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Abstract 

Sensitivity and uncertainty analysis are essential parts for reactor system to perform risk and 
policy analysis. In this study, total sensitivity and corresponding uncertainty analysis for 
responses of neutronics calculations have been accomplished and developed the S&U analysis 
code named UNICORN. The UNICORN code can consider the implicit effects of multigroup 
cross sections on the responses. The UNICORN code has been applied to typical pin-cell case 
in this paper, and can be proved correct by comparison the results with those of the 
TSUNAMI-1D code. 
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1. Introduction 

In recent years, there has been an increasing demand from nuclear research, industry, safety 
and regulation for best-estimate predictions to be provided with their confidence bounds [1]. 
Uncertainty quantification can satisfy this demand to determine the appropriate design margins 
for the nuclear system. As neutronics calculation is the prerequisite for predictions of the nuclear 
system, the uncertainties introduced in neutronics calculations would impact the prediction 
results of the nuclear system. Therefore, uncertainty analysis has been focused on the neutronics 
calculations and the imprecisions of cross sections have been treated as one of the most 
significant sources of uncertainties [2] recently. According to the previous researches, the 
uncertainties of neutronics calculation responses are non-ignorable, with relative standard 
deviations of eigenvalue up to be about 0.55% for the Peach Bottom 2 (PB-2) pin-cell [3] and 
0.43% for the Three Mile Island Unit-1 (TMI-1) core [4]. In this context, it's necessary and 
significant to perform uncertainty analysis to neutronics calculations to obtain much more 
confident prediction results. 

There exit two categories of methods widely applied to perform uncertainty analysis, aimed at 
propagating cross-section uncertainties to the responses of neutronics calculations: the 
deterministic method and the statistical sampling method. For the deterministic method, 
sensitivity analysis is essential and necessary to obtain the relative sensitivity coefficients of 
responses with respect to cross sections firstly. And then the "sandwich rule" is applied to 
calculate the uncertainties of responses by combining the relative sensitivity coefficients and 
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relative variance-covariance matrix (VCM). In order to obtain the relative sensitivity coefficients, 
the perturbation theory (PT) [5] and the direct numerical perturbation method (DNP) [6] are 
available. For the statistical sampling method, the samples of cross sections are generated 
according to the distributions of them firstly. And then each cross-section sample is used as input 
parameters to carry out the neutronics calculations to obtain corresponding responses. Finally, the 
statistical calculation is applied to obtain the uncertainties of responses. 

In this paper, the UNICORN code has been developed, with capabilities of performing 
sensitivity and uncertainty analysis for responses of neutronics calculations with respect to 
multigroup cross sections. The DNP method and statistical sampling method have been chosen 
and accomplished in the UNICORN code to perform sensitivity and uncertainty analysis 
respectively. For uncertainty analysis, the statistical sampling method has the obvious 
advantages, including no approximation and no limit to the number of responses, compared with 
the deterministic method. However, the relative sensitivity coefficients, which can be used to 
perform similarity analysis [7] and cross-section adjustment [8], are beyond the capability of the 
statistical sampling method. Therefore, the sensitivity analysis function has been developed in 
UNICORN, and the DNP method is chosen to obtain the relative sensitivity coefficients, because 
the DNP method is convenient and no rely on the models of neutronics calculations, compared 
with the PT method. In addition, the lattice code DRAGON 4.0 [9] is used to carry out the 
resonance self-shielding and neutron-transport calculations with application of the WIMSD-4 
format multigroup cross-section library. 

In section 2, an overview is given firstly and then the theories and methods applied are 
introduced. In section 3, numerical results and analysis are given and explained. Finally, 
conclusions are summarized in section 4. 

2. Theories and Methods 

2.1 Overall calculation flow 

The flowchart of UNICORN is as shown in Fig. 1. There are there parts of main works 
included in the UNICORN code. Firstly, the essential nuclear data should be obtained. In 
UNICORN, both the integral cross sections including ut, u„ and o-a, and the basic cross sections 
including 6 (n,elas), 6 (n,inel), 6 (n,2n), 6 (n,3n), 6 01,0, ri(n,Y), 6 (n,p), 6 (n,D), 6 0,T), 6 (n,He), 6 (n,a) and v can be 
analyzed. All these cross sections can be obtained by combining the cross-section information 
included in WIMSD-4 format multigroup cross-section library and those in NJOY [10] output 
files. Secondly, the multigroup cross-section perturbation model should be established. In 
UNICORN, both the DNP method and the statistical sampling method would perform 
perturbations to multigroup cross sections. Therefore, the cross-section perturbation model is 
established to perform perturbations to multigroup cross sections and keep them consistency and 
balance. Thirdly, the DNP method and the statistical sampling method would be accomplished 
and developed in UNICORN. For DNP method, the relative sensitivity coefficients and relative 
uncertainties of responses with respect to the multigroup cross sections are obtained. And for the 
statistical sampling method, the uncertainties of responses are given. 
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Figure 1. Flowchart of the UNICORN code 

In the following context, the multigroup cross-section perturbation, the statistical sampling 
method and the DNP method are introduced in detailed in subsections. 

