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Abstract 

A fast Resonance Interference Factor (RIF) scheme is proposed to treat the resonance interference 
effects between different resonance nuclides. This scheme utilizes the conventional subgroup 
method to evaluate the self-shielded cross sections of the dominant resonance nuclide in the 
heterogeneous system and the hyper-fine energy group method to represent the resonance 
interference effects in a simplified homogeneous model. In this paper, the newly implemented 
scheme is compared to the background iteration scheme, the Resonance Nuclide Group (RNG) 
scheme and the conventional RIF scheme. The numerical results show that the errors of the effective 
self-shielded cross sections are significantly reduced by the fast RIF scheme compared with the 
background iteration scheme and the RNG scheme. Besides, the fast RIF scheme consumes less 
computation time than the conventional RIF schemes. The speed-up ratio is —4.5 for MOX pin cell 
problems. 

Keywords: Resonance Interference Effect, Resonance Interference Factor, Subgroup Method 

1. Introduction 

Resonance calculation plays an important role in the multi-group approximation based deterministic 
method. The purpose of the resonance calculation is to obtain the effective self-shielded cross 
sections for specific problems. Within the resonance energy range, there exist lots of resonance 
peaks which strongly affect the flux spectrum. Therefore, the scheme of obtaining multi-group cross 
sections by condensing continuous cross sections with typical flux spectrum is not suitable for the 
resonance energy range [1]. To treat the self-shielding effects, methods such as equivalence 
theory[2,3], hyper-fine energy group method[4,5] and subgroup method[6-9] have been developed. 
The hyper-fine energy group method discretises the energy variable into very fine meshes based on 
which the neutron slowing down equation is solved. This kind of method treats the energy variable 
RNGorously and can achieve the same order of accuracy as Monte Carlo method[10]. However, the 
hyper-fine energy group consumes much computation resources especially for problem of large 
scale. The equivalence theory typically expands fuel-to-fuel collision probabilities into rational 
expression in a pin cell model[ 1 1]. The equivalence between the pin cell model and a homogeneous 
model is made based on consistent form of the resonance integral (RI) of the two models. The 
spatial self-shielding effects are considered through Dancoff correction which takes a blackness 
assumption of the fuel. The geometrical application of the equivalence theory is limited due to 
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rational approximation. Besides, the accuracy of the method is questionable[12]. The subgroup 
method discretises a broad energy group into several subgroups according to magnitude of the cross 
sections. Based on each subgroup, a subgroup fixed source problem (SFSP) is formulated and 
solved. For the similarity between the SFSP and the multi-group neutron transport equation, mature 
transport solver such as MOC can be applied. Therefore, the application of the subgroup method is 
not limited by geometry. This method is widely applied in neutron transport codes such as HELIOS, 
DeCART and MPACT for its geometrical flexibility and high accuracy. 

The procedure of the subgroup method can be divided into two steps. In the first step, the probability 
tables are generated from the pre-computed RI table; in the second step, the SFSPs are solved to 
obtain the subgroup flux which is used to obtain the effective self-shielded cross sections. The RI 
tables are typically obtained by solving neutron slowing down equation of homogeneous system 
over a range of background cross sections. As the atomic densities of specific problem are unknown, 
to reduce the disk requirement, the homogeneous system mixes a pseudo background nuclide with 
only one kind of resonance nuclide rather than multiple resonance nuclides. However, the real 
problem is not limited to only one resonance nuclide. The resonance peaks of different resonance 
nuclides will interference with each other which is not considered in the RI table and the subsequent 
resonance calculation where assumption is made that there is only one resonance nuclide in the 
system. This discrepancy is the so-called resonance interference effect[13]. 

