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Abstract 

High-fidelity, large-scale reactor analyses with Monte Carlo can lead to memory overload for a single core 
processor when it faces the detailed and accurate model of the full-core reactor. Domain decomposed 
calculation is one of the remedies to solve this problem. In domain decomposition, particles that cross 
domain boundaries need to be exchanged between the processors. An efficient, robust asynchronous 
transport algorithm for domain decomposition is introduced in this paper. All point-to-point communications 
in the algorithm are asynchronous to allow maximal overlap between computational work and 
communication, and result in increased parallel efficiency. The exchanged particles records are used to exit 
the loop at the end of the cycle in a criticality calculation when all the particles have finished. Two full-core 
reactor models, Dayawan reactor and BEAVRS benchmark, are simulated to verify the asynchronous 
transport algorithm using the Monte Carlo particle transport code JMCT (J Monte Carlo Transport Code). 
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1. Introduction 

To take advantage of parallel capabilities, most Monte Carlo codes such as MCNP[1] utilize 
multiple processors by dividing the particles between processors, and synchronizing after every 
cycle in a criticality calculation or at the end of the simulation for a fixed source calculation[2]. 
There is no communication between the processors except collecting the tally result. So the 
parallelism and scalability are very good. 

However, this is not an option for high-fidelity, large-scale "real" commercial reactor simulation 
since a single processor have not enough memory to store all the zones and tallies[3]. For example, 
the required storage for BEAVRS PWR benchmark is about 1 Terabyte[4]. It is a challenge for 
storage and calculation methods. 

In these cases, the spatial domain must be partitioned and assigned among the processors. This 
method, known as domain decomposition, is a form of spatial parallelism. It has been applied in the 
Implicit Monte Carlo (IMC) scheme for thermal radiation transport, such as Milagro code [5-6]. The 
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MERCURY code at LLNL, which is a general-purpose Monte Carlo code, implemented 
combinatorial geometry-based domain de-composition in 2009 [7]. 

In Monte Carlo simulations using domain decomposition algorithms, processors have to ex-change 
particles that cross domain boundaries. It is a challenge to reach a high efficiency as well as to keep 
message communication correct. An asynchronous transport algorithm is described in details in this 
paper, which is used for domain decomposed particle Monte Carlo in JMCT(J Monte Carlo 
Transport Code) [8]. The communication efficiency has been considered by overlap between 
computational work and communication. 

2. JCOGIN infrastructure 

JMCT is a combinatorial geometry Monte Carlo particle transport code, which has been developed 
at the Institute of Applied Physics and Computational Mathematics over 30 person-years. It can 
perform the transport of neutrons and photons, including both multi-group and continuous energy 
treatments of cross section. It is based on the infrastructure named JCOGIN (J COmbinatorial 
Geometry Monte Carlo transport INfrastructure). JCOGIN is in charge of storing combinatorial 
geometry, allocating the memory for tallies and communicating the message for parallel computing, 
including domain decomposition [9]. 

In JCOGIN, geometry element is solid, such as spheres, ellipsoids, rectangles, cylinders, cones, for 
instance. Complex solid can be made from several simple solids via using Boolean operators: 
intersection, union, and complement. It is called a cell when a solid is filled with materials. All the 
cells are associated with a tree structure in the memory. Every node on the tree corresponds to a cell, 
and it means that the cell has other cells inside it when its corresponding node has daughters. 
Domain decomposition is to divide the whole tree into many sub-trees and assign them on different 
processors. The processor can only track particles and tally on the corresponding domain of the sub-
tree. The particles will be sent to another processor when they cross the domain boundaries. 

3. Asynchronous algorithm 

In domain decomposed particle Monte Carlo, two sets of data must be communicated between the 
processors. The nearest neighbours must exchange particles that cross domain boundaries. A global 
communication operation must also be performed so that all the processors know when all the other 
processors are finished tracking all the particles. 

3.1 Algorithm flow 

for the other processor 
I post nonblocking receive for one integer: the number of particles (MPI_Irecv) 
if master processor 
I post nonblocking receive for the exchanged particles record from all slaves(MPI_Irecv) 
else 
I post nonblocking receive for finished message from master(MPI_Irecv) 
while not finished 
I if each M particles are simulated 
I I if other processes send particles (MPI_Test) 
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I I receive the particles, and store them in the received particles set 
if successfully get a particle from the received particles set or sources 

track the particle until it dies or crosses the domain boundaries 
if the particle crosses the domain boundaries 
I buffer the information of the particle, including the current random number 
I if the buffer is full 
I I send the particle buffer (MPI_Send) 

else 
send any partially full particle buffers(MPI_Send) 
if master processor 

wait for particles or the exchanged particles record (MPI_Waitany) 
if particles 
I continue track particles 
if the exchanged particles record 
I check the exchanged particles record, and send the finished flag if the result is 
correct. (MPI Send) 