2.2 Multigroup cross-section perturbation model 

As mentioned above, the cross-section perturbation model should be established for both the 
DNP method and the statistical sampling method. In this section, the perturbation propagations 
and cross-section consistency rules are introduced in detail. 

Firstly, the perturbations of multigroup cross sections should be established through the 
perturbations added to the point-wise cross sections. According to the deterministic method, 
multigroup cross sections are needed for resonance self-shielding and neutronics calculations. 
And the multigroup cross sections are generated by the point-wise ones with application of 
weighting flux as shown in Eq. (1). 

6 x(E,T)0(E,o-o)dE 
o-x,g (T ,o-o)=  (1)

where o-o is the Bondarenko parameter, T is the temperature; o-x(E,T) presents the point-wise 
cross section for type of x, and o-„,g(T, ao) stands for the gth group cross-section of type x; 0(E,o-o) 
is the weighting flux. The perturbations of multigroup cross sections should be consistency with 
the perturbations propagated from the point-wise ones. In this paper, it is assumed that the 
perturbation for the gth group of type x is performed by uniform relative perturbation added to 
the point-wise cross section within the energy range of the gth group, as shown in Eq. (2). 

o-X (E,T) = (1+ x,g)o- x (E,T) s -J <E< Eg (2) 
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where σ0 is the Bondarenko parameter, T is the temperature; σx(E,T) presents the point-wise 
cross section for type of x, and σx,g(T, σ0) stands for the gth group cross-section of type x; ϕ(E,σ0) 
is the weighting flux. The perturbations of multigroup cross sections should be consistency with 
the perturbations propagated from the point-wise ones. In this paper, it is assumed that the 
perturbation for the gth group of type x is performed by uniform relative perturbation added to 
the point-wise cross section within the energy range of the gth group, as shown in Eq. (2). 
 '

, 1( , ) (1 ) ( , )x x g x g gE T E T E E Eσ δ σ −= + ≤ ≤  (2) 
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where Eg_i and Eg present the lower and upper energy boundaries of the gth group; 6ix(E,7) stands 
for the perturbed point-wise cross section of type x, and 8„,g is the relative perturbation factor 
added to the cross section of type x. The perturbation propagations from point-wise cross sections 
to the multigroup ones are different to different types of cross sections. For the cross sections 
without resonance, the weighting flux is selected or input by user and independent of the point-
wise cross sections, which is the function of energy E. Therefore, the perturbation propagations 
are linear and can be presented shown as in Eq. (3). 

J o- X (E,T)0(E)dE 
LEg 

o-x (E,T)0(E)dE 
aX,g(T A; LE 0(E)dE 0+gx,g) = (1+ gx,g )o-x,g (T) (3) 

LE 0(E)dE 
g

However, for the resonant cross sections, the perturbations are non-linear. Because the 
weighting flux within resonance-energy regions are obtained by solving neutron slowing-down 
equation and cross sections perturbations would result in perturbations to the weighting flux. 
And the solution of slowing-down equation can be presented as shown in Eq. (4), according to 
the narrow resonance (NR) approximation. 

p +a 0 
0(E, 6 0) = 

a 
(E) (4) ar(E)+ao 

where ol„ and 6t(E) present the potential scattering cross section and total cross section of the 
resonant nuclide correspondingly, and w(E) stands for the 1/E shape. Therefore, the perturbation 
propagations for the resonant cross sections within resonance groups can be presented as shown 
in Eq. (5). 

a; +ao 
LEg o-x(E,T)0(E,o-o)dE I o-x(p,T) AE„ 

o-X,g(T,o-0)=  r = (1 5t,g) 
ar(1-1,n+ 5 x,ga x(1-1,7")+ (70 41

(Tr  + a p 0 j mg 0(E,0-0)dE 
dp 

LEP ar(1-1,7)+5x,go-x(p,n+ao 

feEpo-x(p,T)  
(7rp + a 0 

(1+  

5r,+g)CS 
o-t(p,T)+o-ocill 

= (1 5 t,g) 

CSr  
= (1 at,g)a x,g ( 7'  ,a0) 

p u n 
du 

' I AEA, (1+ ar,dar(P,T)+ ao
By combining Eq. (3) and Eq. (5), the multigroup cross-section perturbation model is established. 

Secondly, consistency rules should be established to keep cross sections balance. As 
mentioned above, the UNICORN code can perform analysis not only to integral cross sections, 
but also to basic cross sections, which are absent from the neutron-transport equation and the 
WIMSD-4 library. The perturbations of basic cross sections should be presented to the lumped 
ones contained in WIMSD-4. Therefore, the consistency rules are established. According to the 
WLUP [11] project, the consistency rules for the WIMSD-4 library can be presented as shown in 
Eq. (6), (7) and (8). 

