
7th International Conference on Modelling and Simulation in Nuclear Science and Engineering (7ICMSNSE)
Ottawa Marriott Hotel, Ottawa, Ontario, Canada, October 18-21, 2015

7ICMSNSE-018

Asynchronous Transport Algorithm For Domain Decomposed In JMCT Monte Carlo code*

Gang Li', BaoYin Zhang', Li Deng', Zeyao Mo', Ma Yan', Rui Lie,
DanHua ShangGuan1 , and YuanGuan Fug

1 Institute of Applied Physics and Computational Mathematics, Beijing, China
2 CAEP Software Center for High Performance Numerical Simulation, Beijing, China

lgseven@l26.com, zby@iapcm.ac.cn, deng_li@iapcm.ac.cn, zymo@iapcm.ac.cn, ma_yan@iapcm.ac.c
n, li_rui@iapcm.ac.cn, sgdh@iapcm.ac.cn, yf g1989@l26.com,

Abstract

High-fidelity, large-scale reactor analyses with Monte Carlo can lead to memory overload for a single core
processor when it faces the detailed and accurate model of the full-core reactor. Domain decomposed
calculation is one of the remedies to solve this problem. In domain decomposition, particles that cross
domain boundaries need to be exchanged between the processors. An efficient, robust asynchronous
transport algorithm for domain decomposition is introduced in this paper. All point-to-point communications
in the algorithm are asynchronous to allow maximal overlap between computational work and
communication, and result in increased parallel efficiency. The exchanged particles records are used to exit
the loop at the end of the cycle in a criticality calculation when all the particles have finished. Two full-core
reactor models, Dayawan reactor and BEAVRS benchmark, are simulated to verify the asynchronous
transport algorithm using the Monte Carlo particle transport code JMCT (J Monte Carlo Transport Code).

Keywords: BEAVRS, JMCT, Monte Carlo, domain decomposition, asynchronous transport

1. Introduction

To take advantage of parallel capabilities, most Monte Carlo codes such as MCNP[1] utilize
multiple processors by dividing the particles between processors, and synchronizing after every
cycle in a criticality calculation or at the end of the simulation for a fixed source calculation[2].
There is no communication between the processors except collecting the tally result. So the
parallelism and scalability are very good.

However, this is not an option for high-fidelity, large-scale "real" commercial reactor simulation
since a single processor have not enough memory to store all the zones and tallies[3]. For example,
the required storage for BEAVRS PWR benchmark is about 1 Terabyte[4]. It is a challenge for
storage and calculation methods.

In these cases, the spatial domain must be partitioned and assigned among the processors. This
method, known as domain decomposition, is a form of spatial parallelism. It has been applied in the
Implicit Monte Carlo (IMC) scheme for thermal radiation transport, such as Milagro code [5-6]. The

* This work is performed under the auspices of National Natural Science Foundation of China (No.61033009, 91118001),
the sub-item of special projects of the National Energy Bureau of China (No.2015ZX06002008), the Nuclear Power
Development Project of the Science, Technology and Industry for National Defense of China (No.[2012]1523) ,National
High Technology Research and Development Program of China(No.2012AA01A309, 2012AA01A303), and the Science
Foundation of China Academy of Engineering Physics of China (2014B0202029)

7th International Conference on Modelling and Simulation in Nuclear Science and Engineering (7ICMSNSE)
Ottawa Marriott Hotel, Ottawa, Ontario, Canada, October 18-21, 2015

 7ICMSNSE-018

Asynchronous Transport Algorithm For Domain Decomposed In JMCT Monte Carlo code∗

Gang Li1, BaoYin Zhang1, Li Deng1, Zeyao Mo1, Ma Yan1, Rui Li2,
DanHua ShangGuan1, and YuanGuan Fu2

1 Institute of Applied Physics and Computational Mathematics, Beijing, China
2 CAEP Software Center for High Performance Numerical Simulation, Beijing, China

lgseven@126.com, zby@iapcm.ac.cn, deng_li@iapcm.ac.cn, zymo@iapcm.ac.cn, ma_yan@iapcm.ac.c
n, li_rui@iapcm.ac.cn, sgdh@iapcm.ac.cn, fyg1989@126.com,

Abstract

High-fidelity, large-scale reactor analyses with Monte Carlo can lead to memory overload for a single core
processor when it faces the detailed and accurate model of the full-core reactor. Domain decomposed
calculation is one of the remedies to solve this problem. In domain decomposition, particles that cross
domain boundaries need to be exchanged between the processors. An efficient, robust asynchronous
transport algorithm for domain decomposition is introduced in this paper. All point-to-point communications
in the algorithm are asynchronous to allow maximal overlap between computational work and
communication, and result in increased parallel efficiency. The exchanged particles records are used to exit
the loop at the end of the cycle in a criticality calculation when all the particles have finished. Two full-core
reactor models, Dayawan reactor and BEAVRS benchmark, are simulated to verify the asynchronous
transport algorithm using the Monte Carlo particle transport code JMCT (J Monte Carlo Transport Code).

Keywords: BEAVRS, JMCT, Monte Carlo, domain decomposition, asynchronous transport

1. Introduction

To take advantage of parallel capabilities, most Monte Carlo codes such as MCNP[1] utilize
multiple processors by dividing the particles between processors, and synchronizing after every
cycle in a criticality calculation or at the end of the simulation for a fixed source calculation[2].
There is no communication between the processors except collecting the tally result. So the
parallelism and scalability are very good.

However, this is not an option for high-fidelity, large-scale “real” commercial reactor simulation
since a single processor have not enough memory to store all the zones and tallies[3]. For example,
the required storage for BEAVRS PWR benchmark is about 1 Terabyte[4]. It is a challenge for
storage and calculation methods.

