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ABSTRACT 

This manuscript deals with a fundamental question in model validation: given a body of available 
experiments and an envisaged domain of reactor operating conditions (referred to as reactor 
application), how can one develop a quantitative approach that measures the portion of the prior 
uncertainties of the reactor application that is covered by the available experiments? Coverage here 
means that the uncertainties of the reactor application are originating from and behaving in exactly 
the same way as those observed at the experimental conditions. This approach is valuable as it 
provides a scientifically defendable criterion by which experimentally measured biases can be 
credibly extrapolated (i.e., mapped) to biases for the reactor applications. This manuscript 
introduces a novel approach, referred to as physics-guided coverage mapping (PCM) which 
provides a natural solution to this problem by relying on high fidelity physics simulation. We 
discuss the potential advantages of PCM over the methods of similarity indices, data assimilation, 
and model calibration commonly employed in the nuclear community 
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1. INTRODUCTION 

Nuclear model validation practices measure the degree to which a given reactor model is a true 
representation of the real reactor behavior for the intended range of reactor operation. To deem a 
validation practice a success, one must be able to answer the following question with quantitative 
confidence: is there sufficient evidence in terms of analysis and experiments that the simulation 
predictions will be satisfactory for the intended reactor application? The criterion for satisfactory 
predictions is that the discrepancies between true and predicted future reactor responses can be 
bounded with high probability by preset margins. And the margins are to be estimated based on a 
proper account of all sources of uncertainties in the simulation plus some administrative margin to 
account for unknown sources of uncertainties. This type of question is important because a) 
building experiments for all possible reactor conditions of interest is impractical; b) no experiment 
can exactly duplicate reactor conditions, unless the reactor itself is used as the experiment; c) 
decisions for new reactor design with no operating experience have to be made solely based on 
available experiments; d) experiments are often built to understand the impact of separate effects 
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of uncertainty sources; whose interaction is expected at reactor conditions. All these reasons 
necessitate a credible approach by which experimental biases can be reliably extrapolated (i.e., 
mapped) to the reactor conditions. 

Accordingly two major tasks must be accomplished in order to perform model validation. The first 
task is experimental in nature; it involves the construction of experiments whose design is similar 
to the intended reactor application, with the primary goal of measuring the discrepancies (referred 
to hereinafter as experiment biases) between measured and model-predicted responses. The 
experiments are required for two reasons: a) no validation is credible without some level of 
comparison against reality; b) the prior uncertainties (computed based on a rigorous uncertainty 
propagation of all sources of uncertainties) for the reactor application of interest are typically too 
high to render an economical operation. It is therefore paramount for any useful validation practice 
to devise methods that employ experimental measurements (typically of low uncertainties) and 
analysis results to reduce the prior uncertainties of the reactor application down to the level that 
meets design and operation requirements. The second step of validation is computational, wherein 
model predictions at reactor conditions are employed in conjunction with the experiment biases to 
determine the application biases and their uncertainties; the application biases estimate the 
expected discrepancies between the true and predicted future responses for the reactor application. 
Ideally, if done correctly, the estimated application biases would be as close as possible to the true 
application biases which are observed when the real reactor is in operation. Biases represent 
systematic "mistakes" or "errors" in the modeling of both the experiment and the reactor 
application, which typically originate from modeling deficiencies and lack of knowledge about the 
"true" values for the physics parameters such as cross-sections. 

The process of calculating application biases and their uncertainties is fundamental to any model 
validation as it provides the basis for the economical and safe operation of the reactor for the 
intended application. We will refer to this process as 'mapping' (sometimes referred to as 'scaling' 
by other practitioners). The mapping will describe the mathematical transformation employing 
experiment biases and analysis results of the experiments and the reactor application to determine 
the application biases and their uncertainties. If done correctly, the biases will help reduce the prior 
uncertainties for the reactor application. To measure the level of reduction of prior uncertainties 
due to inclusion of experimental results, we will introduce a quantitative term called 'coverage'. 
Great or high coverage implies that the experiments can be used to reduce the prior uncertainties 
of the reactor application, which is the case when the experiments are sufficiently similar to the 
reactor application. Poor or low coverage implies that the experiments are not sufficient to improve 
the predictions for the reactor application, which is the case when the experiment design is not 
similar or representative of the reactor application, or when the experimental measurements have 
high uncertainties. It is important to note that the notion of coverage or lack thereof has been 
employed before [1]. Another closely related term developed in the nuclear community is the 
`similarity' (and sometimes referred to as `representativity') which employs an inner product 
formula to measure the resemblance between an experiment and the reactor application of interest 
[2] (definition is given later in the text). Our goal here is to develop a new validation approach that 
can be used to develop more meaningful definitions for the coverage and/or similarity that can be 
used for general models, and that can be directly used to map the biases from the experimental to 
the application domain. 
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2. BACKGROUND ON PROPOSED METHODOLOGY 

