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Abstract

A fast Resonance Interference Factor (RIF) scheme is proposed to treat the resonance interference
effects between different resonance nuclides. This scheme utilizes the conventional subgroup
method to evaluate the self-shielded cross sections of the dominant resonance nuclide in the
heterogeneous system and the hyper-fine energy group method to represent the resonance
interference effects in a simplified homogeneous model. In this paper, the newly implemented
scheme is compared to the background iteration scheme, the Resonance Nuclide Group (RNG)
scheme and the conventional RIF scheme. The numerical results show that the errors of the effective
self-shielded cross sections are significantly reduced by the fast RIF scheme compared with the
background iteration scheme and the RNG scheme. Besides, the fast RIF scheme consumes less
computation time than the conventional RIF schemes. The speed-up ratio is ~4.5 for MOX pin cell
problems.
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1. Introduction

Resonance calculation plays an important role in the multi-group approximation based deterministic
method. The purpose of the resonance calculation is to obtain the effective self-shielded cross
sections for specific problems. Within the resonance energy range, there exist lots of resonance
peaks which strongly affect the flux spectrum. Therefore, the scheme of obtaining multi-group cross
sections by condensing continuous cross sections with typical flux spectrum is not suitable for the
resonance energy range[l]. To treat the self-shielding effects, methods such as equivalence
theory[2,3], hyper-fine energy group method[4,5] and subgroup method[6-9] have been developed.
The hyper-fine energy group method discretises the energy variable into very fine meshes based on
which the neutron slowing down equation is solved. This kind of method treats the energy variable
RNGorously and can achieve the same order of accuracy as Monte Carlo method[10]. However, the
hyper-fine energy group consumes much computation resources especially for problem of large
scale. The equivalence theory typically expands fuel-to-fuel collision probabilities into rational
expression in a pin cell model[11]. The equivalence between the pin cell model and a homogeneous
model is made based on consistent form of the resonance integral (RI) of the two models. The
spatial self-shielding effects are considered through Dancoff correction which takes a blackness
assumption of the fuel. The geometrical application of the equivalence theory is limited due to
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rational approximation. Besides, the accuracy of the method is questionable[12]. The subgroup
method discretises a broad energy group into several subgroups according to magnitude of the cross
sections. Based on each subgroup, a subgroup fixed source problem (SFSP) is formulated and
solved. For the similarity between the SFSP and the multi-group neutron transport equation, mature
transport solver such as MOC can be applied. Therefore, the application of the subgroup method is
not limited by geometry. This method is widely applied in neutron transport codes such as HELIOS,
DeCART and MPACT for its geometrical flexibility and high accuracy.

The procedure of the subgroup method can be divided into two steps. In the first step, the probability
tables are generated from the pre-computed RI table; in the second step, the SFSPs are solved to
obtain the subgroup flux which is used to obtain the effective self-shielded cross sections. The RI
tables are typically obtained by solving neutron slowing down equation of homogeneous system
over a range of background cross sections. As the atomic densities of specific problem are unknown,
to reduce the disk requirement, the homogeneous system mixes a pseudo background nuclide with
only one kind of resonance nuclide rather than multiple resonance nuclides. However, the real
problem is not limited to only one resonance nuclide. The resonance peaks of different resonance
nuclides will interference with each other which is not considered in the RI table and the subsequent
resonance calculation where assumption is made that there is only one resonance nuclide in the
system. This discrepancy is the so-called resonance interference effect[13].

The resonance interference effect is conventionally treated by background iteration scheme[14]. In
this scheme, resonance nuclides are treated one by one and when the present resonance nuclide is
treated, all the others are considered background nuclides which are assumed to be without
resonance peaks. Several iterations should be taken to guarantee the convergence of the self-shielded
cross sections. There exist two shortcomings in it. Firstly, the iteration procedure is time-consuming
especially when there are numerous resonance nuclides. This situation will occur in MOX fuel
where six kinds of resonance nuclides exists or in depletion problems. Secondly, the results of
iteration can’t converge to the true value[13]. As with the first issue, a Resonance Nuclide Grouping
(RNG) scheme was proposed to speed-up the iteration procedure[8,15]. In the RNG scheme,
numbers of resonance nuclides are grouped into a small number of categories according to their
resonance features. The background iteration is carried out based on the categories rather than each
resonance nuclide. Although the calculation efficiency is promoted, it suffers from loss of precision.
As with the second issue, the Resonance Interference Factor (RIF) scheme was proposed[13,16-18].
The RIF is the quotient of two sets of self-shielded cross sections, that is, the self-shielded cross
sections with a single resonance nuclide without interference and the self-shielded cross sections
with the mixture of all nuclides where the resonance interference is fully considered. The RIFs are
calculated by continuous energy or hyper-fine energy group method. Then these factors are applied
to the self-shielded cross sections without interference obtained by the subgroup method that takes
single resonance nuclide assumption. The RIFs can be calculated a priori and tabulated[17], or be
generated on-the-fly[19]. However, the scheme to tabulate RIFs a priori increases the storage of
nuclear data and the on-the-fly scheme increases the computation time.