In these cases, the spatial domain must be partitioned and assigned among the processors. This
method, known as domain decomposition, is a form of spatial parallelism. It has been applied in the
Implicit Monte Carlo (IMC) scheme for thermal radiation transport, such as Milagro code [5-6]. The

∗ This work is performed under the auspices of National Natural Science Foundation of China (No.61033009, 91118001),
the sub-item of special projects of the National Energy Bureau of China (No.2015ZX06002008), the Nuclear Power
Development Project of the Science, Technology and Industry for National Defense of China (No.[2012]1523) ,National
High Technology Research and Development Program of China(No.2012AA01A309, 2012AA01A303), and the Science
Foundation of China Academy of Engineering Physics of China (2014B0202029)

http://www.marriott.com/hotels/travel/yowmc-ottawa-marriott-hotel/
mailto:zby@iapcm.ac.cn
mailto:deng_li@iapcm.ac.cn
mailto:zymo@iapcm.ac.cn
mailto:ma_yan@iapcm.ac.cn
mailto:ma_yan@iapcm.ac.cn
mailto:fyg1989@126.com

7th International Conference on Modelling and Simulation in Nuclear Science and Engineering (7ICMSNSE)
Ottawa Marriott Hotel, Ottawa, Ontario, Canada, October 18-21, 2015

MERCURY code at LLNL, which is a general-purpose Monte Carlo code, implemented
combinatorial geometry-based domain de-composition in 2009 [7].

In Monte Carlo simulations using domain decomposition algorithms, processors have to ex-change
particles that cross domain boundaries. It is a challenge to reach a high efficiency as well as to keep
message communication correct. An asynchronous transport algorithm is described in details in this
paper, which is used for domain decomposed particle Monte Carlo in JMCT(J Monte Carlo
Transport Code) [8]. The communication efficiency has been considered by overlap between
computational work and communication.

2. JCOGIN infrastructure

JMCT is a combinatorial geometry Monte Carlo particle transport code, which has been developed
at the Institute of Applied Physics and Computational Mathematics over 30 person-years. It can
perform the transport of neutrons and photons, including both multi-group and continuous energy
treatments of cross section. It is based on the infrastructure named JCOGIN (J COmbinatorial
Geometry Monte Carlo transport INfrastructure). JCOGIN is in charge of storing combinatorial
geometry, allocating the memory for tallies and communicating the message for parallel computing,
including domain decomposition [9].

In JCOGIN, geometry element is solid, such as spheres, ellipsoids, rectangles, cylinders, cones, for
instance. Complex solid can be made from several simple solids via using Boolean operators:
intersection, union, and complement. It is called a cell when a solid is filled with materials. All the
cells are associated with a tree structure in the memory. Every node on the tree corresponds to a cell,
and it means that the cell has other cells inside it when its corresponding node has daughters.
Domain decomposition is to divide the whole tree into many sub-trees and assign them on different
processors. The processor can only track particles and tally on the corresponding domain of the sub-
tree. The particles will be sent to another processor when they cross the domain boundaries.

3. Asynchronous algorithm

In domain decomposed particle Monte Carlo, two sets of data must be communicated between the
processors. The nearest neighbours must exchange particles that cross domain boundaries. A global
communication operation must also be performed so that all the processors know when all the other
processors are finished tracking all the particles.

3.1 Algorithm flow

for the other processor
I post nonblocking receive for one integer: the number of particles (MPI_Irecv)
if master processor
I post nonblocking receive for the exchanged particles record from all slaves(MPI_Irecv)
else
I post nonblocking receive for finished message from master(MPI_Irecv)
while not finished
I if each M particles are simulated
I I if other processes send particles (MPI_Test)

7th International Conference on Modelling and Simulation in Nuclear Science and Engineering (7ICMSNSE)
Ottawa Marriott Hotel, Ottawa, Ontario, Canada, October 18-21, 2015

MERCURY code at LLNL, which is a general-purpose Monte Carlo code, implemented
combinatorial geometry-based domain de-composition in 2009 [7].

In Monte Carlo simulations using domain decomposition algorithms, processors have to ex-change
particles that cross domain boundaries. It is a challenge to reach a high efficiency as well as to keep
message communication correct. An asynchronous transport algorithm is described in details in this
paper, which is used for domain decomposed particle Monte Carlo in JMCT(J Monte Carlo
Transport Code) [8]. The communication efficiency has been considered by overlap between
computational work and communication.

2. JCOGIN infrastructure

JMCT is a combinatorial geometry Monte Carlo particle transport code, which has been developed
at the Institute of Applied Physics and Computational Mathematics over 30 person-years. It can
perform the transport of neutrons and photons, including both multi-group and continuous energy
treatments of cross section. It is based on the infrastructure named JCOGIN (J COmbinatorial
Geometry Monte Carlo transport INfrastructure). JCOGIN is in charge of storing combinatorial
geometry, allocating the memory for tallies and communicating the message for parallel computing,
including domain decomposition [9].

In JCOGIN, geometry element is solid, such as spheres, ellipsoids, rectangles, cylinders, cones, for
instance. Complex solid can be made from several simple solids via using Boolean operators:
intersection, union, and complement. It is called a cell when a solid is filled with materials. All the
cells are associated with a tree structure in the memory. Every node on the tree corresponds to a cell,
and it means that the cell has other cells inside it when its corresponding node has daughters.
Domain decomposition is to divide the whole tree into many sub-trees and assign them on different
processors. The processor can only track particles and tally on the corresponding domain of the sub-
tree. The particles will be sent to another processor when they cross the domain boundaries.

3. Asynchronous algorithm

In domain decomposed particle Monte Carlo, two sets of data must be communicated between the
processors. The nearest neighbours must exchange particles that cross domain boundaries. A global
communication operation must also be performed so that all the processors know when all the other
processors are finished tracking all the particles.