(5) 

Cr s,g —>h = Cr (n,elas),g—>h ±Cr (n,inel),g—>h ±26  (n,2n),g—>h ± 3cf(n,3n),g->h (6) 

Crag = Cr(n,f) ±Cr(n,g) ±Cr(n,a) ±Cr(n,2a) ±Cr(n,p) +Cr (n,D) ±Cr (n,T) ±Cr(n,He3) —Cr (n,2n),g —2a(n,30,g (7) 

a t,g = a a,g a s,g+  (8) 

According to these consistency rules, the perturbations of basic cross sections can be presented in 
the lumped integral cross sections included in WIMSD-4 and thus effect the responses of 
neutronics calculations. 
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By combining Eq. (3) and Eq. (5), the multigroup cross-section perturbation model is established.  
Secondly, consistency rules should be established to keep cross sections balance. As 

mentioned above, the UNICORN code can perform analysis not only to integral cross sections, 
but also to basic cross sections, which are absent from the neutron-transport equation and the 
WIMSD-4 library. The perturbations of basic cross sections should be presented to the lumped 
ones contained in WIMSD-4. Therefore, the consistency rules are established. According to the 
WLUP [11] project, the consistency rules for the WIMSD-4 library can be presented as shown in 
Eq. (6), (7) and (8). 
 , (n,elas), (n,inel), (n,2n), (n,3n),2 3s g h g h g h g h g hσ σ σ σ σ→ → → → →= + + +  (6) 
 , ( , ) ( , ) ( , ) ( ,2 ) ( ,p) ( ,D) ( ,T) ( ,He3) ( ,2 ), ( ,3 ),2a g n f n g n n n n n n n n g n n gα ασ σ σ σ σ σ σ σ σ σ σ= + + + + + + + − −  (7) 
 , , ,t g a g s gσ σ σ= +  (8) 
According to these consistency rules, the perturbations of basic cross sections can be presented in 
the lumped integral cross sections included in WIMSD-4 and thus effect the responses of 
neutronics calculations. 
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2.3 Statistical sampling method 

For any system, the relationship between input parameters and responses can be briefly 
characterized as shown in Eq. (9). 

R= f (X) (9) 
where X presents the multi-input vector and can be characterized as X=[xi,x2,...,xnx]T; R presents 
the multi-response vector and can be characterized as R=[Ri,R2,••• ,RnR]T • 

The procedures for uncertainty estimation by statistical sampling method can be summarized 
into four main steps [12]. 

Firstly, cross-section distribution regions are required. The group-wise VCM can be generated 
by application of the NJOY code. In VCM, the diagonal elements present the variances or 
uncertainties of cross sections, and the off-diagonal elements are covariance between them. 

Secondly, it's essential to generate the cross-section samples. The cross-section samples can be 
generated by using Eq. (10). 

Xs 
= z1/2y s  (10) 

where Xs and Ys represent the samples for cross sections and independent parameters 
respectively; p=[pi, P2,..., pnx1T is the expectation value vector of cross sections; E is the group-
wise VCM of cross sections. 

Thirdly, the input-responses mapping can be obtained by carrying out the target code to 
perform neutronics calculations with use of cross-section samples. And the mapping can be 
presented as [X51, R i] (i=1,2, . ,nS, where nS is the number of samples). 

Finally, statistical calculation is used to estimate the uncertainties of responses according to 
the mappings obtained by the third step. And the standard deviation of the kth response can be 
obtained as shown in Eq. (11). 

a(Rk) =  
1 

(Rk - R„)2
nS -1 " 

(11) 

where a(Rk) is the standard deviation of the kth response and Rio  present the expectation value 
which can be characterized as shown in Eq. (12). 

1 nS 

Rk,0 = - 
k'i 

ER (12) 
nS i=1 

By application of the four steps above, the uncertainties of responses due to multigroup cross 
sections can be determined and obtained. 

In this paper, the bootstrap method [13] has been accomplished for determining the confidence 
intervals. The confidence intervals are obtained by re-sampling method and can be calculated as 
shown in Eq. (13). 

N 

AcT(Rk)=
\I 1

i Da ( 1? k) i (Ric) 0)
2 (13) 

where Ao-(Rk) presents the deviation of the uncertainty results by application of the N re-samples; 
o-(Rk)i is the uncertainty result of the ith re-samples, and a(Rk)0 presents the expectation value of 
the N uncertainty results. 

2.4 Direct numerical method 
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into four main steps [12]. 
  Firstly, cross-section distribution regions are required. The group-wise VCM can be generated 
by application of the NJOY code. In VCM, the diagonal elements present the variances or 
uncertainties of cross sections, and the off-diagonal elements are covariance between them. 
  Secondly, it’s essential to generate the cross-section samples. The cross-section samples can be 
generated by using Eq. (10). 
 1/2

S S= +X Σ Y μ  (10) 
where XS and YS represent the samples for cross sections and independent parameters 
respectively; μ=[μ1, μ2,…, μnx]T is the expectation value vector of cross sections; Σ is the group-
wise VCM of cross sections. 
  Thirdly, the input-responses mapping can be obtained by carrying out the target code to 
perform neutronics calculations with use of cross-section samples. And the mapping can be 
presented as [XS,i , Ri] (i=1,2,…,nS, where nS is the number of samples). 
  Finally, statistical calculation is used to estimate the uncertainties of responses according to 
the mappings obtained by the third step. And the standard deviation of the kth response can be 
obtained as shown in Eq. (11). 