In this paper, to overcome the drawbacks of the conventional schemes, a fast RIF scheme is
proposed. In this scheme, the dominant resonance nuclide is selected for each resonance group. Then
the self-shielded cross sections of the dominant resonance nuclide without resonance interference
are calculated by the subgroup method. The heterogeneous system is converted to a homogeneous
one by preserving the self-shielded cross section of the dominant resonance nuclide. Finally, the
self-shielded cross sections of all the resonance nuclides with resonance interference effect fully
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considered are obtained by solving the slowing down equation of the homogeneous system in hyper-
fine energy group.

The resonance interference treatment schemes as described above have been implemented in
SUGAR code[8,9] which employs subgroup method. These four schemes are compared and the
results show that the fast RIF is in good agreement with the Monte Carlo method. Besides, the fast
RIF scheme shows a promotion in efficiency compared to the conventional RIF scheme.

2. Theory and Model

2.1 Conventional Subgroup Method with the Iteration Scheme

The subgroup method divides a broad energy group into subgroups according to the magnitude of
the cross sections. Based on the definition of the subgroup, the subgroup cross sections and the
subgroup probabilities are defined as:

J‘AEQJ Ox (E)¢(E)dE
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Based on each subgroup, the Subgroup Fixed Source Problem (SFSP) is formulated:
Vg, (11 2) 2,5, (1) () = Q,, (1, 2)+Q, 4, (1) )
Apply Narrow Resonance approximation and ignore the fission source, Eq. (3) can be written as:
Qv (rQ)+Z,,,(rg, (rnQ)=2,, )

Where x is reaction channel; g is broad energy group index; i is subgroup index; = . is potential

cross sections. The subgroup cross sections along with the subgroup probabilities are defined as the
probability tables. After the probability tables have been obtained, the SFSPs are solved to obtain the
subgroup flux which is then used to condense the subgroup cross sections to self-shielded cross
sections.
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The probabilities can be obtained via fitting method or moment method. In this paper, the fitting
method is employed which utilizes the RI table to generate the probability tables. For the similarity
between the SFSP and the multi-group neutron transport equation, the MOC solver MMOCJ[20] is
used to solve the SFSP.

As the RI tables are obtained based on the assumption that there is only one resonance nuclide in the
system, the interference between different resonance nuclides are not considered in the probability
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tables. Therefore, the assumption is made that there is only one resonance nuclide in the system in
Eq. (4) with all the other resonance nuclides considered to be background nuclides. For each
resonance nuclide, a SFSP is formulated as:

OV (R Q) +Z 54 (1)1 (1 Q) =2 (6)

Where:

2 ik =Noo i+ No
t,g,i.k k™'t,9,i,k k% k™~t,g.k (7)
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i« IS the total subgroup cross section of nuclide k of group g which is obtained from the pre-
generated probability tables; o, is the total self-shielded cross sections. As the self-shielded cross

t,9.k
sections are unknown, an initial guess is used for these cross sections and several steps of iteration
are applied to guarantee the convergence of the self-shielded cross sections. At each iteration step,
the SFSP is formulated and the subgroup flux are calculated for each resonance nuclide. Then Eg.
(5) is applied to update the self-shielded cross sections which are used to obtain the macro total
subgroup cross section through Eq. (7). The iteration is terminated when the self-shielded cross
sections are converged.

However, there are two shortcomings of this iteration scheme. Firstly, the iteration consumes much
computation time to guarantee convergence especially for problems with many resonance nuclides
as MOX fuel. Secondly, the converged results are not the true results.

2.2 The RNG Scheme

To cope with the first shortcoming, the RNG scheme was proposed which was adopted by
HELIOS[15] and SUGARI[8]. The basic idea is that the numerous resonance nuclides can be
grouped into a small number of categories according to the resonance features. To group the
resonance nuclides into several categories, all the resonance nuclides are sorted by

RS, , = NRI™ /RIT" ®)

where RI% and RIf, are the maximum total Rl and minimum total RI of group g in the Rl table

of nuclide k, respectively. The quotient of these two values represent the severity of the resonance in
the microscopic scale and the Rs,, represents the severity in the macroscopic scale. If the number

of categories is L, The first L-1 resonance nuclides make the first L-1 categories and the other
make the last category. In the last category, the resonance nuclide with the maximum RS, is

selected as the typical resonance nuclide. As the values of Rs, are different for each group, the
category of resonance nuclides varies with energy groups.