If slave processor 
send the exchanged particles record to the master processor (MPI_Send) 
wait for particles or finished flag (MPI_Waitany) 
I if particles 
I I continue track particles 
I if finished flag 
I I finish the simulation 

Cancel all outstanding nonblocking receives 

3.2 The exchanged particles record and the received particles set 

1 

Each processor saves the total numbers of particles sent to other processes, and the total numbers of 
particles received from other processors. It is called the exchanged particles record, which is very 
important to exit the asynchronous transport after every cycle in a criticality calculation. As a 
processor can exchange particles with any other processors in general, the length of the ex-changed 
particles record is 2(P-1), where P is the number of processors. 

The received particles are stored in a particle set, with the name of the received particles set. The 
processor gets particles and tracks them one by one from the received particles set. When there is no 
particle in the set, the processor picks particles from the local source. 

3.3 Sending particles 

As particles move through the domain of the processor A, they may hit domain boundaries and need 
to be sent to another processor, for example B. In order to reduce the frequency of communication, 
particles are buffered. When the buffer is full, all of the N particles in it are sent together. Processor 
A sends the number of particles to processor B, and waits for the reply. The particles are not sent 
until the reply is received. After that, processor A updates the exchanged particles record and 
empties the buffer. 
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During the time waiting for the reply, processor A need to check if there are any particles sent in 
from other processors, and received particles if so, avoiding the deadlock that processors are waiting 
for the replies of each other. 

The number N can be adjusted according to memory size. The frequency of sending particles will 
increase if N is very small. The particles will be backlogged in the buffer, while other processors 
maybe have no particles to track if N is very big. 

3.4 Receiving particles 

In order to reduce the time of processor A on waiting for the reply when it is sending particles, 
processor B should make the reply as soon as possible. However, processor B is busy tracking the 
local active particles. In the algorithm, processor B checks whether any particles have been sent after 
tracking every M local particles. When it received the number of the particles from processor A, it 
sends a reply to processor A immediately, and makes a point-to-point communi-cation with 
processor A. After receiving the particles, processor B puts them into the received particles set, and 
updates the exchanged particles record. 

The number M should be adjusted according to N. Processor A will wait for a long time if M is 
relatively too big. While processor B will waste the checking time if M is relatively too small. 

3.5 Waiting for finished flag 

When there are no local active particles, including the received particles and source particles, the 
processor sends any partially full particle buffers. 

Slave processor sends the exchanged particles record to master processor, and then enters a state 
waiting for finished flag or new particles from other processors. As a result it will go back to track 
particles if new particles arrive, or it will exit the cycle if finished flag arrive. 

Master processor receives and checks the exchanged particles records, and determines whether to 
finish the cycle. If the checking result is true, it sends finished flag to slave processors and exit the 
cycle. If the checking result is false, it enters a state waiting for the exchanged particles re-cord or 
new particles from other processors. As a result it will go back to track particles if new particles 
arrive, or it will check the records again if the exchanged particles records get updated. 

3.6 The key for finishing the cycle 

Master processor checks the exchanged particles records of all processors, including itself. For each 
two processors, such as processor A and B, master processor makes sure if the number of the 
particles that processor A sent to processor B, which is got from processor A, is equal to the number 
of the particles that processor B received form processor A, which is got from processor B. Only 
when all the equations meet among the processors, the checking result is true. Master processor 
sends finished flag. 

7th International Conference on Modelling and Simulation in Nuclear Science and Engineering (7ICMSNSE) 
Ottawa Marriott Hotel, Ottawa, Ontario, Canada, October 18-21, 2015 

During the time waiting for the reply, processor A need to check if there are any particles sent in 
from other processors, and received particles if so, avoiding the deadlock that processors are waiting 
for the replies of each other. 

The number N can be adjusted according to memory size. The frequency of sending particles will 
increase if N is very small. The particles will be backlogged in the buffer, while other processors 
maybe have no particles to track if N is very big. 

3.4 Receiving particles 

In order to reduce the time of processor A on waiting for the reply when it is sending particles, 
processor B should make the reply as soon as possible. However, processor B is busy tracking the 
local active particles. In the algorithm, processor B checks whether any particles have been sent after 
tracking every M local particles. When it received the number of the particles from processor A, it 
sends a reply to processor A immediately, and makes a point-to-point communi-cation with 
processor A. After receiving the particles, processor B puts them into the received particles set, and 
updates the exchanged particles record.  

