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Abstract

Sensitivity and uncertainty analysis are essential parts for reactor system to perform risk and
policy analysis. In this study, total sensitivity and corresponding uncertainty analysis for
responses of neutronics calculations have been accomplished and developed the S&U analysis
code named UNICORN. The UNICORN code can consider the implicit effects of multigroup
cross sections on the responses. The UNICORN code has been applied to typical pin-cell case
in this paper, and can be proved correct by comparison the results with those of the
TSUNAMI-1D code.
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1. Introduction

In recent years, there has been an increasing demand from nuclear research, industry, safety
and regulation for best-estimate predictions to be provided with their confidence bounds [1].
Uncertainty quantification can satisfy this demand to determine the appropriate design margins
for the nuclear system. As neutronics calculation is the prerequisite for predictions of the nuclear
system, the uncertainties introduced in neutronics calculations would impact the prediction
results of the nuclear system. Therefore, uncertainty analysis has been focused on the neutronics
calculations and the imprecisions of cross sections have been treated as one of the most
significant sources of uncertainties [2] recently. According to the previous researches, the
uncertainties of neutronics calculation responses are non-ignorable, with relative standard
deviations of eigenvalue up to be about 0.55% for the Peach Bottom 2 (PB-2) pin-cell [3] and
0.43% for the Three Mile Island Unit-1 (TMI-1) core [4]. In this context, it’s necessary and
significant to perform uncertainty analysis to neutronics calculations to obtain much more
confident prediction results.

There exit two categories of methods widely applied to perform uncertainty analysis, aimed at
propagating cross-section uncertainties to the responses of neutronics calculations: the
deterministic method and the statistical sampling method. For the deterministic method,
sensitivity analysis is essential and necessary to obtain the relative sensitivity coefficients of
responses with respect to cross sections firstly. And then the “sandwich rule” is applied to
calculate the uncertainties of responses by combining the relative sensitivity coefficients and
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relative variance-covariance matrix (VCM). In order to obtain the relative sensitivity coefficients,
the perturbation theory (PT) [5] and the direct numerical perturbation method (DNP) [6] are
available. For the statistical sampling method, the samples of cross sections are generated
according to the distributions of them firstly. And then each cross-section sample is used as input
parameters to carry out the neutronics calculations to obtain corresponding responses. Finally, the
statistical calculation is applied to obtain the uncertainties of responses.

In this paper, the UNICORN code has been developed, with capabilities of performing
sensitivity and uncertainty analysis for responses of neutronics calculations with respect to
multigroup cross sections. The DNP method and statistical sampling method have been chosen
and accomplished in the UNICORN code to perform sensitivity and uncertainty analysis
respectively. For uncertainty analysis, the statistical sampling method has the obvious
advantages, including no approximation and no limit to the number of responses, compared with
the deterministic method. However, the relative sensitivity coefficients, which can be used to
perform similarity analysis [7] and cross-section adjustment [8], are beyond the capability of the
statistical sampling method. Therefore, the sensitivity analysis function has been developed in
UNICORN, and the DNP method is chosen to obtain the relative sensitivity coefficients, because
the DNP method is convenient and no rely on the models of neutronics calculations, compared
with the PT method. In addition, the lattice code DRAGON 4.0 [9] is used to carry out the
resonance self-shielding and neutron-transport calculations with application of the WIMSD-4
format multigroup cross-section library.

In section 2, an overview is given firstly and then the theories and methods applied are
introduced. In section 3, numerical results and analysis are given and explained. Finally,
conclusions are summarized in section 4.