 2
, ,0

1

1( ) ( )
1

nS

k k i k
i

R R R
nS

σ
=

= −
− ∑  (11) 

where σ(Rk) is the standard deviation of the kth response and Rk,0 present the expectation value 
which can be characterized as shown in Eq. (12). 

 ,0 ,
1

1 nS

k k i
i

R R
nS =

= ∑  (12) 

By application of the four steps above, the uncertainties of responses due to multigroup cross 
sections can be determined and obtained. 
  In this paper, the bootstrap method [13] has been accomplished for determining the confidence 
intervals. The confidence intervals are obtained by re-sampling method and can be calculated as 
shown in Eq. (13). 

 2
0

1

1( ) ( ( ) ( ) )
1k k k

N

i
i

R R R
N

σ σ σ
=

∆ = −
− ∑  (13) 

where ∆σ(Rk) presents the deviation of the uncertainty results by application of the N re-samples; 
σ(Rk)i is the uncertainty result of the ith re-samples, and σ(Rk)0 presents the expectation value of 
the N uncertainty results. 

2.4 Direct numerical method 
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The DNP method is a straightforward method to calculate the relative sensitivity coefficients. 
And the relative sensitivity coefficients of responses with respect to multigroup cross sections 
can be presented briefly as shown in Eq. (14). 

S. o-„,g aRk ax,g  Rk(0±5:,g )ak,g )- Rk(0+8;,g )ak,g ) 

Rkcr' g= Rk auk,g Rk Kg -5;,g)o-x,g
1 Rk (0 )- Rk ((1 +5;,g )40x,g ) 

(14) 

Rk g x,g —(5x,g 

where 6g and 
6x

 g represent the positive and negative relative perturbations for the gth group's 
cross section with type of x respectively; ax,g and Rk stand for the un-perturbed cross section and 
the kth response respectively. 

Uncertainty analysis can be performed by combining the relative sensitivity coefficients with 
relative covariance matrix based on the "sandwich rule". The "sandwich rule" for uncertainty 
quantification of eigenvalue to the multigroup cross sections can be presented as shown in Eq. 
(15). 

(72 (R k ) 

= S Rk,a. S TR  Rk ,a, a,cci  Rk ,cci

where o-2(Rk) is the variance of responses due to uncertainties of multigroup cross sections; Ea,a, 
presents the relative covariance data for cross sections a1 and a1. 

3. Numerical Results and Analysis 

3.1 Verification of UNICORN 

(15) 

For verification of UNICORN, a 238-group WIMSD-4 format cross-section library has been 
generated based on ENDF/B-VII.0 with application of NJOY in this paper. With the 238-group 
library, NECP-RB31 benchmark case has been analyzed by both UNICORN and TSUNAMI-1D 
to verify the cross-section perturbation model and development of UNICORN. The eight most 
significant types of cross sections and the total relative sensitivity coefficients with respect to 
them are shown in Table 1. 

Table 1. The eight most significant types of cross section to lc,. of NECP-RB31 

Nuclides Cross section Relative sensitivity coefficients 

235U 

235U 

238U 

235U 

a(n,f) 

(n,y) 

(n,y) 

TSUNAMI-1D 

9.52E-01 

2.50E-01 

-1.84E-01 

-1.50E-01 

UNICORN 

9.51E-01 

2.48E-01 

-1.80E-01 

-1.49E-01 
1H

G(n,elas) 1.50E-01 1.48E-01 
1H

238U

238U

15(n,y) 

a(n,f) 

-5.04E-02 

4.83E-02 

2.21E-02 

-5.03E-02 

4.91E-02 

2.24E-02 

It can be observed that the total relative sensitivity coefficients calculated by UNICORN code 
can agree well with those calculated by the TSUNAMI-1D code. In addition, for much more 
detailed comparison of total relative sensitivity coefficients of UNICORN code and TSUNAMI-
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  The DNP method is a straightforward method to calculate the relative sensitivity coefficients. 
And the relative sensitivity coefficients of responses with respect to multigroup cross sections 
can be presented briefly as shown in Eq. (14). 
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where σ+ 
x,g and σ- 

x,g represent the positive and negative relative perturbations for the gth group’s 
cross section with type of x respectively; σx,g and Rk stand for the un-perturbed cross section and 
the kth response respectively. 

Uncertainty analysis can be performed by combining the relative sensitivity coefficients with 
relative covariance matrix based on the “sandwich rule”. The “sandwich rule” for uncertainty 
quantification of eigenvalue to the multigroup cross sections can be presented as shown in Eq. 
(15). 
 

2
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k i i j k j

Tk
R R

k

R
R α α α α

σ
= S Σ S  (15) 

where σ2(Rk) is the variance of responses due to uncertainties of multigroup cross sections; Σαiαj 
presents the relative covariance data for cross sections αi and αj. 