The resonance interference effect is conventionally treated by background iteration scheme[14]. In 
this scheme, resonance nuclides are treated one by one and when the present resonance nuclide is 
treated, all the others are considered background nuclides which are assumed to be without 
resonance peaks. Several iterations should be taken to guarantee the convergence of the self-shielded 
cross sections. There exist two shortcomings in it. Firstly, the iteration procedure is time-consuming 
especially when there are numerous resonance nuclides. This situation will occur in MOX fuel 
where six kinds of resonance nuclides exists or in depletion problems. Secondly, the results of 
iteration can't converge to the true value[13]. As with the first issue, a Resonance Nuclide Grouping 
(RNG) scheme was proposed to speed-up the iteration procedure[8,15]. In the RNG scheme, 
numbers of resonance nuclides are grouped into a small number of categories according to their 
resonance features. The background iteration is carried out based on the categories rather than each 
resonance nuclide. Although the calculation efficiency is promoted, it suffers from loss of precision. 
As with the second issue, the Resonance Interference Factor (RIF) scheme was proposed[13,16-18]. 
The RIF is the quotient of two sets of self-shielded cross sections, that is, the self-shielded cross 
sections with a single resonance nuclide without interference and the self-shielded cross sections 
with the mixture of all nuclides where the resonance interference is fully considered. The RIFs are 
calculated by continuous energy or hyper-fine energy group method. Then these factors are applied 
to the self-shielded cross sections without interference obtained by the subgroup method that takes 
single resonance nuclide assumption. The RIFs can be calculated a priori and tabulated[17], or be 
generated on-the-fly[19]. However, the scheme to tabulate RIFs a priori increases the storage of 
nuclear data and the on-the-fly scheme increases the computation time. 

In this paper, to overcome the drawbacks of the conventional schemes, a fast RIF scheme is 
proposed. In this scheme, the dominant resonance nuclide is selected for each resonance group. Then 
the self-shielded cross sections of the dominant resonance nuclide without resonance interference 
are calculated by the subgroup method. The heterogeneous system is converted to a homogeneous 
one by preserving the self-shielded cross section of the dominant resonance nuclide. Finally, the 
self-shielded cross sections of all the resonance nuclides with resonance interference effect fully 

7th International Conference on Modelling and Simulation in Nuclear Science and Engineering (7ICMSNSE) 

Ottawa Marriott Hotel, Ottawa, Ontario, Canada, October 18-21, 2015 

  

rational approximation. Besides, the accuracy of the method is questionable[12]. The subgroup 

method discretises a broad energy group into several subgroups according to magnitude of the cross 

sections. Based on each subgroup, a subgroup fixed source problem (SFSP) is formulated and 

solved. For the similarity between the SFSP and the multi-group neutron transport equation, mature 

transport solver such as MOC can be applied. Therefore, the application of the subgroup method is 

not limited by geometry. This method is widely applied in neutron transport codes such as HELIOS, 

DeCART and MPACT for its geometrical flexibility and high accuracy. 

The procedure of the subgroup method can be divided into two steps. In the first step, the probability 

tables are generated from the pre-computed RI table; in the second step, the SFSPs are solved to 

obtain the subgroup flux which is used to obtain the effective self-shielded cross sections. The RI 

tables are typically obtained by solving neutron slowing down equation of homogeneous system 

over a range of background cross sections. As the atomic densities of specific problem are unknown, 

to reduce the disk requirement, the homogeneous system mixes a pseudo background nuclide with 

only one kind of resonance nuclide rather than multiple resonance nuclides. However, the real 

problem is not limited to only one resonance nuclide. The resonance peaks of different resonance 

nuclides will interference with each other which is not considered in the RI table and the subsequent 

resonance calculation where assumption is made that there is only one resonance nuclide in the 

system. This discrepancy is the so-called resonance interference effect[13]. 

The resonance interference effect is conventionally treated by background iteration scheme[14]. In 

this scheme, resonance nuclides are treated one by one and when the present resonance nuclide is 

treated, all the others are considered background nuclides which are assumed to be without 

resonance peaks. Several iterations should be taken to guarantee the convergence of the self-shielded 

cross sections. There exist two shortcomings in it. Firstly, the iteration procedure is time-consuming 

especially when there are numerous resonance nuclides. This situation will occur in MOX fuel 

where six kinds of resonance nuclides exists or in depletion problems. Secondly, the results of 

iteration can’t converge to the true value[13]. As with the first issue, a Resonance Nuclide Grouping 

(RNG) scheme was proposed to speed-up the iteration procedure[8,15]. In the RNG scheme, 

numbers of resonance nuclides are grouped into a small number of categories according to their 

resonance features. The background iteration is carried out based on the categories rather than each 

resonance nuclide. Although the calculation efficiency is promoted, it suffers from loss of precision. 

As with the second issue, the Resonance Interference Factor (RIF) scheme was proposed[13,16–18]. 

