
7th International Conference on Modelling and Simulation in Nuclear Science and Engineering (7ICMSNSE) 
Ottawa Marriott Hotel, Ottawa, Ontario, Canada, October 18-21, 2015 

CRANE: A NEW SCALE SUPER-SEQUENCE FOR NEUTRON 
TRANSPORT CALCULATIONS 

Congjian Wang', Hany S. Abdel-Khaffle, and Ugur Mertyurek2
1School of Nuclear Engineering, Purdue University 

20ak Ridge National Laboratory 
wang 1 73 0@purdue. edu; abdelkhalik@purdue.edu; umertyurek@ornl.gov 

ABSTRACT 

A new "super-sequence" called CRANE has been developed to automate the application of 
reduced order modeling (ROM) to reactor analysis calculations under the SCALE code 
environment. This new super-sequence is designed to support computationally intensive analyses 
that require repeated execution of flux solvers with variations in design parameters and nuclear 
data. This manuscript provides a brief overview of CRANE and demonstrates its applications to 
representative reactor physics calculations. Specifically, two ROM applications are demonstrated, 
the intersection subspace-based approach for uncertainty quantification which is intended to 
reduce the number of uncertainty sources in a conventional uncertainty analysis, and the exact-to-
precision generalized perturbation theory methodology intended as a physics-based surrogate 
model to replace the flux solver, i.e., NEWT. Our overarching goal is to provide a prototypic ROM 
capability that allows users to further explore and investigate the benefits of using ROM methods 
in their respective domain and help guide further developments of the methodology and evolution 
of the tools. 
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1. INTRODUCTION 

This manuscript introduces a new "super-sequence" CRANE, Complexity Reduction 
Algorithms in Nuclear Engineering calculation, in SAMPLER under scale6.2 beta2 designed to 
enable the application of ROM for large-scale engineering calculations as well as to reduce the 
run-time of reactor physics calculations via ROM. CRANE implements some of the recent 
developments in the area of ROM, such as intersection subspace-based uncertainty quantification 
(UQ) [1], and exact-to-precision generalized perturbation theory (EpGPT) [2]. CRANE 
automates all the steps related to the implementation of ROM techniques, such as subspace 
construction, dominant parameters identification/ranking, and surrogate model construction. The 
SAMPLER super-sequence is leveraged by CRANE to perform some of the tasks related to the 
introduction of parameter perturbations, preparation of the associated perturbed input files, and 
the subsequent submission of code runs in a parallel environment [3]. 

ROM has been developed to address a basic challenge in reactor analysis calculations - that 
is the need to evaluate the dependence of the flux spectrum on the many conditions of interest to 
the application. For example, to perform core-wide calculations, one must generate few-group 
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cross-sections that are functionalized in terms of many core conditions that affect the neutron 
spectrum, e.g., fuel temperature, coolant voiding or temperature, boron poison, control rod 
insertion, etc. Other applications such as nuclear fuel transport and final storage also require 
many flux evaluations to properly characterize the fuel inventory. The flux solver in SCALE is 
known to be few orders of magnitude slower than comparable codes used in the industry. Hence, 
this manuscript will demonstrate the application of ROM techniques to generate a surrogate 
model that can be used in lieu of NEWT for the wide range analysis conditions. This serves as a 
demonstration of the capability of ROM techniques, which has general applicability to other flux 
solvers. 

The fundamental idea behind ROM is to reduce the effective dimensionality of the 
associated space, e.g., parameter space, flux space, response space, etc. The reduction is rendered 
via a linear mapping between the original space variables and a set of reduced variables referred 
to the active degrees of freedom (DOFs). Due to the nature of linear mapping, the reduction 
identifies an active subspace that has a much fewer DOFs than the original space. The premise is 
that the active subspace captures the majority of the dominant effects, whereas all DOFs that are 
orthogonal to the active subspace are considered to have negligible impact on the responses of 
interest and the flux. Because the active subspace is generated using a randomized approach, the 
resulting reduction errors can be rigorously quantified. 