The objective of this paper is to introduce a new validation methodology, referred to hereinafter 
as physics-guided coverage mapping (PCM1), devised to map the biases from the experimental 
domain to the domain of reactor application by relying solely on the physics of the simulation 
while taking into account all sources of simulation uncertainties. The target of the PCM 
methodology is allow for a more natural definition of the 'coverage' which measures the portion 
of the prior uncertainty of the reactor application that can be explained, i.e., covered, by the 
experimental measurements. And, how the coverage is related to the mapping of biases. 

To this end, we first introduce the mathematical nomenclature and notations required. Next, the 
conventional approach for mapping of biases is presented, which will set the stage for introducing 
our new PCM approach. Numerical results will follow to demonstrate applicability. 

Mathematically, the physics model describing the experiment is given by: 

Yex = fex(x,u) 

where x are basic physics parameters (such as cross-sections) and u are the experiment's control 
parameters (such as the experiment's materials, geometry, and composition specifications, etc.). 
One can abstractly describe the experimental design in terms of these control parameters, which 
are tuned to make sure the experiment is as similar as possible to reactor application. The y ex are 

the responses of the experiment as predicted by the model. Let y:". be the experimental 

measurements corresponding to the model predictions y ex . 

Next, define the reactor application using: 

Yrc = fre(x,v) 

where x are the same basic physics parameters employed earlier in the modeling of the experiment, 
and v are control parameters that describe the reactor design, e.g., size of the core, enrichment, etc. 
Notice that the experiments and the reactor conditions have different control parameters (i.e., u vs. 
v), and different functions (i.e., fix vs. frc); however, they both share x as part of their input data. 
Finally, the prior uncertainties for the basic physics parameters are typically described by 
probability distribution ppri (x) such that: 

x2 
f Ppri(x)dx 

is the probability of finding x between x1 and x2 . To simplify the discussion, we will employ 

Gaussian distributions to describe the prior parameter uncertainties. Generalization to non-
Gaussian distribution is straightforward [3], but does not add significant insight considering the 
context of the current discussion. A multi-variable Gaussian distribution is fully described by a 
mean vector and a covariance matrix, denoted here by xpri and Cpri , respectively. 

1 We recognize that pcm is a common unit for reactivity measurement; but since in our context PCM is a methodology, 

no confusion between the two terms is expected. 
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The conventional validation practice, depicted in Fig. 1, employs a calibration-based approach to 
the calculation of reactor application biases. This is done based on the assumption that the 
experiment biases originate from uncertainties in the basic physics parameters. A minimization 
search is formulated to calculate a posteriori estimate of physics parameters that minimizes the 
discrepancies between measured and predicted responses. Because the number of measured 
responses is often much lower than the number of physics parameters, the minimization problem 
is expected to have an infinite number of solutions. To render a well-posed search, prior 
information for the physics parameters are employed to regularize the search, described 
mathematically as follows (this approach is also referred to as Bayesian Estimation)2: 

min{ [y:r — f ex (x, 01' [Cenxsr 1 1 [y:ix" — f ex (x,u)1+[x— xce r [Cpri l l [x— xd) 

where the first term is called the misfit term, measuring the discrepancy between measured and 
predicted experimental responses; the initial (i.e., prior to adjustment) value of this term is equal 
to the experiment bias. And the second term is called the regularization term, where x. represents 

the best guess for the physics parameters based on prior information, i.e., before the experimental 
measurements are collected. The confidence in the prior values of the parameters is described by 
the prior covariance matrix Cpri, which is used as weight for the regularization term. This weighting 
ensures that parameters with very small uncertainties are hardly adjusted because they are 
accurately known, whereas parameters with high prior uncertainties are allowed to adjust within 
their prior uncertainty limits to better fit the measurements. The results of this minimization search 
are a set of adjusted parameter values, denoted by xps, , and an updated covariance matrix, referred 

to as the posteriori covariance matrix, Cpst. The minimizer xps, is subsequently used to improve 

predictions at reactor conditions as follows: Let 

yPr1 = f rc (xpri,v) and yP: = f rc (xps„v) 