The RIF is the quotient of two sets of self-shielded cross sections, that is, the self-shielded cross 

sections with a single resonance nuclide without interference and the self-shielded cross sections 

with the mixture of all nuclides where the resonance interference is fully considered. The RIFs are 

calculated by continuous energy or hyper-fine energy group method. Then these factors are applied 

to the self-shielded cross sections without interference obtained by the subgroup method that takes 

single resonance nuclide assumption. The RIFs can be calculated a priori and tabulated[17], or be 

generated on-the-fly[19]. However, the scheme to tabulate RIFs a priori increases the storage of 

nuclear data and the on-the-fly scheme increases the computation time. 

In this paper, to overcome the drawbacks of the conventional schemes, a fast RIF scheme is 

proposed. In this scheme, the dominant resonance nuclide is selected for each resonance group. Then 

the self-shielded cross sections of the dominant resonance nuclide without resonance interference 

are calculated by the subgroup method. The heterogeneous system is converted to a homogeneous 

one by preserving the self-shielded cross section of the dominant resonance nuclide. Finally, the 

self-shielded cross sections of all the resonance nuclides with resonance interference effect fully 



7th International Conference on Modelling and Simulation in Nuclear Science and Engineering (7ICMSNSE) 
Ottawa Marriott Hotel, Ottawa, Ontario, Canada, October 18-21, 2015 

considered are obtained by solving the slowing down equation of the homogeneous system in hyper-
fine energy group. 

The resonance interference treatment schemes as described above have been implemented in 
SUGAR code[8,9] which employs subgroup method. These four schemes are compared and the 
results show that the fast RIF is in good agreement with the Monte Carlo method. Besides, the fast 
RIF scheme shows a promotion in efficiency compared to the conventional RIF scheme. 

2. Theory and Model 

2.1 Conventional Subgroup Method with the Iteration Scheme 

The subgroup method divides a broad energy group into subgroups according to the magnitude of 
the cross sections. Based on the definition of the subgroup, the subgroup cross sections and the 
subgroup probabilities are defined as: 

f AE Crx (E)0(E)dE 

a x,g,i = 

0( E )d E

AEg
Pg,i = 

AEg

Based on each subgroup, the Subgroup Fixed Source Problem (SFSP) is formulated: 

(r,12)+ Er,g,i (r)0g,, (r, n) = Qs,g,i (r,n)+ (r, n) 

(1) 

(2) 

(3) 

Apply Narrow Resonance approximation and ignore the fission source, Eq. (3) can be written as: 

(r,11)+Er,g,, (r)cbg,, (r, = Ep,g (4) 

Where x is reaction channel; g is broad energy group index; i is subgroup index; E pg is potential 

cross sections. The subgroup cross sections along with the subgroup probabilities are defined as the 
probability tables. After the probability tables have been obtained, the SFSPs are solved to obtain the 
subgroup flux which is then used to condense the subgroup cross sections to self-shielded cross 
sections. 

14n. E (r)

(r

Og:ni ()dr,:)dn 

6 x8(r) 
i 

g,i 
(5) 

The probabilities can be obtained via fitting method or moment method. In this paper, the fitting 
method is employed which utilizes the RI table to generate the probability tables. For the similarity 
between the SFSP and the multi-group neutron transport equation, the MOC solver MMOC[20] is 
used to solve the SFSP. 

As the RI tables are obtained based on the assumption that there is only one resonance nuclide in the 
system, the interference between different resonance nuclides are not considered in the probability 
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tables. Therefore, the assumption is made that there is only one resonance nuclide in the system in 
Eq. (4) with all the other resonance nuclides considered to be background nuclides. For each 
resonance nuclide, a SFSP is formulated as: 

(6) 

Where: 

= N kCrt,g,i,k E N kCrt,g,k 
k'#k (7) 

o-r,g,,,k is the total subgroup cross section of nuclide k of group g which is obtained from the pre-

generated probability tables; ar,g,, is the total self-shielded cross sections. As the self-shielded cross 

sections are unknown, an initial guess is used for these cross sections and several steps of iteration 
are applied to guarantee the convergence of the self-shielded cross sections. At each iteration step, 
the SFSP is formulated and the subgroup flux are calculated for each resonance nuclide. Then Eq. 
(5) is applied to update the self-shielded cross sections which are used to obtain the macro total 
subgroup cross section through Eq. (7). The iteration is terminated when the self-shielded cross 
sections are converged. 

However, there are two shortcomings of this iteration scheme. Firstly, the iteration consumes much 
computation time to guarantee convergence especially for problems with many resonance nuclides 
as MOX fuel. Secondly, the converged results are not the true results. 