The number M should be adjusted according to N. Processor A will wait for a long time if M is 
relatively too big. While processor B will waste the checking time if M is relatively too small. 

3.5 Waiting for finished flag 

When there are no local active particles, including the received particles and source particles, the 
processor sends any partially full particle buffers. 

Slave processor sends the exchanged particles record to master processor, and then enters a state 
waiting for finished flag or new particles from other processors. As a result it will go back to track 
particles if new particles arrive, or it will exit the cycle if finished flag arrive. 

Master processor receives and checks the exchanged particles records, and determines whether to 
finish the cycle. If the checking result is true, it sends finished flag to slave processors and exit the 
cycle. If the checking result is false, it enters a state waiting for the exchanged particles re-cord or 
new particles from other processors. As a result it will go back to track particles if new particles 
arrive, or it will check the records again if the exchanged particles records get updated. 

3.6 The key for finishing the cycle 

Master processor checks the exchanged particles records of all processors, including itself. For each 
two processors, such as processor A and B, master processor makes sure if the number of the 
particles that processor A sent to processor B, which is got from processor A, is equal to the number 
of the particles that processor B received form processor A, which is got from processor B. Only 
when all the equations meet among the processors, the checking result is true. Master processor 
sends finished flag. 

  

http://www.marriott.com/hotels/travel/yowmc-ottawa-marriott-hotel/


7th International Conference on Modelling and Simulation in Nuclear Science and Engineering (7ICMSNSE) 
Ottawa Marriott Hotel, Ottawa, Ontario, Canada, October 18-21, 2015 

If any equation fails to meet, it means one processor is still tracking particles, yet its newest ex-
changed particles record is not sent to master processor. So the simulation can't stop. Master 
processor has to wait the new exchanged particles record and check them again. 

The time complexity of checking the records is 0(P2), while P is the number of parallel processors 
used for domain decomposition. 

3.7 Combination with domain replication 

The parallel efficiency of domain decomposition is much lower than that of domain replication as 
there is much message communication during the simulations. So the combination of two par-
allelisms is provided to improve parallel efficiency. Assuming P1* P2 processors in all, P1 copies of 
the whole geometry are made firstly, and each copy is assigned 1/P1 of the total particles. Then each 
copy is decomposed into P2 domains, and each processor got one domain to track the particles. Only 
the domains decomposed from the same copy can exchange particles to each other. 

It is suggested that P2 should be minimized in the case of sufficient memory. So the extra work of 
master processor for checking the exchanged particles records (0(P22)) is usually small, and it is of 
little effect on load balancing. 

N 2 particles 
Domain N 2 particles Domain 
Replication Decomposition 

N Articles 

N 2 particles 

EHn
X 0.0 

N 2 particles 

Figure 1. Example of domain decomposition and domain replication are used in combination. 
Firstly the whole geometry is cloned by two copies, and each copy is assigned half of the total 
particles. Secondly each is decomposed into 4 domains. There are 2x4=8 processors in all, and each 
processor is in charge of a domain. Only the domains from the same copy can exchange the particles 
to each other. 

4. RESULTS 

4.1 Dayawan PWR of China 
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Figure 2. The Dayawan PWR model and cross-sectional views of an assembly 
The PWR model from the Dayawan nuclear power station is employed to test the asynchronous 
transport algorithm. There are 157 assemblies in the model. Far,h assembly is composed of 17 X 17 
pins, with 264 for fuel rod and 25 for control rod, and each rod contain 2 layers in radius. As there is 
no control rod in this model, the cells for control rod are empty. In the axial direction each assembly 
is divided into 16 segments. There are 2.11 million cells in this model. 

The main purpose of the domain decomposition is to reduce the memory requirement. Figure 3 
shows the memory usages of different number of domain decompositions for the Dayawan PWR 
model that neutron flux is tallied on all the cells with 10 energy bins. We can see the memory usage 
decreases rapidly with the number of domain decomposition increasing. Once the number of domain 
decomposition is doubled, the memory decreases nearly half. 
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Figure 3. The memory usages of different numbers of domain decomposition 

Criticality calculations and total neutron flux on all the fuel cells are simulated by the JMCT code, 
run with 100 cycles of 409.6 million particles each with 20 inactive cycles. Three kinds of 
combinations of domain decomposition and domain replication are done on 4096 CPU cores, with 1 
domain x4096 domain replications, 2 domain decompositions on assemblies x2048 domain 
replications and 4 domain decompositions on assemblies x1024 domain replications. Flux results of 
all fuel cells in the middle of XOY plane is shown in Figure 4. The flux results of different 
combinations of domain decomposition and domain replication are almost the same. 
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In case (a), there is only one domain and 557MB memory is used for each processor. In case (b), 
there are two domains in total and the two groups of all processors utilize 332MB and 345 MB 
memory respectively. In case (c), there are four domains in total and the four groups of all 
processors consume 224MB, 232MB, 230MB and 224MB respectively. 
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Figure 4. Flux results of all fuel cells in the middle of XOY plane. (a) 1 domainx4096 domain 
replications (b) 2 domain decompositions x2048 domain replications (c) 4 domain 
decompositions x1024 domain replications 