2. Theories and Methods

2.1 Overall calculation flow

The flowchart of UNICORN is as shown in Fig. 1. There are there parts of main works
included in the UNICORN code. Firstly, the essential nuclear data should be obtained. In
UNICORN, both the integral cross sections including ot, g5, and o,, and the basic cross sections
including o elas), O(niinel)s T(n2n)s T(n3n), T(nf)s Tny)s O(np)s T(nD)s T(n.T)s O(nHe)s O(na) and v can be
analyzed. All these cross sections can be obtained by combining the cross-section information
included in WIMSD-4 format multigroup cross-section library and those in NJOY [10] output
files. Secondly, the multigroup cross-section perturbation model should be established. In
UNICORN, both the DNP method and the statistical sampling method would perform
perturbations to multigroup cross sections. Therefore, the cross-section perturbation model is
established to perform perturbations to multigroup cross sections and keep them consistency and
balance. Thirdly, the DNP method and the statistical sampling method would be accomplished
and developed in UNICORN. For DNP method, the relative sensitivity coefficients and relative
uncertainties of responses with respect to the multigroup cross sections are obtained. And for the
statistical sampling method, the uncertainties of responses are given.
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Figure 1. Flowchart of the UNICORN code

In the following context, the multigroup cross-section perturbation, the statistical sampling
method and the DNP method are introduced in detailed in subsections.

2.2 Multigroup cross-section perturbation model

As mentioned above, the cross-section perturbation model should be established for both the
DNP method and the statistical sampling method. In this section, the perturbation propagations
and cross-section consistency rules are introduced in detail.

Firstly, the perturbations of multigroup cross sections should be established through the
perturbations added to the point-wise cross sections. According to the deterministic method,
multigroup cross sections are needed for resonance self-shielding and neutronics calculations.
And the multigroup cross sections are generated by the point-wise ones with application of
weighting flux as shown in Eq. (1).

o,(E,T)¢(E,o,)dE
J.AEQ x 0
[, #(E.0,)dE

where oy is the Bondarenko parameter, T is the temperature; ox(E,T) presents the point-wise
cross section for type of x, and ox4(T, o) stands for the gth group cross-section of type x; ¢(E,o0)
is the weighting flux. The perturbations of multigroup cross sections should be consistency with
the perturbations propagated from the point-wise ones. In this paper, it is assumed that the
perturbation for the gth group of type x is performed by uniform relative perturbation added to
the point-wise cross section within the energy range of the gth group, as shown in Eq. (2).

o (ET)=(1+6,,)0,(ET) E, <E<E, (@)

(1)

O-x,g(Tlo-O) =
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where E4.1 and Eq present the lower and upper energy boundaries of the gth group; o,(E,T) stands
for the perturbed point-wise cross section of type X, and dy4 is the relative perturbation factor
added to the cross section of type x. The perturbation propagations from point-wise cross sections
to the multigroup ones are different to different types of cross sections. For the cross sections
without resonance, the weighting flux is selected or input by user and independent of the point-
wise cross sections, which is the function of energy E. Therefore, the perturbation propagations
are linear and can be presented shown as in Eq. (3).

LEQ o, (E,T)$(E)dE LEQ o, (E,T)$(E)dE
I, A REGE

However, for the resonant cross sections, the perturbations are non-linear. Because the
weighting flux within resonance-energy regions are obtained by solving neutron slowing-down
equation and cross sections perturbations would result in perturbations to the weighting flux.
And the solution of slowing-down equation can be presented as shown in Eq. (4), according to
the narrow resonance (NR) approximation.

HE o) = ) (@)
where o, and o¢(E) present the potential scattering cross section and total cross section of the
resonant nuclide correspondingly, and y(E) stands for the 1/E shape. Therefore, the perturbation
propagations for the resonant cross sections within resonance groups can be presented as shown
in Eq. (5).

