity of the problem, the reduction factor increases from 9.5 for the single-
cell problems to 77 for the core-reflector interface model C.4. 

Table 1 A summary of the results 

Test 
Case 

MCNP WIMS-AECL Mesh-free approximation 
Ng, 

k-inf 
a 

(mk) CPU k-inf Ak (mk) N„ CPU(s) 
k-inf Ak ) 

(mk N„,f CPU(s) 
Nmf 

A.1 1.11423 ±0.01 1 week 1.11431 0.08 142 11 1.11449 0.26 15 47 9.5 
A.2 1.13586 ±0.04 2 days 1.13534 -0.52 142 12 1.13573 -0.13 15 49 9.5 
A.3 0.98544 ±0.01 2 weeks 0.98578 0.34 142 17 0.98561 0.17 15 53 9.5 
B.1 1.12528 ±0.09 13 hours 1.12503 -0.25 284 44 1.12524 -0.04 26 137 10.9 
B.2 1.04635 ±0.10 44 hours 1.04669 0.34 284 50 1.04664 0.29 26 141 10.9 
C.1 1.03149 ±0.05 36 hours 1.03170 0.21 2086 135 1.03176 0.27 34 314 61.4 
C.2 1.06375 ±0.10 8 hours 1.06356 -0.19 2958 280 1.06403 0.28 43 574 68.8 
C.3 1.07985 ±0.10 8 hours 1.07940 -0.45 3830 493 1.08016 0.31 52 688 73.6 
C.4 1.08926 ±0.10 8 hours 1.08868 -0.58 4702 846 1.08960 0.34 61 1090 77.1 

N,= Number of unknowns in collision probability solution 

N„if = Number of unknowns in mesh-free approximation 

N, / N„if = Reduction factor in the number of unknowns 

Compared to the standard collision probability approximation, the mesh-free method applies an 
additional two-fold numerical integration for the calculation of the space integrals specified by 
equations (12) - (14). Thus, the calculation of matrix coefficients is computationally more 
intensive than the calculation of collision probabilities, so that an increase in related computing 
time should be expected. This component of the total computing time is dominant in collision 
probability calculation of small-size problems. Increasing the problem size, however, the 
solution of the system of linear equations becomes a dominant component of the total computing 
time. On the other hand, due to the significant reduction of the number of unknowns, the 
solution time of the mesh-free method is very fast. Accordingly, Table 1 shows that the mesh-
free computing time of the single-cell cases is about 4 times longer than the WIMS-AECL 
computing time. However, the difference in CPU times decreases with the increase of the 
problem complexity, so that for the C.4 case the CPU time ratio falls down to -1.3. Regarding 
the timing results, it is worth mentioning that the version of the WIMS-AECL code used here is 
highly optimized concerning the computing speed, while mesh-free calculations were carried out 
with a prototype code without substantial attempts to speed up the calculations. 

4. Conclusion 

A mesh-free method is developed for approximate solution of the multigroup neutron transport 
equation. The approximate solution is presented as a linear combination of analytic functions 
that are specified according to the geometric properties of the problem and constructed by means 
of the R-function theory. Owing to the analytic form, the solution is convenient for visual 
presentation and, as such, facilitates the analysis of the spatial flux behaviour in various physics 
phenomena. The results of calculations of three sets of characteristic test problems show that the 
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method is capable of accurate modelling of the neutron transport in CANDU related physics 
phenomena. The results are in a very good agreement with reference Monte Carlo calculations. 
Compared to the standard collision probability approximation, the same accuracy is achieved 
with a significant reduction of the number of unknowns. The reduction factors ranges from 9 to 
77, depending on the test problem considered. It increases with the complexity of the problem 
so that the higher the number of unknowns in the mesh-based collision probability solution, the 
higher is the reduction factor of the mesh-free approximation. 
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