3.1 Algorithm flow

for the other processor
| post nonblocking receive for one integer: the number of particles (MPI_Irecv)
if master processor
| post nonblocking receive for the exchanged particles record from all slaves(MPI_Irecv)
else
| post nonblocking receive for finished message from master(MPI_Irecv)
while not finished
| if each M particles are simulated
| | if other processes send particles (MPI_Test)

http://www.marriott.com/hotels/travel/yowmc-ottawa-marriott-hotel/

7th International Conference on Modelling and Simulation in Nuclear Science and Engineering (7ICMSNSE)
Ottawa Marriott Hotel, Ottawa, Ontario, Canada, October 18-21, 2015

I I receive the particles, and store them in the received particles set
if successfully get a particle from the received particles set or sources

track the particle until it dies or crosses the domain boundaries
if the particle crosses the domain boundaries
I buffer the information of the particle, including the current random number
I if the buffer is full
I I send the particle buffer (MPI_Send)

else
send any partially full particle buffers(MPI_Send)
if master processor

wait for particles or the exchanged particles record (MPI_Waitany)
if particles
I continue track particles
if the exchanged particles record
I check the exchanged particles record, and send the finished flag if the result is
correct. (MPI Send)

If slave processor
send the exchanged particles record to the master processor (MPI_Send)
wait for particles or finished flag (MPI_Waitany)
I if particles
I I continue track particles
I if finished flag
I I finish the simulation

Cancel all outstanding nonblocking receives

3.2 The exchanged particles record and the received particles set

1

Each processor saves the total numbers of particles sent to other processes, and the total numbers of
particles received from other processors. It is called the exchanged particles record, which is very
important to exit the asynchronous transport after every cycle in a criticality calculation. As a
processor can exchange particles with any other processors in general, the length of the ex-changed
particles record is 2(P-1), where P is the number of processors.

The received particles are stored in a particle set, with the name of the received particles set. The
processor gets particles and tracks them one by one from the received particles set. When there is no
particle in the set, the processor picks particles from the local source.

3.3 Sending particles

As particles move through the domain of the processor A, they may hit domain boundaries and need
to be sent to another processor, for example B. In order to reduce the frequency of communication,
particles are buffered. When the buffer is full, all of the N particles in it are sent together. Processor
A sends the number of particles to processor B, and waits for the reply. The particles are not sent
until the reply is received. After that, processor A updates the exchanged particles record and
empties the buffer.

7th International Conference on Modelling and Simulation in Nuclear Science and Engineering (7ICMSNSE)
Ottawa Marriott Hotel, Ottawa, Ontario, Canada, October 18-21, 2015

| | | receive the particles, and store them in the received particles set
| if successfully get a particle from the received particles set or sources
| | track the particle until it dies or crosses the domain boundaries
| | if the particle crosses the domain boundaries
| | | buffer the information of the particle, including the current random number
| | | if the buffer is full
| | | | send the particle buffer (MPI_Send)
| else
| | send any partially full particle buffers(MPI_Send)
| | if master processor
| | | wait for particles or the exchanged particles record (MPI_Waitany)
| | | | if particles
| | | | | continue track particles
| | | | if the exchanged particles record
| | | | | check the exchanged particles record, and send the finished flag if the result is |
| | | | correct. (MPI_Send)
| | if slave processor
| | | send the exchanged particles record to the master processor (MPI_Send)
| | | wait for particles or finished flag (MPI_Waitany)
| | | | if particles
| | | | | continue track particles
| | | | if finished flag
| | | | | finish the simulation
Cancel all outstanding nonblocking receives

3.2 The exchanged particles record and the received particles set

Each processor saves the total numbers of particles sent to other processes, and the total numbers of
particles received from other processors. It is called the exchanged particles record, which is very
important to exit the asynchronous transport after every cycle in a criticality calculation. As a
processor can exchange particles with any other processors in general，the length of the ex-changed
particles record is 2(P-1), where P is the number of processors.

The received particles are stored in a particle set, with the name of the received particles set. The
processor gets particles and tracks them one by one from the received particles set. When there is no
particle in the set, the processor picks particles from the local source.

3.3 Sending particles

As particles move through the domain of the processor A, they may hit domain boundaries and need
to be sent to another processor, for example B. In order to reduce the frequency of communication,
particles are buffered. When the buffer is full, all of the N particles in it are sent together. Processor
A sends the number of particles to processor B, and waits for the reply. The particles are not sent
until the reply is received. After that, processor A updates the exchanged particles record and
empties the buffer.

http://www.marriott.com/hotels/travel/yowmc-ottawa-marriott-hotel/

7th International Conference on Modelling and Simulation in Nuclear Science and Engineering (7ICMSNSE)
Ottawa Marriott Hotel, Ottawa, Ontario, Canada, October 18-21, 2015

During the time waiting for the reply, processor A need to check if there are any particles sent in
from other processors, and received particles if so, avoiding the deadlock that processors are waiting
for the replies of each other.

The number N can be adjusted according to memory size. The frequency of sending particles will
increase if N is very small. The particles will be backlogged in the buffer, while other processors
maybe have no particles to track if N is very big.

3.4 Receiving particles

In order to reduce the time of processor A on waiting for the reply when it is sending particles,
processor B should make the reply as soon as possible. However, processor B is busy tracking the
local active particles. In the algorithm, processor B checks whether any particles have been sent after
tracking every M local particles. When it received the number of the particles from processor A, it
sends a reply to processor A immediately, and makes a point-to-point communi-cation with
processor A. After receiving the particles, processor B puts them into the received particles set, and
updates the exchanged particles record.

The number M should be adjusted according to N. Processor A will wait for a long time if M is
relatively too big. While processor B will waste the checking time if M is relatively too small.

3.5 Waiting for finished flag

When there are no local active particles, including the received particles and source particles, the
processor sends any partially full particle buffers.

Slave processor sends the exchanged particles record to master processor, and then enters a state
waiting for finished flag or new particles from other processors. As a result it will go back to track
particles if new particles arrive, or it will exit the cycle if finished flag arrive.

Master processor receives and checks the exchanged particles records, and determines whether to
finish the cycle. If the checking result is true, it sends finished flag to slave processors and exit the
cycle. If the checking result is false, it enters a state waiting for the exchanged particles re-cord or
new particles from other processors. As a result it will go back to track particles if new particles
arrive, or it will check the records again if the exchanged particles records get updated.