2.2 The RNG Scheme 

To cope with the first shortcoming, the RNG scheme was proposed which was adopted by 
HELIOS[15] and SUGAR[8]. The basic idea is that the numerous resonance nuclides can be 
grouped into a small number of categories according to the resonance features. To group the 
resonance nuclides into several categories, all the resonance nuclides are sorted by 

RS  k ,g - NkRit,k,g Ri nkg (8) 

where Rig and RI g are the maximum total RI and minimum total RI of group g in the RI table 

of nuclide k, respectively. The quotient of these two values represent the severity of the resonance in 
the microscopic scale and the RS„,g represents the severity in the macroscopic scale. If the number 

of categories is L, The first L -1 resonance nuclides make the first L -1 categories and the other 
make the last category. In the last category, the resonance nuclide with the maximum RS„,g is 

selected as the typical resonance nuclide. As the values of RS„,g are different for each group, the 

category of resonance nuclides varies with energy groups. 

Within a category of resonance nuclides, the atypical nuclides are considered through the typical 
resonance nuclide. The subgroup cross section of the whole category is calculated as: 
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Where 1 is the category index; Ci is the collection of the nuclide indexes belonging to this category; 
Rik, is resonance integral at infinite dilution; N k is density of nuclide k. Therefore, the whole 

category of resonance nuclides can be treated as one pseudo resonance nuclide whose subgroup 
cross sections are calculated by Eq. (9) and subgroup probabilities are inherited from the typical 
resonance nuclide. The density of the pseudo nuclide is: 

N, E N k

keCi (10) 

After the classification, the background iteration scheme is carried out on the pseudo resonance 
nuclides. The estimated subgroup flux at the final step of iteration is used to obtain the self-shielded 
cross sections of the typical resonance nuclide by Eq. (5). The self-shielded cross sections of other 
resonance nuclides of this category are given by: 

Ri k,. 
CrtyPical,x 

Ritypical,co 

In practice, all the resonance nuclides are grouped into two or three categories so that the 
computation time will be reduced compared to the conventional background iteration scheme. 
However, as the subgroup flux used to obtain the self-shielded cross sections of the typical 
resonance nuclide is still based on the iteration, this scheme also suffers from low precision. 
Besides, as the other nuclides are considered through the typical resonance nuclide, the resonance 
interference within a category is not considered at all. 

2.3 Conventional RIF Scheme 

The RIF scheme is promising to address the precision problems of the previous schemes. The basic 
idea of the RIF scheme is to correct the self-shielded cross section obtained with single resonance 
nuclide assumption with a quotient of two sets of self-shielded cross sections. The denominator is 
calculated with single resonance nuclide assumption; the numerator is calculated by fully 
considering the mixture of the resonance nuclides. The correction equation for the self-shielded 
cross sections is: 

all 
• eff 

= CY RIF 
= 

CY 
Crx,k,g 

• x,k,g x,k,g x,k,g x,k,g single 
Crx,k,g (12) 

Different from the background iteration scheme, the cross sections of the background nuclides are 
calculated by: 

Crt,g,k = Crs,g,k = Cr p,k 

Cra,g,k = 

(13) 

(14) 
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nuclide assumption with a quotient of two sets of self-shielded cross sections. The denominator is 

calculated with single resonance nuclide assumption; the numerator is calculated by fully 

considering the mixture of the resonance nuclides. The correction equation for the self-shielded 

cross sections is: 

 

all

, ,eff

, , , , , , , , single

, ,

RIF
x k g

x k g x k g x k g x k g

x k g


  


 

  (12) 

Different from the background iteration scheme, the cross sections of the background nuclides are 

calculated by: 

 , , , , ,t g k s g k p k   
  (13) 

 , , 0a g k 
  (14) 
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To rigorously obtain the RIFs, continuous energy slowing down calculation is needed. Hyper-fine 
energy group method or Monte Carlo method is typically used. As the continuous energy calculation 
is time consuming, much work has been down to improve the efficiency. The first aspect of effort is 
to calculate the RIFs in an equivalent homogeneous system rather than the heterogeneous system in 
consideration. Recent work has proven that the homogeneous model can obtain the RIFs at the same 
level of precision as the heterogeneous model[21]. Although continuous energy calculation of 
homogeneous system is faster than that of heterogeneous system, it still makes a burden. Based on 
the first aspect of effort, the second aspect of effort is to tabulate the RIFs a priori against the 
temperature, dilution cross section and an enrichment-type variable[17]. The tabulation scheme is 
easily applied to cases where there are only two resonance nuclides, however, it may suffers from 
huge amount of disk storage for cases with numerous resonance nuclides and is not practical for 
these cases. 