0, (T) =

=(1+6,,)0,,(T) (3)

=1+6,4)

r
o,+0,

[, o (ET)Y(E,0,)dE e o)

du
:(1+5 ) Ut(ﬂlT)+5x,gO-x(ﬂlT)+O-0
RTE

O-;@ga:o-o): r
O'p + 0,

I o
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()

o, +0, d
1+8,)o(uT)+o, ©
LE @+s, ?;+(O-OT du

» 1 0)0 (1, T) + 0,
By combining Eqg. (3) and Eq. (5), the multigroup cross-section perturbation model is established.
Secondly, consistency rules should be established to keep cross sections balance. As
mentioned above, the UNICORN code can perform analysis not only to integral cross sections,
but also to basic cross sections, which are absent from the neutron-transport equation and the
WIMSD-4 library. The perturbations of basic cross sections should be presented to the lumped
ones contained in WIMSD-4. Therefore, the consistency rules are established. According to the
WLUP [11] project, the consistency rules for the WIMSD-4 library can be presented as shown in
Eq. (6), (7) and (8).
Os.g-h = O(nelas),g»h T O(njinely,g>h T+ 20'(n,2n),g—>h + 30'(n,3n),g—>h (6)

Cag = Ont) ¥ Tng) ¥ Otnay ¥ T2y T T T Oy ¥ Onmy T Tntes) ~Fnznyg ~ 2%mamg (1)

[ 0T
=(1+5,,)—

=(1+0,4)0,, T,0,)

J['g = O'a’g +O—s,g (8)
According to these consistency rules, the perturbations of basic cross sections can be presented in
the lumped integral cross sections included in WIMSD-4 and thus effect the responses of
neutronics calculations.
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2.3 Statistical sampling method

For any system, the relationship between input parameters and responses can be briefly
characterized as shown in Eq. (9).

R = f(X) 9
where X presents the multi-input vector and can be characterized as X=[X1,Xa,...,Xn]"; R presents
the multi-response vector and can be characterized as R:[Rl,Rz,...,RnR]T.

The procedures for uncertainty estimation by statistical sampling method can be summarized
into four main steps [12].

Firstly, cross-section distribution regions are required. The group-wise VCM can be generated
by application of the NJOY code. In VCM, the diagonal elements present the variances or
uncertainties of cross sections, and the off-diagonal elements are covariance between them.

Secondly, it’s essential to generate the cross-section samples. The cross-section samples can be
generated by using Eq. (10).

X =2V, +pu (20)
where Xs and Ys represent the samples for cross sections and independent parameters
respectively; g#=[u1, t2,..., tinx]" is the expectation value vector of cross sections; X is the group-
wise VCM of cross sections.

Thirdly, the input-responses mapping can be obtained by carrying out the target code to
perform neutronics calculations with use of cross-section samples. And the mapping can be
presented as [Xs;, Ri] (i=1,2,...,nS, where nS is the number of samples).

Finally, statistical calculation is used to estimate the uncertainties of responses according to
the mappings obtained by the third step. And the standard deviation of the kth response can be
obtained as shown in Eqg. (11).

U(Rk):\/ﬁi(Rk,i _Rm)2 (11)

where o(Ry) is the standard deviation of the kth response and Ry present the expectation value
which can be characterized as shown in Eq. (12).

1 nS
Rk,o :E;Rk,i (12)

By application of the four steps above, the uncertainties of responses due to multigroup cross
sections can be determined and obtained.

In this paper, the bootstrap method [13] has been accomplished for determining the confidence
intervals. The confidence intervals are obtained by re-sampling method and can be calculated as
shown in Eq. (13).

80R) = [T TR ~oR).) (13)

where Ao(Rk) presents the deviation of the uncertainty results by application of the N re-samples;
o(Ry)i is the uncertainty result of the ith re-samples, and o(Rk)o presents the expectation value of
the N uncertainty results.

2.4 Direct numerical method


http://www.marriott.com/hotels/travel/yowmc-ottawa-marriott-hotel/

7" International Conference on Modelling and Simulation in Nuclear Science and Engineering (7ICMSNSE)
Ottawa Marriott Hotel, Ottawa, Ontario, Canada, October 18-21, 2015

The DNP method is a straightforward method to calculate the relative sensitivity coefficients.
And the relative sensitivity coefficients of responses with respect to multigroup cross sections
can be presented briefly as shown in Eq. (14).