3. Numerical Results and Analysis 

3.1 Verification of UNICORN 

  For verification of UNICORN, a 238-group WIMSD-4 format cross-section library has been 
generated based on ENDF/B-VII.0 with application of NJOY in this paper. With the 238-group 
library, NECP-RB31 benchmark case has been analyzed by both UNICORN and TSUNAMI-1D 
to verify the cross-section perturbation model and development of UNICORN. The eight most 
significant types of cross sections and the total relative sensitivity coefficients with respect to 
them are shown in Table 1. 

Table 1. The eight most significant types of cross section to k∞ of NECP-RB31 
Nuclides Cross section Relative sensitivity coefficients 

  TSUNAMI-1D UNICORN 
235U v 9.52E-01 9.51E-01 
235U σ(n,f) 2.50E-01 2.48E-01 
238U σ(n,γ) -1.84E-01 -1.80E-01 
235U σ(n,γ) -1.50E-01 -1.49E-01 
1H σ(n,elas) 1.50E-01 1.48E-01 
1H σ(n,γ) -5.04E-02 -5.03E-02 

238U v 4.83E-02 4.91E-02 
238U σ(n,f) 2.21E-02 2.24E-02 

It can be observed that the total relative sensitivity coefficients calculated by UNICORN code 
can agree well with those calculated by the TSUNAMI-1D code. In addition, for much more 
detailed comparison of total relative sensitivity coefficients of UNICORN code and TSUNAMI-
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1D code, the group-wise total relative sensitivity coefficients of the eight most significant cross 
sections are compared and as shown in Fig. 2, 3, 4 and 5. 
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1D code, the group-wise total relative sensitivity coefficients of the eight most significant cross 
sections are compared and as shown in Fig. 2, 3, 4 and 5. 

 
Figure 2. Group-wise relative sensitivity coefficients for σ(n,elas) of 1H 

 
Figure 3. Group-wise relative sensitivity coefficients for σ(n,elas) of 16O 
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Figure 4. Group-wise relative sensitivity coefficients for crom of 238U 
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Figure 5. Group-wise relative sensitivity coefficients for o  of 235U 

It can be observed that the group-wise relative sensitivity coefficients of eigenvalue with respect 
to cross sections by UNICORN are agreed well with those of TSUNAMI-1D. It should be noted 
that the DNP method is a straightforward method to calculate the relative sensitivity coefficients, 
applying the difference quotient to estimate the partial derivative, therefore the numerical 
differences are inevitably existed for the relative sensitivity coefficient results of UNICORN and 
TSUNAMI-1D. And for the relative sensitivity coefficients, whose value is almost zero, the 
relative errors between the results of UNICORN and TSUNAMI-1D could be up to 50% or even 
larger, while for the others, the relative errors are within 5%. These relative errors are within the 
acceptable ranges for the relative sensitivity coefficients using the DNP method. In this context, 
it can be proved that the multigroup cross-section perturbation model established in this paper is 
correct and the development of UNICORN is also correct. 

3.2 Application of UNICORN 

For application of UNICORN, the NECP-RB31 benchmark [14] has been analyzed by both 
DNP method and statistical sampling method with 69-group WIMSD-4 library. In this 
application, the eigenvalue and 2-group few-group macroscopic cross sections are treated as the 
responses under analysis. And the relative covariance matrixes of these responses, which are 
caused by 235

U(6
(n,elas), CF(n,inel), 6 (n,2n), 6(n,f), 6(n,y) and V), 238U(0(,,eas), a(n,inel), (n,2n), CY(n,f), (n,y) 

and v), 160(6(n,elas)s 15(n,inel), a(n,y) and 6(n,o) and IH(a(n,ebs) and 15(n,y)), are as shown in Table 2, 3 
and 4. 

Table 2 presents the relative covariance matrix for responses by applying the DNP method, 
and the a(R)/R term means the relative standard deviation of corresponding responses. Table 2 
and 3 present the relative covariance matrix obtained by statistical sampling method, and Table 2 
shows the expectation values of relative covariance matrix by 20 different re-samples with nS 
=100. And Table 3 contains the standard deviations for the relative covariance matrixes obtained 
by the different 20 re-samples. 

Table 2. Relative covariance matrix of few-group cross sections by DNP method 
Res./Res. kcif S1,1 El,2 VErp VE42 ;1,1 Es,2,1 ;2.2 
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Figure 4. Group-wise relative sensitivity coefficients for σ(n,γ) of 238U 

 
Figure 5. Group-wise relative sensitivity coefficients for σ(n,f) of 235U 

It can be observed that the group-wise relative sensitivity coefficients of eigenvalue with respect 
to cross sections by UNICORN are agreed well with those of TSUNAMI-1D. It should be noted 
that the DNP method is a straightforward method to calculate the relative sensitivity coefficients, 
applying the difference quotient to estimate the partial derivative, therefore the numerical 
differences are inevitably existed for the relative sensitivity coefficient results of UNICORN and 
TSUNAMI-1D. And for the relative sensitivity coefficients, whose value is almost zero, the 
relative errors between the results of UNICORN and TSUNAMI-1D could be up to 50% or even 
larger, while for the others, the relative errors are within 5%. These relative errors are within the 
acceptable ranges for the relative sensitivity coefficients using the DNP method. In this context, 
it can be proved that the multigroup cross-section perturbation model established in this paper is 
correct and the development of UNICORN is also correct.  