3.6 The key for finishing the cycle

Master processor checks the exchanged particles records of all processors, including itself. For each
two processors, such as processor A and B, master processor makes sure if the number of the
particles that processor A sent to processor B, which is got from processor A, is equal to the number
of the particles that processor B received form processor A, which is got from processor B. Only
when all the equations meet among the processors, the checking result is true. Master processor
sends finished flag.

7th International Conference on Modelling and Simulation in Nuclear Science and Engineering (7ICMSNSE)
Ottawa Marriott Hotel, Ottawa, Ontario, Canada, October 18-21, 2015

During the time waiting for the reply, processor A need to check if there are any particles sent in
from other processors, and received particles if so, avoiding the deadlock that processors are waiting
for the replies of each other.

The number N can be adjusted according to memory size. The frequency of sending particles will
increase if N is very small. The particles will be backlogged in the buffer, while other processors
maybe have no particles to track if N is very big.

3.4 Receiving particles

In order to reduce the time of processor A on waiting for the reply when it is sending particles,
processor B should make the reply as soon as possible. However, processor B is busy tracking the
local active particles. In the algorithm, processor B checks whether any particles have been sent after
tracking every M local particles. When it received the number of the particles from processor A, it
sends a reply to processor A immediately, and makes a point-to-point communi-cation with
processor A. After receiving the particles, processor B puts them into the received particles set, and
updates the exchanged particles record.

The number M should be adjusted according to N. Processor A will wait for a long time if M is
relatively too big. While processor B will waste the checking time if M is relatively too small.

3.5 Waiting for finished flag

When there are no local active particles, including the received particles and source particles, the
processor sends any partially full particle buffers.

Slave processor sends the exchanged particles record to master processor, and then enters a state
waiting for finished flag or new particles from other processors. As a result it will go back to track
particles if new particles arrive, or it will exit the cycle if finished flag arrive.

Master processor receives and checks the exchanged particles records, and determines whether to
finish the cycle. If the checking result is true, it sends finished flag to slave processors and exit the
cycle. If the checking result is false, it enters a state waiting for the exchanged particles re-cord or
new particles from other processors. As a result it will go back to track particles if new particles
arrive, or it will check the records again if the exchanged particles records get updated.

3.6 The key for finishing the cycle

Master processor checks the exchanged particles records of all processors, including itself. For each
two processors, such as processor A and B, master processor makes sure if the number of the
particles that processor A sent to processor B, which is got from processor A, is equal to the number
of the particles that processor B received form processor A, which is got from processor B. Only
when all the equations meet among the processors, the checking result is true. Master processor
sends finished flag.

http://www.marriott.com/hotels/travel/yowmc-ottawa-marriott-hotel/

7th International Conference on Modelling and Simulation in Nuclear Science and Engineering (7ICMSNSE)
Ottawa Marriott Hotel, Ottawa, Ontario, Canada, October 18-21, 2015

If any equation fails to meet, it means one processor is still tracking particles, yet its newest ex-
changed particles record is not sent to master processor. So the simulation can't stop. Master
processor has to wait the new exchanged particles record and check them again.

The time complexity of checking the records is 0(P2), while P is the number of parallel processors
used for domain decomposition.

3.7 Combination with domain replication

The parallel efficiency of domain decomposition is much lower than that of domain replication as
there is much message communication during the simulations. So the combination of two par-
allelisms is provided to improve parallel efficiency. Assuming P1* P2 processors in all, P1 copies of
the whole geometry are made firstly, and each copy is assigned 1/P1 of the total particles. Then each
copy is decomposed into P2 domains, and each processor got one domain to track the particles. Only
the domains decomposed from the same copy can exchange particles to each other.

It is suggested that P2 should be minimized in the case of sufficient memory. So the extra work of
master processor for checking the exchanged particles records (0(P22)) is usually small, and it is of
little effect on load balancing.

N 2 particles
Domain N 2 particles Domain
Replication Decomposition

N Articles

N 2 particles

EHn
X 0.0

N 2 particles

Figure 1. Example of domain decomposition and domain replication are used in combination.
Firstly the whole geometry is cloned by two copies, and each copy is assigned half of the total
particles. Secondly each is decomposed into 4 domains. There are 2x4=8 processors in all, and each
processor is in charge of a domain. Only the domains from the same copy can exchange the particles
to each other.

4. RESULTS

4.1 Dayawan PWR of China

7th International Conference on Modelling and Simulation in Nuclear Science and Engineering (7ICMSNSE)
Ottawa Marriott Hotel, Ottawa, Ontario, Canada, October 18-21, 2015

If any equation fails to meet, it means one processor is still tracking particles, yet its newest ex-
changed particles record is not sent to master processor. So the simulation can’t stop. Master
processor has to wait the new exchanged particles record and check them again.

The time complexity of checking the records is O(P2), while P is the number of parallel processors
used for domain decomposition.

3.7 Combination with domain replication

The parallel efficiency of domain decomposition is much lower than that of domain replication as
there is much message communication during the simulations. So the combination of two par-
allelisms is provided to improve parallel efficiency. Assuming P1* P2 processors in all, P1 copies of
the whole geometry are made firstly, and each copy is assigned 1/P1 of the total particles. Then each
copy is decomposed into P2 domains, and each processor got one domain to track the particles. Only
the domains decomposed from the same copy can exchange particles to each other.

It is suggested that P2 should be minimized in the case of sufficient memory. So the extra work of
master processor for checking the exchanged particles records (O(P2

2)) is usually small, and it is of
little effect on load balancing.

Figure 1. Example of domain decomposition and domain replication are used in combination.
Firstly the whole geometry is cloned by two copies, and each copy is assigned half of the total
particles. Secondly each is decomposed into 4 domains. There are 2×4=8 processors in all, and each
processor is in charge of a domain. Only the domains from the same copy can exchange the particles
to each other.