Figure 5 shows the parallel efficiency for the three kinds of parallel modes, 1 domain, 2 domain 
decompositions and 4 domain decompositions, from 128 cores to 4096 cores. Ear,h calculation in 
Figure 5 is with 50 cycles, and 50000 neutrons for each core. There are three curves in Figure 5, and 
each is relatively stable with the number of the cores, indicating that the scalability of combinations of 
domain decomposition and domain replication is very good. The '1 domain' parallel mode is just 
traditional particle parallel, and its parallel efficiency is greatest of all. The parallel efficiency of 2 
domain decompositions is about 98% of it and 95% for 4 domain decompositions. So the time 
increased in domain decomposition for particle exchange is very small. 
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Figure 5. The parallel efficiency for three kinds of parallel modes from 128 cores to 4096 cores. 
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4.2 BEAVRS PWR of MIT 

The MIT Computational Reactor Physics Group has released specifications for a full core PWR 
Monte Carlo performance benchmark BEAVRS[3]. There are 193 fuel assemblies utilizing three 
unique enrichments (3.1 w/o, 2.4 w/o and 1.6 w/o U235). Each fuel assembly contains a 17x17 array 
of pins with 264 fuel rods per assembly. The remaining 25 locations within the assembly are 
occupied by burnable absorber rods, guide tubes, or instrument tubes, depending on location within
the core. Control rod positions are as specified for the conditions being analyzed. 

The JMCT model was generated using the JLAMT tool [10]. Specification (Version 1.0.1 of the 
benchmark [4]) are followed exactly as no approximations are necessary in the construction of the 
MC21 model to match the specification. 

Axially, there are 398 fuel cells in all from 36.0070 cm (bottom of active fuel) to 401.767 cm (top of 
active fuel) in each fuel rod, as shown in Figure 6. Because of the grid spacers, fuel cells are not the 
same high: the highest is 1.069 cm, and the shortest is 0.91 cm. There are 25.22 million cells in this 
model. 
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Figure 6. Scale view of axial cross section and number of fuel cells for axial planes in the active 
fuel region 

Criticality calculation is simulated by the JMCT code, run with 1000 cycles of 81.92 million 
particles each with 400 inactive cycles. As the memory usage of BEAVRS model, about 14GB, is 
too large for a core, the domain replication can't make the calculation. Combination of domain 
decomposition and domain replication is done on 4096 CPU cores, with 8 domain decompositions 
on assemblies x 512 domain replications, as shown in Figure 7. The 8 groups of all processors 
consume 1.9GB, 1.9GB, 1.9GB, 1.9GB, 2.0GB, 2.0GB, 2.1GB and 2.1GB memory respectively. 
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I 

Figure 7. Results of 8 domain decomposition: the core is divided into two parts for each dimension. 
The domains generated automatically. When an Assembly is on the divided plane half to half, it will 
choose one of the two domains stochastically. So the domain boundaries are irregular. 

Energy depositions averaged over a cell for all the fuel cells are got. Figure 8 shows the result of radial 
cross section and axial cross section in the middle of the core. Figure 8(a) looks like the results of 
MC21 code [11]. Figure 8(b) shows the effect of grid spacers is modeled accurately in JMCT. The 3D 
picture of the energy deposition results of 1/8 reactor core is shown in Figure 9. 
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(a) radial cross section in the middle of the core (b) axial cross section in the middle of the core 
Figure 8. Energy depositions averaged over a cell for all the fuel cells 
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Figure 9. The 3D picture of the energy deposition results of 1/8 reactor core 

5. Conclusion 

The asynchronous transport algorithm for domain decomposed particle Monte Carlo in JMCT is 
described in details and two full-core PWR models, Dayawan reactor and BEAVRS benchmark, are 
simulated to verify the feasibility and correctness of the algorithm. 

The domain decomposition parallelism are used when the geometry and tallies of the reactor model 
is much beyond the capacity of the memory. And it can also be used in combination with the domain 
replication. 

The decomposition of the whole model is performed only according to the geometry. But in fact 
there are many different materials in the same geometry, which will take different time to track the 
particles. So the dynamic load balancing is needed to adjust the domain decomposition. This is our 
work in the near future. 
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