If measurements are available at the reactor level, let it be denoted by yZsr , the premise of this 

approach is that: 

1Y7-4>114sr—Y:t 1 
which means that the adjusted predictions are closer to the measurements than the prior 
predictions. Using the posteriori parameter covariance matrix, the responses uncertainties 
calculated with the adjusted parameters can be estimated. The premise of data assimilation is that 
the posteriori responses uncertainties for the reactor application will be statistically consistent with 
the discrepancies between the measured and predicted future responses of the reactor application. 
This calibration-based approach faces several major challenges: 

1) It relies on the adjustment of basic physics parameter, a practice that is frowned upon by many 
physicists who believe physics parameters are fundamental quantities that should never be 
calibrated. Interestingly, many practitioners refer to parameter calibration as "fudging" 
because there is a wide belief that any type of fitting against measurements runs the risk of 

2 This formulation assumes Gaussian distribution for the prior parameter uncertainties, and Gaussian likelihood 

function for the responses [see any standard text on Bayesian theory, e.g., Ref. [4]]. 
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cross-compensation for the error sources between the various parameters, especially when the 
number of adjustable parameters is much higher than the number of responses. 

2) As a result of the adjustment procedure, physics parameters that are uncorrelated a priori 
become correlated post the adjustment. In criticality safety studies, for example, correlations 
appear a posteriori between the zirconium thermal absorption and the fast inelastic scattering 
cross-section of uranium isotopes3 [5]. Although these correlations can be defended 
mathematically, they are meaningless to physicists and practitioners, since the original 
experiments used to measure the cross-sections for these isotopes are completely independent. 

3) To solve the minimization problem, access to gradient information of the measured responses 
with respect to the physics parameters is typically needed. In the nuclear criticality community, 
derivatives with respect to cross-sections (representing model parameters) have been 
calculated using an adjoint variational approach which requires intrusive code modifications 
to calculate the adjoint function, a basic ingredient in the calculation of the derivatives. 

4) Although the posteriori parameter uncertainties can be propagated to estimate the posteriori 
reactor responses uncertainties, there is no mathematical guarantee that these uncertainties will 
be realistic. This follows because no information about the reactor application is included in 
the adjustment procedure. To provide some measure of the relationship between the 
experiment and the application, the current validation practice relies on calculating a similarity 
index between the reactor application and the experiment defined by [2,5]: 

g exC prig rc
s= 

VgeTeCprigre VgexCprigex

where the vectors gex and grc are the gradients of a given response, e.g., critical eigenvalue, 

with respect to the basic physics parameters x as calculated from the experiment and the reactor 
application models, respectively. This metric takes on values between zero and one. When 
close to one, the analyst argues that the adjustments will likely work for the reactor application. 
When close to zero, the analyst becomes suspicious of the relevance of the experiment to the 
reactor application. In practice, this metric only serves as a qualitative metric that can be used 
to exclude experiments that are sufficiently different from the reactor application, when the 
adjustment procedure poorly fits the experimental data. 

5) The basic assumption of the calibration-based approach is that observed biases are solely 
originating from physics parameters uncertainty. When other sources of uncertainty are 
prominently present, referred to as modeling uncertainty, the posteriori parameter values have 
to be over- or under-adjusted to account for modeling uncertainty. The impact of these over or 
under-adjustments may be significant enough to deteriorate the predictions for the reactor 
application. This is a challenging situation because it is difficult to hedge against the impact of 
modeling uncertainty even when it is carefully quantified prior to the adjustment search. Over 
the past ten years, the problem of model calibration under the influence of modeling 
uncertainty has occupied the attention of many practitioners, including applied mathematicians 
and statisticians, who have made several prominent proposals to account for the impact of 

3 The TSURFER module of SCALE represents an example of data adjustment techniques applied to criticality safety 

problems, Ref. [5] 
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modeling uncertainty on the adjusted parameters [6]. This problem however is arguably far 
from being solved. 
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Adjusted Parameters 