2.4 The Fast RIF Scheme 

As the conventional RIF still consumes much computation resources, a fast RIF scheme is proposed. 
The calculation flow is as follows: 

(1) For each broad energy group, the dominant resonance nuclide is chosen according to the 
magnitude of RS„,g defined in subsection 2.2. 

(2) The SFSP is solve for the dominant resonance nuclide with all the other resonance nuclides 
considered to be background nuclides whose cross sections are calculated by equation (13). 
Obtain the self-shielded cross sections of the dominant nuclide according to equation (5). 

(3) The heterogeneous system is converted to an equivalent homogeneous one. The component of 
the homogeneous system is all the resonance nuclides in the heterogeneous system and a pseudo 
background nuclide. The densities of the resonance nuclides are the same with that of the 
heterogeneous system and the macro dilution cross section is calculated by: 

E = 0- N — E o- ,N , 0,g 0,g dom p,k k 
k'#dom (15) 

where 6,,,g is the equivalent dilution cross section obtained by interpolation in the RI tables of 

the dominant resonance nuclide; N,,,„n is density of the dominant resonance nuclide. 

(4) The continuous energy slowing down calculation is performed for the homogeneous system and 
the effective self-shielded cross sections of all the resonance nuclides are obtained. 

In a heterogeneous system, if the number of resonant nuclides is K, the number of spatial mesh with 
resonance nuclides is M and the number of the resonance groups is G, then the times of SFSP to be 
solved is G and the times of slowing down calculation is M for the fast RIF scheme. While for the 
conventional RIF scheme, the times for the above two kinds of calculations are Kx G and KxM , 

respectively. Therefore, the speedup ratio of the fast RIF scheme against the conventional RIF 
scheme can be estimated as 

a =
KxGxT +KxMxTs„, 

GxT5 +MxTs,, (16) 
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where T,„ is the time to solve the SFSP and Tsm, is the time to solve the slowing down problem. 

3. Numerical Results 

3.1 Classifying of resonance nuclides 

To elucidate the classifying of resonance nuclides in fast RIF and RNG schemes, the values of RS 
defined by Eq.(8) of different nuclides of Mosteller benchmark[22] MOX pin cell problem at Hot 
Zero Power (HZP) with PuO2 content to be 8% are given in Table 1. As the values of RS vary with 
energy groups, only RS for 80th energy group are given. For this group, 238U is selected as the 
dominant resonance nuclide in the fast RIF scheme as the RS is the largest. In the RNG scheme, if 
the number of categories is three, 238U and 239Pu make the first two categories and 240PU, 

241Pu, 235U, 

242
Pu make the third group with 240Pu to be the typical nuclide. 

Table 1 

RS of different resonance nuclides for 80th energy group 
Nuclide Density(atom/b-cm) RS 

238U

239Pu

240Pu

241Pu

235U

242Pu

2.1061e-2 
8.2425e-4 
5.4950e-4 
2.7475e-4 
1.5275e-4 
1.8317e-4 

3.9747e-1 
2.1075e-3 
1.3404e-3 
2.8449e-4 
2.7327e-4 
2.0350e-4 

3.2 Comparison of resonance interference treatment schemes 

The Mosteller benchmark problems are analysed with different resonance interference schemes. The 
reference self-shielded cross sections are estimated by OpenMC[23]. To eliminate errors from 
procedures other than the resonance calculation, the reference k o is calculated using the reference 

self-shielded cross sections and other cross sections read from the multi-group nuclear library with 
the transport solver of SUGAR. 

The errors of the effective absorption cross sections for MOX pin cell problem at HZP are provided 
in Figure 1 to Figure 3. The PuO2 content in the fuel is 8%. It is shown that the errors of the iteration 
scheme and the RNG scheme are larger than those of the RIF scheme and the fast RIF scheme, 
especially for 240Pu (Figure 1) and 235U (Figure 2) which are the minor resonant nuclides in the fuel 
region and are fiercely interfered by the dominant resonant nuclide 238U (Figure 3). The error of the 
iteration scheme and the RNG scheme is at the same level for the typical resonant nuclides 235U 

(Figure 2) and 238U (Figure 3). For the atypical 240Pu (Figure 1), the error of these two schemes 
differentiates from each other largely. The fast RIF scheme and the conventional RIF scheme are in 
good agreement with the reference. 