4. RESULTS

4.1 Dayawan PWR of China

http://www.marriott.com/hotels/travel/yowmc-ottawa-marriott-hotel/

7th International Conference on Modelling and Simulation in Nuclear Science and Engineering (7ICMSNSE)
Ottawa Marriott Hotel, Ottawa, Ontario, Canada, October 18-21, 2015

0000000000000000d
00000000000000000
00000000000000000
00000000000000000
00000000000000000
00000000000000000
00000000000000000
00000000000000000
00000000000000000
00000000000000000
00000000000000000
00000000000000000
00000000000000000
00000000000000000
00000000000000000
00000000000000000
000000000000000mi

Figure 2. The Dayawan PWR model and cross-sectional views of an assembly
The PWR model from the Dayawan nuclear power station is employed to test the asynchronous
transport algorithm. There are 157 assemblies in the model. Far,h assembly is composed of 17 X 17
pins, with 264 for fuel rod and 25 for control rod, and each rod contain 2 layers in radius. As there is
no control rod in this model, the cells for control rod are empty. In the axial direction each assembly
is divided into 16 segments. There are 2.11 million cells in this model.

The main purpose of the domain decomposition is to reduce the memory requirement. Figure 3
shows the memory usages of different number of domain decompositions for the Dayawan PWR
model that neutron flux is tallied on all the cells with 10 energy bins. We can see the memory usage
decreases rapidly with the number of domain decomposition increasing. Once the number of domain
decomposition is doubled, the memory decreases nearly half.

1800

1600
Co-

1400 -

0
800

E
3 600-

400

200-

4 8 16 32
Number of domain decomposition

Figure 3. The memory usages of different numbers of domain decomposition

Criticality calculations and total neutron flux on all the fuel cells are simulated by the JMCT code,
run with 100 cycles of 409.6 million particles each with 20 inactive cycles. Three kinds of
combinations of domain decomposition and domain replication are done on 4096 CPU cores, with 1
domain x4096 domain replications, 2 domain decompositions on assemblies x2048 domain
replications and 4 domain decompositions on assemblies x1024 domain replications. Flux results of
all fuel cells in the middle of XOY plane is shown in Figure 4. The flux results of different
combinations of domain decomposition and domain replication are almost the same.

7th International Conference on Modelling and Simulation in Nuclear Science and Engineering (7ICMSNSE)
Ottawa Marriott Hotel, Ottawa, Ontario, Canada, October 18-21, 2015

Figure 2. The Dayawan PWR model and cross-sectional views of an assembly
The PWR model from the Dayawan nuclear power station is employed to test the asynchronous
transport algorithm. There are 157 assemblies in the model. Each assembly is composed of 17 × 17
pins, with 264 for fuel rod and 25 for control rod, and each rod contain 2 layers in radius. As there is
no control rod in this model, the cells for control rod are empty. In the axial direction each assembly
is divided into 16 segments. There are 2.11 million cells in this model.

The main purpose of the domain decomposition is to reduce the memory requirement. Figure 3
shows the memory usages of different number of domain decompositions for the Dayawan PWR
model that neutron flux is tallied on all the cells with 10 energy bins. We can see the memory usage
decreases rapidly with the number of domain decomposition increasing. Once the number of domain
decomposition is doubled, the memory decreases nearly half.

Figure 3. The memory usages of different numbers of domain decomposition

Criticality calculations and total neutron flux on all the fuel cells are simulated by the JMCT code,
run with 100 cycles of 409.6 million particles each with 20 inactive cycles. Three kinds of
combinations of domain decomposition and domain replication are done on 4096 CPU cores, with 1
domain ×4096 domain replications, 2 domain decompositions on assemblies ×2048 domain
replications and 4 domain decompositions on assemblies ×1024 domain replications. Flux results of
all fuel cells in the middle of XOY plane is shown in Figure 4. The flux results of different
combinations of domain decomposition and domain replication are almost the same.

http://www.marriott.com/hotels/travel/yowmc-ottawa-marriott-hotel/

7th International Conference on Modelling and Simulation in Nuclear Science and Engineering (7ICMSNSE)
Ottawa Marriott Hotel, Ottawa, Ontario, Canada, October 18-21, 2015

In case (a), there is only one domain and 557MB memory is used for each processor. In case (b),
there are two domains in total and the two groups of all processors utilize 332MB and 345 MB
memory respectively. In case (c), there are four domains in total and the four groups of all
processors consume 224MB, 232MB, 230MB and 224MB respectively.

0. £s

M

00
33•05

3001•00

k,4, • _1 1 11
(a) (b) (c)

Figure 4. Flux results of all fuel cells in the middle of XOY plane. (a) 1 domainx4096 domain
replications (b) 2 domain decompositions x2048 domain replications (c) 4 domain
decompositions x1024 domain replications

Figure 5 shows the parallel efficiency for the three kinds of parallel modes, 1 domain, 2 domain
decompositions and 4 domain decompositions, from 128 cores to 4096 cores. Ear,h calculation in
Figure 5 is with 50 cycles, and 50000 neutrons for each core. There are three curves in Figure 5, and
each is relatively stable with the number of the cores, indicating that the scalability of combinations of
domain decomposition and domain replication is very good. The '1 domain' parallel mode is just
traditional particle parallel, and its parallel efficiency is greatest of all. The parallel efficiency of 2
domain decompositions is about 98% of it and 95% for 4 domain decompositions. So the time
increased in domain decomposition for particle exchange is very small.

P
ar

al
le

l e
ffi

ci
en

cy
(%

)

90

8511)

80

75

70

65

6428

-*-1 domain

43-2 domain decompositions
—1-4 domain decompositions

i 1 1
256 512 1024

Number of cores
2048 4096

Figure 5. The parallel efficiency for three kinds of parallel modes from 128 cores to 4096 cores.

7th International Conference on Modelling and Simulation in Nuclear Science and Engineering (7ICMSNSE)
Ottawa Marriott Hotel, Ottawa, Ontario, Canada, October 18-21, 2015

In case (a), there is only one domain and 557MB memory is used for each processor. In case (b),
there are two domains in total and the two groups of all processors utilize 332MB and 345 MB
memory respectively. In case (c), there are four domains in total and the four groups of all
processors consume 224MB, 232MB, 230MB and 224MB respectively.