Prior Parameters Uncertainty 

Prior Parameters 

Validation Experiments 

1 

b: sr = 11Y:sr
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Fig 1. Calibration-based Approach for Reactor Application Bias Mapping 

To address these challenges, PCM employs a different philosophy to map the biases. Instead of 
correcting for the various sources of uncertainties, via parameter adjustments, the physics models 
of the experiment and the reactor application are employed to find patterns between the experiment 
and the reactor responses directly, thus bypassing the need to calibrate the parameters. Depending 
on the quality of identified patterns, the experiment biases can be mapped to the reactor application 
domain. Fig. 2 depicts this situation for two different cases, one with high and the other moderate 
correlation between the reactor application eigenvalue Kg: , and that of the experiment le . 
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Fig 2. Basic Idea of PCM 
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In the left graph, the high correlation ensures that experiment bias bps' for the response can be 

mapped with low uncertainty to estimate the application bias bf . In the right figure however, the 

mapped application bias has higher uncertainty, which happens due to the presence of additional 
sources of uncertainties that are not common to both the experiment and the application, which 
results in reducing their mutual correlation. These scatter plots can be generated fairly easily 
employing the results of the two uncertainty analyses for the reactor application and the experiment 
(details will be provided in the next section). The following observations may be made: 

a) The PCM methodology does not restrict the type of the relationship between the application 
and experiment responses to be linear. This is important in order to account for nonlinear 
relationships when sensitivity-based similarity indices would be no longer applicable. 

b) To construct the scatter plots, PCM requires two uncertainty analyses, one done for the 
experiments model and one for the model of reactor application. These are straightforward 
non-intrusive analyses, wherein the number of model runs is independent of the number of 
model parameters or responses. Typically few hundred runs are sufficient for most problems. 

c) Once the scatter plot is constructed, the application bias can be estimated using either 
parametric or nonparametric techniques. Parametric techniques such as response surface 
methods [6] can be employed, wherein the application bias is functionalized in terms of the 
experiment biases using a known polynomial (or generalized functions) with unknown 
coefficients, and the scatter plot is used to determine the unknown coefficients via least-squares 
fitting. The response surface predictions will denote the mapped bias and the residual of the fit 
will serve as a measure of the bias uncertainty. Nonparametric techniques such as kernel 
density estimators can also be used to map the application biases and their uncertainties [7]. 

d) PCM does not require access to derivative information, and hence the adjoint solver is no 
longer needed, implying that only black box code access is needed. 
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3. DESCRIPTION OF PCM ALGORITHM 

A mathematical description of the steps required to implement PCM is given here. Assume that 
one is starting with M different experiments and a single application, where each experiment has 
a single response denoted as y"r(i) , i =1, ..., M. Also assume that computational models for the 

experiments and the application are available which are executed to obtain the reference values for 
the application response yrc , and that of the experiments yam') , i=1,2..., M The goal is to employ 

the biases yam) — y7 (i)  i=1,..., M to determine a bias for the application response. The PCM 

algorithm proceeds as follows: 

1. Identify all sources of uncertainties in the experiments and the application. Let x denote the 
common sources, while iu refers to the sources unique to the i th experiment, and v those of the 
application. For example, x can denote cross-sections, ui the fuel to moderator ratio, geometry 
of the unit cell, etc., in the experiment, and v denotes uncertainties in one of the core parameters 
in the reactor application, e.g., the flow rate. 

2. Generate N samples of x, ui, and v according to their prior distributions. If x represents cross-
sections, the prior covariance matrix should be used to ensure the x samples are statistically 
consistent with their prior uncertainties. 

3. Execute the application and the M experiments computational models N times, each 
corresponding to one of the samples. This step is essentially an uncertainty analysis done for 
each experiment and the application. 

4. Aggregate the N responses from the application and the i th experiment into vectors yrc and gi 
both of length N, respectively, where i = M 

5. Find a relationship between the response of the application and the M experimental responses 
using the N training samples. Details on this are discussed below. 

6. Based on relationship in 5, determine the application response, denoted by a vector yrPcmj of N 

components. This variable is expected to be different from yrc, because not all aspects of the 
application are captured by the experiments. The idea is to compare these two vectors to 
develop a useful definition for coverage. 