3.2 Application of UNICORN 

  For application of UNICORN, the NECP-RB31 benchmark [14] has been analyzed by both 
DNP method and statistical sampling method with 69-group WIMSD-4 library. In this 
application, the eigenvalue and 2-group few-group macroscopic cross sections are treated as the 
responses under analysis. And the relative covariance matrixes of these responses, which are 
caused by 235U(σ(n,elas), σ(n,inel), σ(n,2n), σ(n,f), σ(n,γ) and v), 238U(σ(n,elas), σ(n,inel), σ(n,2n), σ(n,f), σ(n,γ) 
and v), 16O(σ(n,elas), σ(n,inel), σ(n,γ) and σ(n,α)) and 1H(σ(n,elas) and σ(n,γ)), are as shown in Table 2, 3 
and 4.  

Table 2 presents the relative covariance matrix for responses by applying the DNP method, 
and the σ(R)/R term means the relative standard deviation of corresponding responses. Table 2 
and 3 present the relative covariance matrix obtained by statistical sampling method, and Table 2 
shows the expectation values of relative covariance matrix by 20 different re-samples with nS 
=100. And Table 3 contains the standard deviations for the relative covariance matrixes obtained 
by the different 20 re-samples. 

Table 2. Relative covariance matrix of few-group cross sections by DNP method 
Res./Res. keff Σt,1 Σt,2 vΣf,1 vΣf,2 Σs,1,1 Σs,1,2 Σs,2,1 Σs,2,2 
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lcdf 5.69E-05 -4.79E-06 6.70E-07 2.74E-05 5.12E-05 -4.60E-06 1.56E-06 -1.92E-06 1.05E-06 

Et,1 -4.79E-06 6.99E-05 8.54E-06 1.13E-06 1.31E-06 6.99E-05 8.29E-05 1.03E-05 9.16E-06 

Et,2 6.70E-07 8.54E-06 6.50E-06 2.80E-06 1.40E-06 8.35E-06 1.51E-05 3.86E-06 6.96E-06 

vEtt 2.74E-05 1.13E-06 2.80E-06 4.51E-05 2.27E-05 9.97E-07 7.06E-06 1.34E-06 2.87E-06 

vEt2 5.12E-05 1.31E-06 1.40E-06 2.27E-05 6.07E-05 1.21E-06 4.15E-06 1.69E-06 1.30E-06 

E s,1,1 -4.60E-06 6.99E-05 8.35E-06 9.97E-07 1.21E-06 6.99E-05 8.16E-05 1.10E-05 8.96E-06 

s,1,2 1.56E-06 8.29E-05 1.51E-05 7.06E-06 4.15E-06 8.16E-05 1.34E-04 -3.12E-06 1.62E-05 

Es,2,1 -1.92E-06 1.03E-05 3.86E-06 1.34E-06 1.69E-06 1.10E-05 -3.12E-06 2.32E-05 3.88E-06 

s,2,2 1.05E-06 9.16E-06 6.96E-06 2.87E-06 1.30E-06 8.96E-06 1.62E-05 3.88E-06 7.50E-06 

6(R)/RI% 7.54E-01 8.36E-01 2.55E-01 6.72E-01 7.79E-01 8.36E-01 1.16E+00 4.81E-01 2.74E-01 

Table 3. Relative covariance matrix of few-group cross sections by statistical sampling method 
Res./Res. lcdf t,2 vEtt vEt2 Es,1,1 Es,2,1 E s22 

lcdf 5.12E-05 -4.65E-06 6.06E-07 2.51E-05 4.45E-05 -4.59E-06 1.36E-06 -4.24E-06 1.08E-06 

Et,1 -4.65E-06 8.59E-05 1.36E-05 2.81E-06 2.22E-06 8.58E-05 9.65E-05 9.10E-06 1.48E-05 

Et,2 6.06E-07 1.36E-05 9.40E-06 3.56E-06 1.83E-06 1.32E-05 1.90E-05 3.31E-06 1.02E-05 

vEtt 2.51E-05 2.81E-06 3.56E-06 4.59E-05 2.05E-05 2.63E-06 6.70E-06 1.54E-06 3.73E-06 

vEt2 4.45E-05 2.22E-06 1.83E-06 2.05E-05 5.35E-05 2.11E-06 4.09E-06 2.07E-06 1.77E-06 

s,1,1 -4.59E-06 8.58E-05 1.32E-05 2.63E-06 2.11E-06 8.58E-05 9.53E-05 9.77E-06 1.44E-05 

s,12 1.36E-06 9.65E-05 1.90E-05 6.70E-06 4.09E-06 9.53E-05 1.31E-04 -3.98E-06 2.08E-05 

5.12E-05 -4.65E-06 6.06E-07 2.51E-05 4.45E-05 -4.59E-06 1.36E-06 -4.24E-06 1.08E-06 

E 22 -4.65E-06 8.59E-05 1.36E-05 2.81E-06 2.22E-06 8.58E-05 9.65E-05 9.10E-06 1.48E-05 

6(R)/RI% 7.15E-01 9.27E-01 3.07E-01 6.78E-01 7.32E-01 9.26E-01 1.14E+00 4.95E-01 3.35E-01 

Table 4. Standard deviations of relative covariance matrix by statistical sampling method 
S.d./S.d. lcdf Et,1 Eft vEf1 vEt2 s,l,2 Es,2,1 Es,2,2 

lcdf 1.08E-06 4.94E-08 2.01E-08 7.18E-07 9.54E-07 5.27E-08 2.14E-07 1.77E-07 2.92E-08 