 (a) (b) (c)
Figure 4. Flux results of all fuel cells in the middle of XOY plane. (a) 1 domain×4096 domain
replications (b) 2 domain decompositions×2048 domain replications (c) 4 domain
decompositions×1024 domain replications

Figure 5 shows the parallel efficiency for the three kinds of parallel modes, 1 domain, 2 domain
decompositions and 4 domain decompositions, from 128 cores to 4096 cores. Each calculation in
Figure 5 is with 50 cycles, and 50000 neutrons for each core. There are three curves in Figure 5, and
each is relatively stable with the number of the cores, indicating that the scalability of combinations of
domain decomposition and domain replication is very good. The '1 domain' parallel mode is just
traditional particle parallel, and its parallel efficiency is greatest of all. The parallel efficiency of 2
domain decompositions is about 98% of it and 95% for 4 domain decompositions. So the time
increased in domain decomposition for particle exchange is very small.

128 256 512 1024 2048 409660

65

70

75

80

85

90

Number of cores

P
ar

al
le

l e
ffi

ci
en

cy
(%

)

1 domain
2 domain decompositions
4 domain decompositions

Figure 5. The parallel efficiency for three kinds of parallel modes from 128 cores to 4096 cores.

http://www.marriott.com/hotels/travel/yowmc-ottawa-marriott-hotel/

7th International Conference on Modelling and Simulation in Nuclear Science and Engineering (7ICMSNSE)
Ottawa Marriott Hotel, Ottawa, Ontario, Canada, October 18-21, 2015

4.2 BEAVRS PWR of MIT

The MIT Computational Reactor Physics Group has released specifications for a full core PWR
Monte Carlo performance benchmark BEAVRS[3]. There are 193 fuel assemblies utilizing three
unique enrichments (3.1 w/o, 2.4 w/o and 1.6 w/o U235). Each fuel assembly contains a 17x17 array
of pins with 264 fuel rods per assembly. The remaining 25 locations within the assembly are
occupied by burnable absorber rods, guide tubes, or instrument tubes, depending on location within
the core. Control rod positions are as specified for the conditions being analyzed.

The JMCT model was generated using the JLAMT tool [10]. Specification (Version 1.0.1 of the
benchmark [4]) are followed exactly as no approximations are necessary in the construction of the
MC21 model to match the specification.

Axially, there are 398 fuel cells in all from 36.0070 cm (bottom of active fuel) to 401.767 cm (top of
active fuel) in each fuel rod, as shown in Figure 6. Because of the grid spacers, fuel cells are not the
same high: the highest is 1.069 cm, and the shortest is 0.91 cm. There are 25.22 million cells in this
model.

1111 111111 11111f1111111if

Elevation (cm) Description Number of fuel cells

455.444 Highest Extent
435.444 Top of Upper Nozzle

*1111 II IIII

N_
 426.617

423.272

Bottom of Upper Nozzle

'Ibp of Fuel Rod
421.223 Bottom of 1bp End Plug
416.720 Grid 8 lbp
412.529 GHd 8 Bottom
405.713 Control Rod Step 228

Ibp Active Fuel 401.767
365.864

of
Grid 7 Ibp

39

360.149 Grid 7 Bottom
6

Grid 6 Ibp
51

313.667
307.952 Grid 6 Bottom

6

261.470 GHd S Ibp
51

255.755 Grid 5 Bottom
6

209.273 Grid 4 Ibp 51

203.558 Grid 4 Bottom 6
Grid 3 Ibp 157.076

Grid 3 Bottom 6 151.361
104.879 Grid 2 Ibp 51

99.1640 Grid 2 Bottom 6
Control Rod Step 0 59 45.0790

3 42.0700

41.0870

Grid 1 Ibp

Bot. of Burnable Absorbers 1

Grid 1 Bottom 3 37.8790
Bottom of Active Fuel 36.0070

IIIIIIIIIIIIIIIIIIIIIIf111111IIIIIIIII Bottom of Fuel Rod
Bottom of Support Plate

 35.1600
20.0000
0.00000 Lowest Extent

Figure 6. Scale view of axial cross section and number of fuel cells for axial planes in the active
fuel region

Criticality calculation is simulated by the JMCT code, run with 1000 cycles of 81.92 million
particles each with 400 inactive cycles. As the memory usage of BEAVRS model, about 14GB, is
too large for a core, the domain replication can't make the calculation. Combination of domain
decomposition and domain replication is done on 4096 CPU cores, with 8 domain decompositions
on assemblies x 512 domain replications, as shown in Figure 7. The 8 groups of all processors
consume 1.9GB, 1.9GB, 1.9GB, 1.9GB, 2.0GB, 2.0GB, 2.1GB and 2.1GB memory respectively.

7th International Conference on Modelling and Simulation in Nuclear Science and Engineering (7ICMSNSE)
Ottawa Marriott Hotel, Ottawa, Ontario, Canada, October 18-21, 2015

4.2 BEAVRS PWR of MIT

The MIT Computational Reactor Physics Group has released specifications for a full core PWR
Monte Carlo performance benchmark BEAVRS[3]. There are 193 fuel assemblies utilizing three
unique enrichments (3.1 w/o, 2.4 w/o and 1.6 w/o U235). Each fuel assembly contains a 17×17 array
of pins with 264 fuel rods per assembly. The remaining 25 locations within the assembly are
occupied by burnable absorber rods, guide tubes, or instrument tubes, depending on location within
the core. Control rod positions are as specified for the conditions being analyzed.

The JMCT model was generated using the JLAMT tool [10]. Specification (Version 1.0.1 of the
benchmark [4]) are followed exactly as no approximations are necessary in the construction of the
MC21 model to match the specification.

Axially, there are 398 fuel cells in all from 36.0070 cm (bottom of active fuel) to 401.767 cm (top of
active fuel) in each fuel rod, as shown in Figure 6. Because of the grid spacers, fuel cells are not the
same high: the highest is 1.069 cm, and the shortest is 0.91 cm. There are 25.22 million cells in this
model.