7. Draw a scatter plot of the components of pc against those of yrPcmj . If the experiments are indeed 

perfectly representative of the application, one would get a perfect contour that relates the two 
quantities. In reality, the scattered points will define a trend which describes the dependence 
of the application on the experiments, and the degree of the scatter will determine the 
uncertainty of this dependence. 

8. Using the measured experimental biases as input to the relationship developed in 5, determine 

the estimated application bias, denoted, yrecst,pmj 

9. Using the scatter plot in 7, determine the possible values of the application bias that correspond 

to the value of yrecst,pro; This could be described as an interval or via a full PDF using kernel 

density estimation. 

The relationship required in step #5 may be determined parametrically, i.e., using response surface 
methods, or via a large number of non-parametric statistical techniques, e.g., order statistics, kernel 
density estimators, projection pursuit techniques, etc. In this introductory presentation, we will use 
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a simple parametric approach based on a linear surrogate model. Extension to other techniques 
will be part of future work. 

Let the N samples of the application and experiments satisfy the following linear mapping in a 
Least-Squares sense: 

(i) fy "(i) fy "(0 
+ .Y rc """"145 1 +a2 g2 +amgm(i), i 

By minimizing the residual of these equations, one can determine the coefficients Following 

that, determine yrPcmj according to step 6: 

Progi) (i) (i) 
Y re 

— 
a 1g1 cr2g2  + a mg V  , i =1,...,N 

The N samples of yrc and yrPcmj are then graphed using a scatter plot on the x and y-axes, 

respectively, per step 7, example shown in Fig. 4 in the next section. Per step 8, the estimated 
application bias is given by: 

est,proj msr,(1) (1) \ msr,(M) msr,(M)) 
Y re = alkY ex — Y )  ex + ±a M Yez Yez 

Using the scatter plot, determine the range of the application bias values that correspond to the 
estimated value. This range denotes the uncertainty in the estimated bias. 

4. NUMERICAL EXPERIMENTS 

For this preliminary study, the sensitivity profiles for 25 critical experiments formed the pool of 
our analysis. The first K experiments (taken at K=10, K=15, and K=25) are grouped together to 
represent the experimental domain. Experiment #30 (see Appendix) is taken to represent the 
application of interest. In this work, we employ the new super-sequence CRANE [9], recently 
introduced into the SCALE code package to generate the N random samples for the cross-sections 
based on the SCALE 44-group covariance library (scale.rev05.44groupcov) [5]. The N samples 
are employed to generate N samples for the application experimental responses. Based on fitting 
to a linear model, the application responses estimated based on the experiments are scatter-plotted 
against the original application responses as done in Fig. 4. This figure may be used as follow: 
based on the M experiments biases, estimate the application bias yrecst'Pvi . Draw a horizontal line at 

this value on the y-axis (shown as black line in the right graph), and move horizontally to the 
scattered points, then move vertically towards the x-axis (shown as two blue lines) to determine 
the possible range of values for the application bias. In practice, this can be done analytically using 
kernel density estimators, but for the sake of this introductory presentation, a graphical description 
is provided. The value of this approach is that one can see clearly the relationship between the 
experiments and the application, and the impact of uncertainties on the mapped biases. If the bias 
uncertainty is small, the coverage is poor, and vice versa. Based on the insight learned from this 
application, one can develop more rigorous defmitions for the coverage, which will be investigated 
in future work. 

5. CONCLUSIONS 

This manuscript has introduced a calibration-free methodology to support model validation. The 
new method simply relies on the physics of the experiments and the reactor operating conditions 
to map the experimental biases to the domain of reactor operation. The mapping is done based on 
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a joint uncertainty analysis that is capable of quantifying the mutual information between the 
experimental and operational domains. This provides a unique ability to measure coverage, and 
map biases and biases uncertainties in a credible manner for general linear and nonlinear 
relationship, which avoids the calibration of model parameters, and the need for sensitivity 
coefficients. 