ROM first appeared in 1970s dealing with linear/nonlinear structural analysis, and since then 
have been employed and further developed by many researchers from different scientific 
backgrounds, e.g., fluid dynamics, nuclear physics, and quantum mechanics [4-5]. The essential 
approach utilized to construct ROM is known as proper orthogonal decomposition (POD) or 
POD of snapshots. A snapshot is denoted as the outputs of a model at a particular point in time or 
for a given parameters perturbation. In our recent development, we have shown that the POD of 
snapshots (and randomized range finding algorithms (RFAs), defined later) can be employed to 
identify an active subspace that approximates the dominant variations of responses of interest to 
a quantifiable accuracy with high probability [6]. This is one of the main advantages of ROM 
techniques over conventional surrogate methods which employ parametric functional 
approximations to replace the original physics model, such as polynomial chaos techniques, and 
stochastic collocation methods. For more details on the differences between ROM and 
parametric functional approximation techniques, see Ref. [7] 

The EPGPT approach has been developed to allow for a practical use of exact generalized 
perturbation theory in routine design reactor calculations [2, 8]. EPGPT first employs ROM to 
reduce the effective dimensionality of the flux space. Next, it recasts the GPT equations in terms 
of the identified active DOFs resulting from the reduction. Finally, it employs a recursive 
approach to combine all higher order response variations to arrive at an analytical form that can 
be used as a surrogate model. The constructed surrogate provides an enabling tool to analyze the 
impact of parameters variations on the responses of interest as many times as needed without 
having to re-execute the original flux solver, i.e., NEWT. 

With regard to the subspace-based UQ approach, this approach is designed to first identify 
the dominant active DOFs in the parameter space prior to the execution of conventional UQ 
analysis. If the active DOFs are few, one can employ forward UQ techniques to determine both 
uncertainties and sensitivities, i.e., contribution of the various parameters to the total propagated 
uncertainties. Note that in this case the active subspace represents an intersection between the 
active subspace for the surrogate model and the Karhonen-Loeve subspace determined from a 
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rank revealing decomposition of the cross-section covariance matrix. This is because the 
propagated uncertainties are determined by the product of sensitivities of responses and 
uncertainties of input parameters. The key or dominant parameter directions contributing the 
most to the propagated uncertainties are expected to have a high net product of sensitivities and 
uncertainties. This criterion implies that parameter directions that are associated with strong 
sensitivities may not have a dominant impact on the propagated uncertainties unless their 
associated uncertainties are relatively high as well. 

2. METHODOLOGY AND IMPLEMENTATION 

2.1 EpGPT Surrogate Model Construction 

The main difference between EPGPT and standard GPT theory [9] is in the formulation and 
interpretation of the adjoint models employed to calculate responses variations. GPT calculates 
an adjoint function for the response of interest which can be used to calculate the first order 
derivatives of the given response with respect to all model parameters. If higher order variations 
are required, one must calculate additional number of adjoints, which typically increase with the 
increase in the number of model parameters and the sought order of variation. EPGPT however 
calculates a small number of adjoint functions corresponding to a small number of pseudo 
responses which represent randomized linear combinations of the flux values everywhere in the 
phase space. The resulting adjoints can be used to be used to analytically combine all higher 
order variations to a given preset tolerance for a general parameter perturbation. If the parameter 
perturbations are small, one can extract first-order sensitivities like GPT. With large 
perturbations however, one can use the resulting EPGPT analytical expression as a surrogate 
model for the original transport model. Previous work has demonstrated that EpGPT can be used 
to evaluate the variations in neutron flux and responses of interest due to various perturbations, 
such as cross sections, fuel enrichment, fuel densities, temperatures, etc., in lattice design 
calculations. We briefly discuss the EPGPT approach, and refer the reader to Ref. [2] for detailed 
description. 

The steady-state linear Boltzmann equation describing neutron transport can be represented 
in operator form by eigenvalue equation, 

PO = (L — APO = 0 (1) 

where 2 = 1/ k , and 0 E le is the neutron angular flux. The scattering and differential transport 
operators are represented by L and the fission transport operator by F. In the following, we refer 
to the operator P = (L —A.F) as the transport operator. The neutron flux is normalized as 

follows: 

On =1 

Assume that all possible state variations AO belong to a subspace Z of size r 

Y 
AO = fliqi +fl2q2 + • • • + fi rq r =III iqi; with AO e Rn , qi E Rn , II i E le 

i =1 

(2) 

(3) 
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where qi represents an orthonormal basis vector function in the discretized scheme in the 

subspace Z . If r is much smaller than n (the size of the state space), one can recast GPT in terms 
of a set of r pseudo responses. In doing so, one recognizes that the remaining n-r directions in the 
flux space have negligible impact on the response. As shown in Ref. [2], the coefficient vector 

= [igi,• • • fir]T is equal to: 

(4) 

with 

tu =[(r7,Apoo) Fr,AP00) T

(F7,APqi) (Fi ,APqi ) (r , APqr )1

T= (Fi ,APqi) (Fi ,APqi ) (Fi ,APqr The TX 
E 11%. 