_ Oyg OR, O R (A+6¢¢)oxq) —R L+, )0y )

RaOxg R, do,, R (Oxg —0¢g)0xyg (14)
_ i Rk ((1+ 5;g)ax,g) - Rk ((1+ 5;g)ax,g)
R 5;9 _5;,9

where o, and a,, represent the positive and negative relative perturbations for the gth group’s
cross section with type of x respectively; o4 and Ry stand for the un-perturbed cross section and
the kth response respectively.

Uncertainty analysis can be performed by combining the relative sensitivity coefficients with
relative covariance matrix based on the “sandwich rule”. The *“sandwich rule” for uncertainty
quantification of eigenvalue to the multigroup cross sections can be presented as shown in Eq.
(15).

2
? (ij) :SR a-za-a-sg a; (15)
Rk ki i) k¢

where 6°(R\) is the variance of responses due to uncertainties of multigroup cross sections; X,
presents the relative covariance data for cross sections a; and a;.

3. Numerical Results and Analysis

3.1 Verification of UNICORN

For verification of UNICORN, a 238-group WIMSD-4 format cross-section library has been
generated based on ENDF/B-VII.0 with application of NJOY in this paper. With the 238-group
library, NECP-RB31 benchmark case has been analyzed by both UNICORN and TSUNAMI-1D
to verify the cross-section perturbation model and development of UNICORN. The eight most
significant types of cross sections and the total relative sensitivity coefficients with respect to

them are shown in Table 1.
Table 1. The eight most significant types of cross section to k., of NECP-RB31

Nuclides Cross section Relative sensitivity coefficients
TSUNAMI-1D UNICORN
25y v 9.52E-01 9.51E-01
2y S 2.50E-01 2.48E-01
28y Sny) -1.84E-01 -1.80E-01
2y Sny) -1.50E-01 -1.49E-01
H O (nelas) 1.50E-01 1.48E-01
H S -5.04E-02 -5.03E-02
288y v 4.83E-02 4.91E-02
28y S 2.21E-02 2.24E-02

It can be observed that the total relative sensitivity coefficients calculated by UNICORN code
can agree well with those calculated by the TSUNAMI-1D code. In addition, for much more
detailed comparison of total relative sensitivity coefficients of UNICORN code and TSUNAMI-
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1D code, the group-wise total relative sensitivity coefficients of the eight most significant cross

sections are compared and as shown in Fig. 2, 3, 4 and 5.
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Figure 4. Group-wise relative sensitivity coefficients for o, of **U

—=— UNICOERN
0.035 - —— TSUNAMI-1D)|

0.030 |

0.025

0.020

0.015

0.010

Sensitivity Coefficient by Groups

0.005

.

30 60 90 120 150 180 210 240

0.000

Ngroup

Figure 5. Group-wise relative sensitivity coefficients for o, of 2°U

It can be observed that the group-wise relative sensitivity coefficients of eigenvalue with respect
to cross sections by UNICORN are agreed well with those of TSUNAMI-1D. It should be noted
that the DNP method is a straightforward method to calculate the relative sensitivity coefficients,
applying the difference quotient to estimate the partial derivative, therefore the numerical
differences are inevitably existed for the relative sensitivity coefficient results of UNICORN and
TSUNAMI-1D. And for the relative sensitivity coefficients, whose value is almost zero, the
relative errors between the results of UNICORN and TSUNAMI-1D could be up to 50% or even
larger, while for the others, the relative errors are within 5%. These relative errors are within the
acceptable ranges for the relative sensitivity coefficients using the DNP method. In this context,
it can be proved that the multigroup cross-section perturbation model established in this paper is
correct and the development of UNICORN is also correct.