0.15 

0.1 

0.05 

_env 0 

re -0.05 

-0.1 

-0.15 

• a 

-0.1 0 0 " 0 2 

Yrc 

Coverage with 10 Experiments 

0.15 

0.1 

0.05 

V
pro1 
rc -0.05 

.0.1 

-0.15 

0102  0 01 02 

c 

Coverage with 15 Experiments 

0.15 

0.1 

0.05 

v proj 0 

-0.05 

-0.1 

-0.15 

0-0 2 -0.1 0 0.1 0 2 

Yrc 

Coverage with 25 Experiments 

Fig. 4. Application Coverage by Experiments 

6. ACKNOWLEDGEMENTS 

The authors would like to acknowledge the support from Dr. Ugur Mertyurek of Oak Ridge 
National Laboratory for providing the integral experiments models used in this study. 

7. REFERENCES 

1. Sedat Goluoglu, C. M. Hopper, and B. T. Rearden, "Extended Interpretation of Sensitivity 
Data for Benchmark Areas of Applicability," Transactions of the American Nuclear Society, 
San Diego, CA 2003 

7th International Conference on Modelling and Simulation in Nuclear Science and Engineering (7ICMSNSE) 
Ottawa Marriott Hotel, Ottawa, Ontario, Canada, October 18-21, 2015 

 

a joint uncertainty analysis that is capable of quantifying the mutual information between the 
experimental and operational domains. This provides a unique ability to measure coverage, and 
map biases and biases uncertainties in a credible manner for general linear and nonlinear 
relationship, which avoids the calibration of model parameters, and the need for sensitivity 
coefficients.  

  

                
            Coverage with 10 Experiments                  Coverage with 15 Experiments 

 

 
      Coverage with 25 Experiments 

 

Fig. 4. Application Coverage by Experiments 

 

6. ACKNOWLEDGEMENTS 

The authors would like to acknowledge the support from Dr. Ugur Mertyurek of Oak Ridge 
National Laboratory for providing the integral experiments models used in this study. 

 

7. REFERENCES 

1. Sedat Goluoglu, C. M. Hopper, and B. T. Rearden, “Extended Interpretation of Sensitivity 
Data for Benchmark Areas of Applicability,” Transactions of the American Nuclear Society, 
San Diego, CA 2003 



7th International Conference on Modelling and Simulation in Nuclear Science and Engineering (7ICMSNSE) 
Ottawa Marriott Hotel, Ottawa, Ontario, Canada, October 18-21, 2015 

2. G. Palmiotti, et. al., "Developments in Sensitivity Methodologies and the Validation of Reactor 
Physics Calculations," Science and Technology of Nuclear Installations, 2012. 

3. A. Tarantola, Inverse Problem Theory and Methods for Model Parameter Estimation, SIAM 
2004. 

4. J. Stone, Bayes Rule: A Tutorial Introduction to Bayesian Analysis, 2013. 
5. Scale: A Comprehensive Modeling and Simulation Suite for Nuclear Safety Analysis and 

Design, ORNL/TM-2005/39, Version 6.1, Oak Ridge National Laboratory, Oak Ridge, 
Tennessee, June 2011. Available from Radiation Safety Information Computational Center at 
Oak Ridge National Laboratory as CCC-785. 

6. M.C. Kennedy, A. O'Hagan, "Bayesian calibration of computer models," Journal of Royal 
Statistical Society Series B, Statistical Methodology, 63 (3) (2001) 425-464. 

7. G. Box, et. al., Empirical Model-Building and Response Surfaces, 1987. 
8. B. Silverman, Density Estimation for Statistics and Data Analysis, 1986. 
9. U. Mertyurek, "CRANE: A Prototypic SCALE Module for Reduced Order Modeling," 

Transactions of American Nuclear Society, Reno, NV 2014. 

8. APPENDIX 

Source: NEA/NSC/DOC(95)03/IV: EVALUATED EXPERIMENTS Critical and Subcritical Measurements Low 
Enriched Uranium Systems 

LEU-COMP-THERM-001 Water-Moderated U(2.35)02 Fuel Rods in 2.032-cm Square-Pitched Arrays 

LEU-COMP-THERM-002 Water-Moderated U(4.31)02 Fuel Rods in 2.54-cm Square-Pitched Arrays 
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LEU-COMP-THERM-007 Water Reflected 4.738 Wt.% Enriched Uranium Dioxide Fuel Rod Arrays 
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LEU-COMP-THERM-011 Critical Experiments Supporting Close Proximity Water Storage of Power Reactor Fuel, 