E,1 4.94E-08 4.67E-07 1.87E-07 7.35E-08 2.80E-08 4.71E-07 4.15E-07 3.02E-07 2.04E-07 

Et2 2.01E-08 1.87E-07 1.17E-07 4.49E-08 2.29E-08 1.86E-07 2.02E-07 1.48E-07 1.28E-07 

afj 7.18E-07 7.35E-08 4.49E-08 6.56E-07 7.53E-07 7.36E-08 1.64E-07 1.41E-07 5.19E-08 

vEt2 9.54E-07 2.80E-08 2.29E-08 7.53E-07 1.18E-06 2.77E-08 8.08E-08 1.42E-07 3.05E-08 

Es,1,1 5.27E-08 4.71E-07 1.86E-07 7.36E-08 2.77E-08 4.76E-07 4.06E-07 3.13E-07 2.02E-07 

E s,1,2 2.14E-07 4.15E-07 2.02E-07 1.64E-07 8.08E-08 4.06E-07 7.05E-07 1.72E-07 2.22E-07 

Es2,1 1.77E-07 3.02E-07 1.48E-07 1.41E-07 1.42E-07 3.13E-07 1.72E-07 5.48E-07 1.68E-07 

Es22 2.92E-08 2.04E-07 1.28E-07 5.19E-08 3.05E-08 2.02E-07 2.22E-07 1.68E-07 1.40E-07 

A6(R) 1% 1.04E-01 6.84E-02 3.43E-02 8.10E-02 1.09E-01 6.90E-02 8.39E-02 7.41E-02 3.74E-02 

It can be observed that the uncertainty results obtained by the statistical sampling method 
agree well with those by DNP method, which can prove that the development of the statistical 
sampling method in UNICORN is correct. And the difference exits between the uncertainties by 
DNP and the statistical sampling method may be caused by that the DNP method has the first-
order approximation or that the statistical sampling method has the statistical error inevitably. It 
can be observed that the standard deviations of few-group cross sections due to the uncertainties 
of multigroup microcosmic cross sections can be over 1.0% for Es,1,2 and almost 1.0% for the 
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keff 5.69E-05 -4.79E-06 6.70E-07 2.74E-05 5.12E-05 -4.60E-06 1.56E-06 -1.92E-06 1.05E-06 

Σt,1 -4.79E-06 6.99E-05 8.54E-06 1.13E-06 1.31E-06 6.99E-05 8.29E-05 1.03E-05 9.16E-06 

Σt,2 6.70E-07 8.54E-06 6.50E-06 2.80E-06 1.40E-06 8.35E-06 1.51E-05 3.86E-06 6.96E-06 

vΣf,1 2.74E-05 1.13E-06 2.80E-06 4.51E-05 2.27E-05 9.97E-07 7.06E-06 1.34E-06 2.87E-06 

vΣf,2 5.12E-05 1.31E-06 1.40E-06 2.27E-05 6.07E-05 1.21E-06 4.15E-06 1.69E-06 1.30E-06 

Σs,1,1 -4.60E-06 6.99E-05 8.35E-06 9.97E-07 1.21E-06 6.99E-05 8.16E-05 1.10E-05 8.96E-06 

Σs,1,2 1.56E-06 8.29E-05 1.51E-05 7.06E-06 4.15E-06 8.16E-05 1.34E-04 -3.12E-06 1.62E-05 

Σs,2,1 -1.92E-06 1.03E-05 3.86E-06 1.34E-06 1.69E-06 1.10E-05 -3.12E-06 2.32E-05 3.88E-06 

Σs,2,2 1.05E-06 9.16E-06 6.96E-06 2.87E-06 1.30E-06 8.96E-06 1.62E-05 3.88E-06 7.50E-06 

σ(R)/R|% 7.54E-01 8.36E-01 2.55E-01 6.72E-01 7.79E-01 8.36E-01 1.16E+00 4.81E-01 2.74E-01 

 
Table 3. Relative covariance matrix of few-group cross sections by statistical sampling method 

Res./Res. keff Σt,1 Σt,2 vΣf,1 vΣf,2 Σs,1,1 Σs,1,2 Σs,2,1 Σs,2,2 
keff 5.12E-05 -4.65E-06 6.06E-07 2.51E-05 4.45E-05 -4.59E-06 1.36E-06 -4.24E-06 1.08E-06 