Within a category of resonance nuclides, the atypical nuclides are considered through the typical
resonance nuclide. The subgroup cross section of the whole category is calculated as:
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Where | is the category index; C; is the collection of the nuclide indexes belonging to this category;
RI, . is resonance integral at infinite dilution; N, is density of nuclide k. Therefore, the whole

category of resonance nuclides can be treated as one pseudo resonance nuclide whose subgroup
cross sections are calculated by Eg. (9) and subgroup probabilities are inherited from the typical
resonance nuclide. The density of the pseudo nuclide is:

N, =D N,
keC, (10)

After the classification, the background iteration scheme is carried out on the pseudo resonance
nuclides. The estimated subgroup flux at the final step of iteration is used to obtain the self-shielded
cross sections of the typical resonance nuclide by Eq. (5). The self-shielded cross sections of other
resonance nuclides of this category are given by:

RI,

O, =—— O,
X,k typical, x
RI P

typical, o0 (ll)

In practice, all the resonance nuclides are grouped into two or three categories so that the
computation time will be reduced compared to the conventional background iteration scheme.
However, as the subgroup flux used to obtain the self-shielded cross sections of the typical
resonance nuclide is still based on the iteration, this scheme also suffers from low precision.
Besides, as the other nuclides are considered through the typical resonance nuclide, the resonance
interference within a category is not considered at all.

2.3 Conventional RIF Scheme

The RIF scheme is promising to address the precision problems of the previous schemes. The basic
idea of the RIF scheme is to correct the self-shielded cross section obtained with single resonance
nuclide assumption with a quotient of two sets of self-shielded cross sections. The denominator is
calculated with single resonance nuclide assumption; the numerator is calculated by fully
considering the mixture of the resonance nuclides. The correction equation for the self-shielded
Cross sections is:

all
Oxk.9

9 single

(12)

Different from the background iteration scheme, the cross sections of the background nuclides are
calculated by:

eff

ax,k,g = O-x,k,g RIFx,k,g = o-x,k

Otgk = Osgk = Opk (13)

Cagk =0

(14)
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To rigorously obtain the RIFs, continuous energy slowing down calculation is needed. Hyper-fine
energy group method or Monte Carlo method is typically used. As the continuous energy calculation
IS time consuming, much work has been down to improve the efficiency. The first aspect of effort is
to calculate the RIFs in an equivalent homogeneous system rather than the heterogeneous system in
consideration. Recent work has proven that the homogeneous model can obtain the RIFs at the same
level of precision as the heterogeneous model[21]. Although continuous energy calculation of
homogeneous system is faster than that of heterogeneous system, it still makes a burden. Based on
the first aspect of effort, the second aspect of effort is to tabulate the RIFs a priori against the
temperature, dilution cross section and an enrichment-type variable[17]. The tabulation scheme is
easily applied to cases where there are only two resonance nuclides, however, it may suffers from
huge amount of disk storage for cases with numerous resonance nuclides and is not practical for
these cases.

2.4 The Fast RIF Scheme

As the conventional RIF still consumes much computation resources, a fast RIF scheme is proposed.
The calculation flow is as follows:

(1) For each broad energy group, the dominant resonance nuclide is chosen according to the
magnitude of Rs,, defined in subsection 2.2.

(2) The SFSP is solve for the dominant resonance nuclide with all the other resonance nuclides
considered to be background nuclides whose cross sections are calculated by equation (13).
Obtain the self-shielded cross sections of the dominant nuclide according to equation (5).

(3) The heterogeneous system is converted to an equivalent homogeneous one. The component of
the homogeneous system is all the resonance nuclides in the heterogeneous system and a pseudo
background nuclide. The densities of the resonance nuclides are the same with that of the
heterogeneous system and the macro dilution cross section is calculated by:

Z0,g =04 Ndom _k; Gp,k'Nk' (15)
=dom

where o, is the equivalent dilution cross section obtained by interpolation in the Rl tables of
the dominant resonance nuclide; N, is density of the dominant resonance nuclide.

dom
(4) The continuous energy slowing down calculation is performed for the homogeneous system and
the effective self-shielded cross sections of all the resonance nuclides are obtained.

In a heterogeneous system, if the number of resonant nuclides is K, the number of spatial mesh with
resonance nuclides is M and the number of the resonance groups is G, then the times of SFSP to be
solved is G and the times of slowing down calculation is M for the fast RIF scheme. While for the
conventional RIF scheme, the times for the above two kinds of calculations are KxG and KxM,
respectively. Therefore, the speedup ratio of the fast RIF scheme against the conventional RIF
scheme can be estimated as

A KxGxTggp + KxM xTgy,
G xTgegp + M xTgpp (16)
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where T, Isthe time to solve the SFSP and T, is the time to solve the slowing down problem.