(Fr,APqi) (Fr,APqi ) (Fr ,APqr )]

where I is r by r identity matrix, and the perturbed neutron transport operator 

AP = (AL — — AJIT — AJTAF) . The functions {II' }r are the generalized adjoint fluxes, 

which are the solutions to the generalized adjoint transport equation: 

* R• 
P* F • = ao = qi — for i =1, • • •, r (5) 

where Ri = (qi3O), for i =1,..., r is the pseudo response used to capture the flux variations, and 

P is adjoint operator to the forward transport operator. Considering the source provided in Eq. 
(5) is orthogonal to the forward flux, i.e. 

((qi — h),0)= 0, for i =1,• • •, r (6) 

ithus, one can choose Ni* n  = , for i = 1,• • • , r 
0,0) 

This derivation shows that adjoint formulation of EPGPT is very similar to standard GPT 
with the exception of the different source formulation for the GPT equation. This implies that the 
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EPGPT surrogate can be easily implemented in other computer codes which have a GPT 
capability. 

2.2 Subspace-based Uncertainty Quantification 

A basic ingredient in the ROM algorithm is the capability to perturb the model parameters 
(refers here to the multi-group cross-sections). ROM methods require two different modes for 
cross-section perturbations. An initial purely random perturbation of all cross-sections to identify 
the active subspace, followed by a selective perturbation approach which employs the results of 
the first set of code runs to either construct a surrogate model of identify the dominant directions 
for a subsequent subspace-based UQ. This requires a capability to introduce user-defined 
perturbations which is currently not available in the SAMPLER super-sequence. The SAMPLER 
generates cross-section perturbations that are consistent with the multi-group cross-section 
covariance matrix using the XSUSA methodology [3]. We therefore modify the SAMPLER 
perturbation routines to allow introduction of random and user-defined perturbations as required 
by the ROM application. 

Consider a mathematical model described by the following equation: 

y = f (x) (7) 

where xc Rn denotes the n-component vector for input parameters, and y e Rm represents the 
m model's responses of interest. As discussed in the literature, one can employ the adjoint-based 
perturbation theory to calculate the sensitivity coefficients for given response with respect to all 
input parameters [8], i.e. 

[ s ] =  i , for i = 1, • • •,m; j = 1, • • •,n (8) 
ii axi

where S is denoted as the sensitivity matrix. The row space of S, denoted by R (ST ) or S-

subspace, can be employed to construct an active subspace that can be used for input parameters 
space reduction. The size of the active subspace is determined by the effective rank of the matrix 
S, which can be obtained by RFAs. 

In our current implementation, the input parameters represent the nuclear cross sections 

whose uncertainties are characterized by a covariance matrix Cx E Rn" . The covariance matrix 

is a symmetric positive semi-definite matrix with diagonal entries representing the variance of 
the cross-sections, and off-diagonal entries representing the correlations therein. RFAs can also 
be used to identify the active subspace for R (C x ) , denoted hereinafter as C-subspace. The C-

subspace identifies directions in the parameter space associated with high uncertainties. 

CRANE employs RFAs to identify a third subspace, referred to as the intersection subspace, 
which captures directions in the parameter space that are associated with a high net product of 
sensitivities and uncertainties. This is done via adjoint-based perturbation theory to compute the 
sensitivity coefficients of pseudo responses. A pseudo response is an abstraction that allows one 
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generate randomized linear combination of the various model's responses sensitivity profiles. 
For example, a pseudo response for the model represented by Eq. (7) can be defined as: 

Y pseudo = 
0T

Y 

where y e Rm represents the m model's responses of interest, and B is an random vector. 

In current CRANE implementation, the sampling of nuclear data is accomplished in the 
following steps: 

1. 
11 

Generate 1 random vectors Oili=lc Rm 

1 
2. Construct 1 pseudo responses: Y,pseudo = Y i=1'

1 
3. Compute dYi'pseudo via adjoint-based perturbation theory; 

i=1 dx 

4. SVD decomposition for covariance matrix: Cx = UxExUxT ; 

5. 1/ Calculate G = Ex-.2 Ux
udo d T dY1 pse Y1, udo pse 11 ' [ 

j1 E 
Rnx1 

6. Determine the "intersection" subspace via orthogonal decomposition of G=QR, where 

Q=[qi,-.,q/]; 
7. Employ RFA algorithm to identify the effective rank r of matrix Q; 
8. Using lc-metric [6] to examine the reduction errors, if the error tolerance criterion is not met, 

increase 1 and go back to step 1; 

9. Generate N random vectors using standard norm distribution: wi E Rr , i =1,..., N ; 

10. Construct N parameter perturbation of the form: Axi = U xElx12Qwi,i = 1, 2,..., N ; 

11. Run SAMPLER with the determined N perturbations 
12. Statistically analyze the results for estimating mean and standard deviation. 