Figure 6. Scale view of axial cross section and number of fuel cells for axial planes in the active
 fuel region

Criticality calculation is simulated by the JMCT code, run with 1000 cycles of 81.92 million
particles each with 400 inactive cycles. As the memory usage of BEAVRS model, about 14GB, is
too large for a core, the domain replication can’t make the calculation. Combination of domain
decomposition and domain replication is done on 4096 CPU cores, with 8 domain decompositions
on assemblies × 512 domain replications, as shown in Figure 7. The 8 groups of all processors
consume 1.9GB, 1.9GB, 1.9GB, 1.9GB, 2.0GB, 2.0GB, 2.1GB and 2.1GB memory respectively.

http://www.marriott.com/hotels/travel/yowmc-ottawa-marriott-hotel/

7th International Conference on Modelling and Simulation in Nuclear Science and Engineering (7ICMSNSE)
Ottawa Marriott Hotel, Ottawa, Ontario, Canada, October 18-21, 2015

I

Figure 7. Results of 8 domain decomposition: the core is divided into two parts for each dimension.
The domains generated automatically. When an Assembly is on the divided plane half to half, it will
choose one of the two domains stochastically. So the domain boundaries are irregular.

Energy depositions averaged over a cell for all the fuel cells are got. Figure 8 shows the result of radial
cross section and axial cross section in the middle of the core. Figure 8(a) looks like the results of
MC21 code [11]. Figure 8(b) shows the effect of grid spacers is modeled accurately in JMCT. The 3D
picture of the energy deposition results of 1/8 reactor core is shown in Figure 9.

•

4
...

• • •

4

•

1.I.as I PMe
94.9.

11

4

• 141

(a) radial cross section in the middle of the core (b) axial cross section in the middle of the core
Figure 8. Energy depositions averaged over a cell for all the fuel cells

7th International Conference on Modelling and Simulation in Nuclear Science and Engineering (7ICMSNSE)
Ottawa Marriott Hotel, Ottawa, Ontario, Canada, October 18-21, 2015

Figure 7. Results of 8 domain decomposition: the core is divided into two parts for each dimension.
The domains generated automatically. When an Assembly is on the divided plane half to half, it will
choose one of the two domains stochastically. So the domain boundaries are irregular.

Energy depositions averaged over a cell for all the fuel cells are got. Figure 8 shows the result of radial
cross section and axial cross section in the middle of the core. Figure 8(a) looks like the results of
MC21 code [11]. Figure 8(b) shows the effect of grid spacers is modeled accurately in JMCT. The 3D
picture of the energy deposition results of 1/8 reactor core is shown in Figure 9.

(a) radial cross section in the middle of the core (b) axial cross section in the middle of the core

Figure 8. Energy depositions averaged over a cell for all the fuel cells

http://www.marriott.com/hotels/travel/yowmc-ottawa-marriott-hotel/

7th International Conference on Modelling and Simulation in Nuclear Science and Engineering (7ICMSNSE)
Ottawa Marriott Hotel, Ottawa, Ontario, Canada, October 18-21, 2015

Psaudocdoe
Voi: lolY6_0.Totol
Unli3:110 IV,
mir 1.b/5e-06

' 5.6710-07I

-

1.715o 07

I. &,a,014
Max 1.87 OS

1.56%.08

--"411411,

is:

Figure 9. The 3D picture of the energy deposition results of 1/8 reactor core

5. Conclusion

The asynchronous transport algorithm for domain decomposed particle Monte Carlo in JMCT is
described in details and two full-core PWR models, Dayawan reactor and BEAVRS benchmark, are
simulated to verify the feasibility and correctness of the algorithm.

The domain decomposition parallelism are used when the geometry and tallies of the reactor model
is much beyond the capacity of the memory. And it can also be used in combination with the domain
replication.

The decomposition of the whole model is performed only according to the geometry. But in fact
there are many different materials in the same geometry, which will take different time to track the
particles. So the dynamic load balancing is needed to adjust the domain decomposition. This is our
work in the near future.

6. References

[1] X-5 Monte Carlo Team, "MCNP — A General Monte Carlo N Particle Transport Code,
Version 5-Volume I: Overview and theory," LA-UR-03-1987, Los Alamos National
Laboratory (2005)

[2] B.T. Mervin, S.W. Mosher, T.M. Evans et al, "Variance estimation in domain decomposed
Monte Carlo eigenvaluc calculations," PHYSOR 2012 Knoxville, Tennessee, USA, April 15-
20 (2012)

[3] F. Brown, B. Kiedrowski, D. Brown, "Advanced Monte Carlo for Reactor Physics Core
Analysis," PHYSOR2012, Knoxville, Tennessee, USA, April 15-20(2012)

7th International Conference on Modelling and Simulation in Nuclear Science and Engineering (7ICMSNSE)
Ottawa Marriott Hotel, Ottawa, Ontario, Canada, October 18-21, 2015

Figure 9. The 3D picture of the energy deposition results of 1/8 reactor core

5. Conclusion

The asynchronous transport algorithm for domain decomposed particle Monte Carlo in JMCT is
described in details and two full-core PWR models, Dayawan reactor and BEAVRS benchmark, are
simulated to verify the feasibility and correctness of the algorithm.

The domain decomposition parallelism are used when the geometry and tallies of the reactor model
is much beyond the capacity of the memory. And it can also be used in combination with the domain
replication.

The decomposition of the whole model is performed only according to the geometry. But in fact
there are many different materials in the same geometry, which will take different time to track the
particles. So the dynamic load balancing is needed to adjust the domain decomposition. This is our
work in the near future.