The time of the resonance calculation, including the time for the SFSP calculation and the slowing 
down calculation, is compared in Table 2. Compared with the iteration scheme, the RNG scheme 
groups the six resonant nuclides into three categories and saves half of the time. Compared with the 
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conventional RIF scheme, in the fast RIF scheme, only one resonant nuclide is chosen to perform 
SFSP calculation and the slowing down calculation are carried out once for all the nuclides rather 
than for each nuclide. The speed up ratio for the fast RIF scheme given by Eq. (16) is -4.5. In 
general, the iteration scheme and the conventional RIF scheme consumes the longest time and the 
fast RIF scheme consumes the least. 

The errors of k. for MOX pin cell problems are compared in Table 3 and results for UO2 pin cell 
problems are given in Table 4. For most cases, the RIF and the fast RIF gain higher precision than 
the iteration scheme. The precision of the RIF and the fast RIF is at the same level. For UO2 pin cell 
problems, there are only two resonant nuclides so that there is no atypical resonant nuclide in the 
RNG scheme. Therefore, the RNG scheme and the iteration scheme are of no difference for UO2 pin 
cell problems. For the MOX pin cell problems, the errors of the RNG scheme tend to be cancelled 
due to overestimation of absorption of 238U and underestimation of absorption of the nuclides of 
Plutonium. 
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1.0 0.93873 -0.14 -0.11 -0.16 -0.12 

2.0 1.01406 -0.17 -0.15 -0.15 -0.13 

HFP 4.0 1.06983 -0.21 -0.15 -0.16 -0.13 

6.0 1.09933 -0.24 -0.15 -0.16 -0.14 

8.0 1.12331 -0.27 -0.15 -0.16 -0.15 

1.0 0.94671 -0.14 -0.13 -0.13 -0.10 

2.0 1.02307 -0.16 -0.14 -0.11 -0.09 

HZP 4.0 1.07949 -0.20 -0.13 -0.13 -0.11 

6.0 1.10890 -0.21 -0.11 -0.12 -0.11 

8.0 1.13299 -0.25 -0.12 -0.13 -0.13 

Table 4 

Comparison of lc, of different resonance interference schemes for UO2 pin cell problems 
Error/% 

Condition Enrichment/% Reference 
Iteration RNG RIF Fast RIF 

HFP 

0.711 0.66435 -0.11 -0.11 -0.14 -0.10 

1.6 0.95649 -0.13 -0.13 -0.15 -0.14 

2.4 1.09335 -0.14 -0.14 -0.14 -0.11 

3.1 1.17098 -0.16 -0.16 -0.15 -0.13 

3.9 1.23340 -0.17 -0.17 -0.15 -0.13 

4.5 1.26872 -0.18 -0.18 -0.14 -0.12 

5.0 1.29312 -0.19 -0.19 -0.15 -0.13 

HZP 

0.711 0.66902 -0.12 -0.12 -0.11 -0.09 

1.6 0.96307 -0.14 -0.14 -0.12 -0.12 

2.4 1.10091 -0.15 -0.15 -0.12 -0.10 

3.1 1.17880 -0.16 -0.16 -0.12 -0.10 

3.9 1.24161 -0.18 -0.18 -0.13 -0.11 

4.5 1.27701 -0.18 -0.18 -0.11 -0.10 

5.0 1.30144 -0.19 -0.19 -0.11 -0.10 

4. Conclusions 

In this paper, the fast RIF scheme is proposed to treat the resonance interference effect and this new 
scheme is compared with the conventional schemes. The RIF schemes, including the conventional 
RIF scheme and the fast RIF scheme, estimate effective self-shielded cross sections more accurately. 
Compared with the iteration scheme, the RNG scheme saves half of the computation time for the 
MOX pin cell problems. The accuracy of the fast RIF and the conventional RIF scheme is at the 
same level while the fast RIF scheme consumes much less computation resources. The speed up 
ratio of the fast RIF scheme is -4.5 for MOX pin cell problems compared the conventional RIF 
scheme. 
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