Part I - Absorber Rods 
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LEU-COMP-THERM-012 Water-Moderated Rectangular Clusters of U(2.35)02 Fuel Rods (1.684-cm Pitch) 

Separated by Steel, Boral, Boroflex, Cadmium, or Copper Plates (Gadolinium Water 
Impurity) 

LEU-COMP-THERM-013 Water-moderated Rectangular Clusters of U(4.31)02 Fuel Rods (1.892-cm pitch) 
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UO2 Fuel Rods in Light Water 
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019 Water-Moderated Hexagonally Pitched Lattices of U(5%)02 Stainless Steel Clad Fuel 
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020 Water-Moderated Hexagonally Pitched Partially Flooded Lattices of U(5%)02 

Zirconium Clad Fuel Rods 

021 Hexagonally Pitched Partially Flooded Lattices of U(5%)02 Zirconium Clad Fuel Rods 

Moderated by Water with Boric Acid 

022 Uniform Water-Moderated Hexagonally Pitched Lattices of Rods with U(10%)02 Fuel 

023 Partially Flooded Uniform Lattices of Rods with U(10%)02 Fuel 

024 Water-Moderated Square-Pitched Uniform Lattices of Rods with U(10%)02 Fuel 

025 Water-Moderated Hexagonally Pitched Lattices of U(7.5%)02 Stainless-Steel-Clad Fuel 

Rods 

030 VVER Physics Experiments: Regular Hexagonal (1.27 cm Pitch) Lattices of Low-

Enriched U(3.5 wt.% 235U)02 Fuel Rods in Light Water at Different Core Critical 
Dimensions 
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Separated by Steel, Boral, Boroflex, Cadmium, or Copper Plates (Gadolinium Water    
Impurity) 

LEU-COMP-THERM-013 Water-moderated Rectangular Clusters of U(4.31)O2 Fuel Rods (1.892-cm pitch)  

Separated by Steel, Boral, Boroflex, Cadmium, or Copper Plates, with Steel Reflecting 
Walls 

LEU-COMP-THERM-014 Water-Reflected Arrays of U(4.31)O2 Fuel Rods (1.890-cm and 1.715-cm 

 Square Pitch) in Borated Water 

LEU-COMP-THERM-015 The VVER Experiments: Regular and Perturbed Hexagonal Lattices of Low-Enriched  

 UO2 Fuel Rods in Light Water 

LEU-COMP-THERM-016 Water-Moderated Rectangular Clusters of U(2.35) O2 Fuel Rods (2.032-cm Pitch)  

 Separated by Steel, Boral, Copper, Cadmium, Aluminum, or Zircaloy-4 Plates 

LEU-COMP-THERM-017 Critical Arrays of Water-Moderated U(2.35)O2 Fuel Rods Reflected by Two Lead,  

 Uranium, or Steel Walls 

LEU-COMP-THERM-018 Light Water Moderated and Reflected Low Enriched Uranium Dioxide (7 wt.%) Rod  

 Lattice 

LEU-COMP-THERM-019 Water-Moderated Hexagonally Pitched Lattices of U(5%)O2 Stainless Steel Clad Fuel  

 Rods 

LEU-COMP-THERM-020 Water-Moderated Hexagonally Pitched Partially Flooded Lattices of U(5%)O2  

 Zirconium Clad Fuel Rods 

LEU-COMP-THERM-021 Hexagonally Pitched Partially Flooded Lattices of U(5%)O2 Zirconium Clad Fuel Rods  

 Moderated by Water with Boric Acid 

LEU-COMP-THERM-022 Uniform Water-Moderated Hexagonally Pitched Lattices of Rods with U(10%)O2 Fuel 

LEU-COMP-THERM-023 Partially Flooded Uniform Lattices of Rods with U(10%)O2 Fuel 

LEU-COMP-THERM-024 Water-Moderated Square-Pitched Uniform Lattices of Rods with U(10%)O2 Fuel 

LEU-COMP-THERM-025 Water-Moderated Hexagonally Pitched Lattices of U(7.5%)O2 Stainless-Steel-Clad Fuel  

 Rods 

LEU-COMP-THERM-030 VVER Physics Experiments: Regular Hexagonal (1.27 cm Pitch) Lattices of Low- 

Enriched U(3.5 wt.% 235U)O2 Fuel Rods in Light Water at Different Core Critical  
Dimensions 

 