In step 11, we employ SAMPLER to propagate the uncertainties, this is because SAMPLER 
is able to explicitly treat resonance self-shielding effects. As can be observed, both SAMPLER 
and CRANE randomly sample the parameters, and calculate statistics on the response variations. 
The difference is that the purely random sampling approach in SAMPLER is guided only the 
prior covariance matrix, however the approach implemented in CRANE confines the samples to 
an active subspace that contains the key contributors to uncertainties. This is not possible with a 
forward sampling approach unless the number of samples is taken to be at least as large as the 
number of parameters, which is impractical for neutronics models. 
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included in the pin-cell model are UO2, zircaloy-4, and water. The moderator contains soluble 
boron as a chemical shim for maintaining criticality, and the pellet-clad gap contains helium gas. 
This problem represents typical zero power isothermal conditions which are representative of 
power reactor startup physics testing. The model layout is shown in Fig. 1. The SCALE6.2B2 
code package is employed [9]. 

• 
• 

1 uo2 
2 he 
3 zirc4 
4 h2o + boron 1300ppm 

Fig. 1. Model Layout 

The cross sections, i.e. scattering, radiation capture, fission, etc., are randomly perturbed 
using CRANE to identify the active subspace. CRANE is then employed to propagate the 
uncertainties via intersection subspace UQ method. The nominal dimension of input parameter 
space is 11,308. Fig. 2-b plots the histogram of Keff variations due to cross section perturbations 
confined to the active intersection subspace with size of 15, i.e., implying only 15 dominant 
directions, while the reference Keff is obtained by computing the mean value of all perturbed 
cases. For comparison, Fig. 2-a plots the histogram of Keff variations generated via SAMPLER 
using the standard XSUSA approach. In addition, for comparison purposes, the TSUNAMI-2D 
was employed to compute the standard derivation of Keff, i.e. a- (Keff) = 625.1pcm , via first-

order generalized perturbation theory. 
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The previous model was employed to demonstrate the EPGPT functionality of CRANE. The 
nominal dimension of neutron flux space is 157,248. The sizes of the parameters and flux active 
subspaces are 200 and 100, respectively. For a given random perturbation (Fig. 3), the variation 
in the eigenvalue is 13,952 pcm, while the discrepancies in the eigenvalue predictions is 78.5 
pcm. The discrepancies in the eigenvalue prediction between first-order GPT and the direct 
neutron transport calculations is 1107.9 pcm. Fig. 3 shows the values of 224 different responses 
of interest, i.e. group-wised mixture flux, computed by EPGPT surrogate model and NEWT 
model, respectively. 
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Fig. 3. Response Approximation via EPGPT Surrogate 
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An assembly model was also used to demonstrate application of EPGPT. This model layout, a 
UO2 Gosgen (ARIANE) sample [11], is shown in Fig. 4. The specific enrichments for each of 
the pin types may be found in Ref. [11]. 
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Fig. 4. Assembly model layout 

The standard SCALE 56-group cross section library (xn56v7 generated from ENDF/B-VII.0 
64-group neutron library) is employed. The dimension of the angular flux is 3,929,856 (i.e. 
angular quadrature SN=6, 56 energy groups and 2924 cells). The flux predicted by the EPGPT 
surrogate, using a subspace with size 60, are compared to the exact fluxes predicted by NEWT 

[10]. We will refer to 110Exact —0EpGPT112 /110Exactil2 as the relative error in the flux. Large 

number of randomized cross-section perturbations, giving rise to 1% change in reactivity, were 
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used to assess the quality of EPGPT surrogate predictions. Specifically, the upper bounds on the 
flux errors are: 

10Exact 0EpGPT 2
= 5.73E — 4 

110 Exact112 

The corresponding upper-bound on the Keff is found to be 0.0047%, or approximately 
5pcm. In practice, one could employ higher size for the active subspace if higher accuracy is 
required. A small value is used here to demonstrate that reasonable accuracy can be obtained 
with very small active subspace as compared to the original flux space. Figs. 5 and 6 show the 
flux spectra for fuel in two types of pins, the E test pin, and the S test pin as shown in Fig. 4. 
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Fig. 6. Flux spectrum for the S test pins 

The recently developed CRANE super-sequence has been equipped with a number of 
functionalities to support the efficient execution of uncertainty quantification and the 
construction of accuracy-preserving surrogate models. Both functionalities are currently fully 
automated in CRANE and are ready for release to interested beta users. Future work will focus 
on further customization of the tool for specific applications, e.g., generation of few-group cross-
sections for downstream core-wide calculations. 
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