3.2 Application of UNICORN

For application of UNICORN, the NECP-RB31 benchmark [14] has been analyzed by both
DNP method and statistical sampling method with 69-group WIMSD-4 library. In this
application, the eigenvalue and 2-group few-group macroscopic cross sections are treated as the
responses under analysis. And the relative covariance matrixes of these responses, which are
caused by **°*U(c(n.elas), S(ninel)» S(n.2n)s S(n ) Sy aNd V), “PU(G(nelas), S(ninel)s G(n.2n)s Sy O(ny)
and v), *°O(cnelas), S(ninel) O(ny) aNd G(ney) aNd "H(Gnelas) and G¢ny)), are as shown in Table 2, 3
and 4.

Table 2 presents the relative covariance matrix for responses by applying the DNP method,
and the o(R)/R term means the relative standard deviation of corresponding responses. Table 2
and 3 present the relative covariance matrix obtained by statistical sampling method, and Table 2
shows the expectation values of relative covariance matrix by 20 different re-samples with nS
=100. And Table 3 contains the standard deviations for the relative covariance matrixes obtained
by the different 20 re-samples.

Table 2. Relative covariance matrix of few-group cross sections by DNP method
Res./Res. Kefr i1 2 VXf1 V2 511 512 X521 X522
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Kett 5.69E-05 -4.79E-06 6.70E-07 2.74E-05 5.12E-05 -4.60E-06 1.56E-06 -1.92E-06 1.05E-06
i1 -4.79E-06 6.99E-05 8.54E-06 1.13E-06 1.31E-06 6.99E-05 8.29E-05 1.03E-05 9.16E-06
2 6.70E-07 8.54E-06 6.50E-06 2.80E-06 1.40E-06 8.35E-06 1.51E-05 3.86E-06 6.96E-06
VEf1 2.74E-05 1.13E-06 2.80E-06 4.51E-05 2.27E-05 9.97E-07 7.06E-06 1.34E-06 2.87E-06
VZf2 5.12E-05 1.31E-06 1.40E-06 2.27E-05 6.07E-05 1.21E-06 4.15E-06 1.69E-06 1.30E-06
Y511 -4.60E-06 6.99E-05 8.35E-06 9.97E-07 1.21E-06 6.99E-05 8.16E-05 1.10E-05 8.96E-06

Y512 1.56E-06 8.29E-05 1.51E-05 7.06E-06 4.15E-06 8.16E-05 1.34E-04 -3.12E-06 1.62E-05
Y521 -1.92E-06 1.03E-05 3.86E-06 1.34E-06 1.69E-06 1.10E-05 -3.12E-06 2.32E-05 3.88E-06
Y522 1.05E-06 9.16E-06 6.96E-06 2.87E-06 1.30E-06 8.96E-06 1.62E-05 3.88E-06 7.50E-06
o(R)/R[%  7.54E-01 8.36E-01 2.55E-01 6.72E-01 7.79E-01 8.36E-01 1.16E+00 4.81E-01 2.74E-01

Table 3. Relative covariance matrix of few-group cross sections by statistical sampling method

Res./Res. Kefr Zi1 Zi2 Vi1 V2 st 512 X521 X522
Kefr 5.12E-05 -4.65E-06 6.06E-07 2.51E-05 4.45E-05 -4.59E-06 1.36E-06 -4.24E-06 1.08E-06
21 -4.65E-06 8.59E-05 1.36E-05 2.81E-06 2.22E-06 8.58E-05 9.65E-05 9.10E-06 1.48E-05
22 6.06E-07 1.36E-05 9.40E-06 3.56E-06 1.83E-06 1.32E-05 1.90E-05 3.31E-06 1.02E-05
VEf1 2.51E-05 2.81E-06 3.56E-06 4.59E-05 2.05E-05 2.63E-06 6.70E-06 1.54E-06 3.73E-06