6. References

[1] X-5 Monte Carlo Team, “MCNP — A General Monte Carlo N Particle Transport Code,
Version 5-Volume I: Overview and theory,” LA-UR-03-1987, Los Alamos National
Laboratory (2005)

[2] B.T. Mervin, S.W. Mosher, T.M. Evans et al, “Variance estimation in domain decomposed
Monte Carlo eigenvalue calculations,” PHYSOR 2012 Knoxville, Tennessee, USA, April 15-
20 (2012)

[3] F. Brown, B. Kiedrowski, D. Brown, “Advanced Monte Carlo for Reactor Physics Core
Analysis,” PHYSOR2012, Knoxville, Tennessee, USA, April 15-20(2012)

http://www.marriott.com/hotels/travel/yowmc-ottawa-marriott-hotel/

7th International Conference on Modelling and Simulation in Nuclear Science and Engineering (7ICMSNSE)
Ottawa Marriott Hotel, Ottawa, Ontario, Canada, October 18-21, 2015

[4] N.E. Horelik, B.R. Herman, B. Forget, and K.S. Smith, "Benchmark for Evaluation and
Validation of Reactor Simulations (BEAVRS)," Proceedings of the International Conference
on Mathematics and Computational Methods Applied to Nuclear Science and Engineering,
Sun Valley, Idaho, May 5 — 9, on CD-ROM (2013)

[5] T.A. Brunner, T.J. Urbatsch, T.M. Evans, N.A. Gentile. "Comparison of four parallel
algorithms for domain decomposed implicit Monte Carlo", Journal of Computational Physics,
212(2) pp. 527-539(2006)

[6] T.A. Brunner, P.S. Brantley, "An efficient, robust, domain-decomposition algorithm for
particle Monte Carlo", Journal of Computational Physics, 228 pp. 3882-3890(2009)

[7] M. O'Brien, K. Joy, R. Procassini, et al. "Domain Decomposition of a Constructive Solid
Geometry Monte Carlo Transport Code," M&C+SNA, NY, USA, May 3-7, (2009)

[8] Gang Li, Baoyin Zhang, Li Deng, et al. "Combinatorial Geometry Domain Decomposition
Strategies for Monte Carlo Simulations", Proceedings of the International Conference on
Mathematics and Computational Methods Applied to Nuclear Science and Engineering, Sun
Valley, Idaho, May 5-9, on CD-ROM (2013)

[9] Baoyin Zhang, Gang Li, Li Deng, et al. "JCOGIN: A Parallel Programming Infrastructure for
Monte Carlo Particle Transport", PHYSOR 2014 - The Role of Reactor Physics Toward a
Sustainable Future, The Westin Miyako, Kyoto, Japan, September 28 -October 3, on CD-
ROM (2014)

[10] MA Yan, FU Yuanguang, LI Shu, "Development of Modeling Tools for pin-by-pin Precise
Reactor Simulaion", Atomic Energy Science and Technology, Vol.47(Suppl.),pp:443-447,
(2013)

[11] Daniel J. Kelly, III and Brian N. Aviles, Bryan R. Herman, "MC21 Analysis of the MIT PWR
Benchmark: Hot Zero Power Results", Proceedings of the International Conference on
Mathematics and Computational Methods Applied to Nuclear Science and Engineering, Sun
Valley, Idaho, May 5-9, on CD-ROM (2013)

7th International Conference on Modelling and Simulation in Nuclear Science and Engineering (7ICMSNSE)
Ottawa Marriott Hotel, Ottawa, Ontario, Canada, October 18-21, 2015

[4] N.E. Horelik, B.R. Herman, B. Forget, and K.S. Smith, “Benchmark for Evaluation and
Validation of Reactor Simulations (BEAVRS),” Proceedings of the International Conference
on Mathematics and Computational Methods Applied to Nuclear Science and Engineering,
Sun Valley, Idaho, May 5 – 9, on CD-ROM (2013)

[5] T.A. Brunner, T.J. Urbatsch, T.M. Evans, N.A. Gentile. “Comparison of four parallel
algorithms for domain decomposed implicit Monte Carlo”, Journal of Computational Physics,
212(2) pp. 527-539(2006)

[6] T.A. Brunner, P.S. Brantley, “An efficient, robust, domain-decomposition algorithm for
particle Monte Carlo”, Journal of Computational Physics, 228 pp. 3882-3890(2009)

[7] M. O’Brien, K. Joy, R. Procassini, et al. “Domain Decomposition of a Constructive Solid
Geometry Monte Carlo Transport Code,” M&C+SNA, NY, USA, May 3-7, (2009)

[8] Gang Li, Baoyin Zhang, Li Deng, et al. “Combinatorial Geometry Domain Decomposition
Strategies for Monte Carlo Simulations”, Proceedings of the International Conference on
Mathematics and Computational Methods Applied to Nuclear Science and Engineering, Sun
Valley, Idaho, May 5-9, on CD-ROM (2013)

[9] Baoyin Zhang, Gang Li, Li Deng, et al. “JCOGIN: A Parallel Programming Infrastructure for
Monte Carlo Particle Transport”, PHYSOR 2014 - The Role of Reactor Physics Toward a
Sustainable Future, The Westin Miyako, Kyoto, Japan, September 28 -October 3, on CD-
ROM (2014)

[10] MA Yan, FU Yuanguang, LI Shu, "Development of Modeling Tools for pin-by-pin Precise
Reactor Simulaion", Atomic Energy Science and Technology, Vol.47(Suppl.),pp:443-447,
(2013)

[11] Daniel J. Kelly, III and Brian N. Aviles, Bryan R. Herman, “MC21 Analysis of the MIT PWR
Benchmark: Hot Zero Power Results”, Proceedings of the International Conference on
Mathematics and Computational Methods Applied to Nuclear Science and Engineering, Sun
Valley, Idaho, May 5-9, on CD-ROM (2013)

http://www.marriott.com/hotels/travel/yowmc-ottawa-marriott-hotel/

	Introduction
	JCOGIN infrastructure
	Asynchronous algorithm
	Algorithm flow
	The exchanged particles record and the received particles set
	Sending particles
	Receiving particles
	Waiting for finished flag
	The key for finishing the cycle
	Combination with domain replication

	RESULTS
	Dayawan PWR of China
	BEAVRS PWR of MIT

	Conclusion
	References