Σt,1 -4.65E-06 8.59E-05 1.36E-05 2.81E-06 2.22E-06 8.58E-05 9.65E-05 9.10E-06 1.48E-05 

Σt,2 6.06E-07 1.36E-05 9.40E-06 3.56E-06 1.83E-06 1.32E-05 1.90E-05 3.31E-06 1.02E-05 

vΣf,1 2.51E-05 2.81E-06 3.56E-06 4.59E-05 2.05E-05 2.63E-06 6.70E-06 1.54E-06 3.73E-06 

vΣf,2 4.45E-05 2.22E-06 1.83E-06 2.05E-05 5.35E-05 2.11E-06 4.09E-06 2.07E-06 1.77E-06 

Σs,1,1 -4.59E-06 8.58E-05 1.32E-05 2.63E-06 2.11E-06 8.58E-05 9.53E-05 9.77E-06 1.44E-05 

Σs,1,2 1.36E-06 9.65E-05 1.90E-05 6.70E-06 4.09E-06 9.53E-05 1.31E-04 -3.98E-06 2.08E-05 

Σs,2,1 5.12E-05 -4.65E-06 6.06E-07 2.51E-05 4.45E-05 -4.59E-06 1.36E-06 -4.24E-06 1.08E-06 

Σs,2,2 -4.65E-06 8.59E-05 1.36E-05 2.81E-06 2.22E-06 8.58E-05 9.65E-05 9.10E-06 1.48E-05 

σ(R)/R|% 7.15E-01 9.27E-01 3.07E-01 6.78E-01 7.32E-01 9.26E-01 1.14E+00 4.95E-01 3.35E-01 

Table 4. Standard deviations of relative covariance matrix by statistical sampling method 
S.d./S.d. keff Σt,1 Σt,2 vΣf,1 vΣf,2 Σs,1,1 Σs,1,2 Σs,2,1 Σs,2,2 

keff 1.08E-06 4.94E-08 2.01E-08 7.18E-07 9.54E-07 5.27E-08 2.14E-07 1.77E-07 2.92E-08 

Σt,1 4.94E-08 4.67E-07 1.87E-07 7.35E-08 2.80E-08 4.71E-07 4.15E-07 3.02E-07 2.04E-07 

Σt,2 2.01E-08 1.87E-07 1.17E-07 4.49E-08 2.29E-08 1.86E-07 2.02E-07 1.48E-07 1.28E-07 

vΣf,1 7.18E-07 7.35E-08 4.49E-08 6.56E-07 7.53E-07 7.36E-08 1.64E-07 1.41E-07 5.19E-08 

vΣf,2 9.54E-07 2.80E-08 2.29E-08 7.53E-07 1.18E-06 2.77E-08 8.08E-08 1.42E-07 3.05E-08 

Σs,1,1 5.27E-08 4.71E-07 1.86E-07 7.36E-08 2.77E-08 4.76E-07 4.06E-07 3.13E-07 2.02E-07 

Σs,1,2 2.14E-07 4.15E-07 2.02E-07 1.64E-07 8.08E-08 4.06E-07 7.05E-07 1.72E-07 2.22E-07 

Σs,2,1 1.77E-07 3.02E-07 1.48E-07 1.41E-07 1.42E-07 3.13E-07 1.72E-07 5.48E-07 1.68E-07 

Σs,2,2 2.92E-08 2.04E-07 1.28E-07 5.19E-08 3.05E-08 2.02E-07 2.22E-07 1.68E-07 1.40E-07 

∆σ(R) |% 1.04E-01 6.84E-02 3.43E-02 8.10E-02 1.09E-01 6.90E-02 8.39E-02 7.41E-02 3.74E-02 

 
  It can be observed that the uncertainty results obtained by the statistical sampling method 
agree well with those by DNP method, which can prove that the development of the statistical 
sampling method in UNICORN is correct. And the difference exits between the uncertainties by 
DNP and the statistical sampling method may be caused by that the DNP method has the first-
order approximation or that the statistical sampling method has the statistical error inevitably. It 
can be observed that the standard deviations of few-group cross sections due to the uncertainties 
of multigroup microcosmic cross sections can be over 1.0% for Σs,1,2 and almost 1.0% for the 
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others important parameters. These uncertainties are un-ignorable and significant for neutronics 
calculations. 

4. Conclusions 

In this paper, a new sensitivity and uncertainty analysis code for neutronics calculations, 
named UNICORN, has been developed. For sensitivity analysis, the DNP method has been 
chosen, and the statistical sampling method has been applied for uncertainty analysis. By 
comparison with TSUNAMI-1D, the multigroup cross-section perturbation model can be proved 
correct. Based on the verified cross-section perturbation model, uncertainty analysis for pin-cell 
few-group cross sections has been performed by UNICORN. And the uncertainty results shows 
that the uncertainties of few-group cross sections are un-ignorable and significant, thus 
uncertainty analysis is essential and significant for neutronics calculations for much more 
confident and reliable results. 

As the statistical sampling method for uncertainty analysis has the advantages that there exists 
no limit to the input parameters and responses, the further researches plan of this paper will be 
focused on propagating the nuclear-data uncertainties to the responses of burnup calculations and 
the core calculations in sequence. 
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