VEf2 4.45E-05 2.22E-06 1.83E-06 2.05E-05 5.35E-05 2.11E-06 4.09E-06 2.07E-06 1.77E-06
Y511 -4.59E-06 8.58E-05 1.32E-05 2.63E-06 2.11E-06 8.58E-05 9.53E-05 9.77E-06 1.44E-05
Y512 1.36E-06 9.65E-05 1.90E-05 6.70E-06 4.09E-06 9.53E-05 1.31E-04 -3.98E-06 2.08E-05
Y521 5.12E-05 -4.65E-06 6.06E-07 2.51E-05 4.45E-05 -4.59E-06 1.36E-06 -4.24E-06 1.08E-06
Y522 -4.65E-06 8.59E-05 1.36E-05 2.81E-06 2.22E-06 8.58E-05 9.65E-05 9.10E-06 1.48E-05
o(R)/R[%  7.15E-01 9.27E-01 3.07E-01 6.78E-01 7.32E-01 9.26E-01 1.14E+00 4.95E-01 3.35E-01

Table 4. Standard deviations of relative covariance matrix by statistical sampling method

S.d./s.d. Kett i1 2 VEf1 VI Zs 11 Zs12 521 522
Keft 1.08E-06 4.94E-08 2.01E-08 7.18E-07 9.54E-07 5.27E-08 2.14E-07 1.77E-07 2.92E-08
Zi1 4.94E-08 4.67E-07 1.87E-07 7.35E-08 2.80E-08 4.71E-07 4.15E-07 3.02E-07 2.04E-07
2 2.01E-08 1.87E-07 1.17E-07 4.49E-08 2.29E-08 1.86E-07 2.02E-07 1.48E-07 1.28E-07
V1 7.18E-07 7.35E-08 4.49E-08 6.56E-07 7.53E-07 7.36E-08 1.64E-07 1.41E-07 5.19E-08
VI 9.54E-07 2.80E-08 2.29E-08 7.53E-07 1.18E-06 2.77E-08 8.08E-08 1.42E-07 3.05E-08

Y11 5.27E-08 4.71E-07 1.86E-07 7.36E-08 2.77E-08 4.76E-07 4.06E-07 3.13E-07 2.02E-07
Y512 2.14E-07 4.15E-07 2.02E-07 1.64E-07 8.08E-08 4.06E-07 7.05E-07 1.72E-07 2.22E-07
Y521 1.77E-07 3.02E-07 1.48E-07 1.41E-07 1.42E-07 3.13E-07 1.72E-07 5.48E-07 1.68E-07
X522 2.92E-08 2.04E-07 1.28E-07 5.19E-08 3.05E-08 2.02E-07 2.22E-07 1.68E-07 1.40E-07
Ac(R) [% 1.04E-01 6.84E-02 3.43E-02 8.10E-02 1.09E-01 6.90E-02 8.39E-02 7.41E-02 3.74E-02

It can be observed that the uncertainty results obtained by the statistical sampling method
agree well with those by DNP method, which can prove that the development of the statistical
sampling method in UNICORN is correct. And the difference exits between the uncertainties by
DNP and the statistical sampling method may be caused by that the DNP method has the first-
order approximation or that the statistical sampling method has the statistical error inevitably. It
can be observed that the standard deviations of few-group cross sections due to the uncertainties
of multigroup microcosmic cross sections can be over 1.0% for X5;, and almost 1.0% for the
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others important parameters. These uncertainties are un-ignorable and significant for neutronics
calculations.

4. Conclusions

In this paper, a new sensitivity and uncertainty analysis code for neutronics calculations,
named UNICORN, has been developed. For sensitivity analysis, the DNP method has been
chosen, and the statistical sampling method has been applied for uncertainty analysis. By
comparison with TSUNAMI-1D, the multigroup cross-section perturbation model can be proved
correct. Based on the verified cross-section perturbation model, uncertainty analysis for pin-cell
few-group cross sections has been performed by UNICORN. And the uncertainty results shows
that the uncertainties of few-group cross sections are un-ignorable and significant, thus
uncertainty analysis is essential and significant for neutronics calculations for much more
confident and reliable results.

As the statistical sampling method for uncertainty analysis has the advantages that there exists
no limit to the input parameters and responses, the further researches plan of this paper will be
focused on propagating the nuclear-data uncertainties to the responses of burnup calculations and
the core calculations in sequence.
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