3. Numerical Results

3.1 Classifying of resonance nuclides

To elucidate the classifying of resonance nuclides in fast RIF and RNG schemes, the values of RS
defined by Eq.(8) of different nuclides of Mosteller benchmark[22] MOX pin cell problem at Hot
Zero Power (HZP) with PuO2 content to be 8% are given in Table 1. As the values of RS vary with
energy groups, only RS for 80" energy group are given. For this group, 22U is selected as the
dominant resonance nuclide in the fast RIF scheme as the RS is the largest. In the RNG scheme, if
the number of categories is three, 2*®U and “**Pu make the first two categories and %*°Pu, **'Pu, ?*°U,
42py make the third group with 2*°Pu to be the typical nuclide.

Table 1
RS of different resonance nuclides for 80" energy group
Nuclide Density(atom/b-cm) RS
=38y 2.1061e-2 3.9747e-1
2$9py 8.2425¢-4 2.1075e-3
249py 5.4950e-4 1.3404e-3
241py 2.7475e-4 2.8449¢-4
2%y 1.5275e-4 2.7327e-4
242py 1.8317e-4 2.0350e-4

3.2 Comparison of resonance interference treatment schemes

The Mosteller benchmark problems are analysed with different resonance interference schemes. The
reference self-shielded cross sections are estimated by OpenMC[23]. To eliminate errors from
procedures other than the resonance calculation, the reference k_ is calculated using the reference

self-shielded cross sections and other cross sections read from the multi-group nuclear library with
the transport solver of SUGAR.

The errors of the effective absorption cross sections for MOX pin cell problem at HZP are provided
in Figure 1 to Figure 3. The PuO, content in the fuel is 8%. It is shown that the errors of the iteration
scheme and the RNG scheme are larger than those of the RIF scheme and the fast RIF scheme,
especially for *°Pu (Figure 1) and 2**U (Figure 2) which are the minor resonant nuclides in the fuel
region and are fiercely interfered by the dominant resonant nuclide 238U (Figure 3). The error of the
iteration scheme and the RNG scheme is at the same level for the typical resonant nuclides 2°U
(Figure 2) and #8U (Figure 3). For the atypical **°Pu (Figure 1), the error of these two schemes
differentiates from each other largely. The fast RIF scheme and the conventional RIF scheme are in
good agreement with the reference.

The time of the resonance calculation, including the time for the SFSP calculation and the slowing
down calculation, is compared in Table 2. Compared with the iteration scheme, the RNG scheme
groups the six resonant nuclides into three categories and saves half of the time. Compared with the
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conventional RIF scheme, in the fast RIF scheme, only one resonant nuclide is chosen to perform
SFSP calculation and the slowing down calculation are carried out once for all the nuclides rather
than for each nuclide. The speed up ratio for the fast RIF scheme given by Eq. (16) is ~4.5. In
general, the iteration scheme and the conventional RIF scheme consumes the longest time and the
fast RIF scheme consumes the least.

The errors of k, for MOX pin cell problems are compared in Table 3 and results for UO, pin cell

problems are given in Table 4. For most cases, the RIF and the fast RIF gain higher precision than
the iteration scheme. The precision of the RIF and the fast RIF is at the same level. For UO, pin cell
problems, there are only two resonant nuclides so that there is no atypical resonant nuclide in the
RNG scheme. Therefore, the RNG scheme and the iteration scheme are of no difference for UO; pin
cell problems. For the MOX pin cell problems, the errors of the RNG scheme tend to be cancelled
due to overestimation of absorption of “®*U and underestimation of absorption of the nuclides of
Plutonium.
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Table 2

Comparison of time for resonance calculation

interference schemes for

238U

Time for
Scheme SFSP/n SDP/n resonance
calculation/s
Iteration 564 0 108.03
RNG 282 0 55.26
RIF 282 18 106.72
Fast RIF 47 3 23.69
Table 3
Comparison of k, of different resonance interference schemes for MOX pin cell problems
PuO, Error/%
Condition content Reference
Iteration RNG RIF Fast RIF

(Wt.%)

Relative error/%
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10 0.93873 -0.14 -0.11 -0.16 -0.12
2.0 1.01406 -0.17 -0.15 -0.15 -0.13
HFP 4.0 1.06983 -0.21 -0.15 -0.16 -0.13
6.0 1.09933 -0.24 -0.15 -0.16 -0.14
8.0 1.12331 -0.27 -0.15 -0.16 -0.15
10 0.94671 -0.14 -0.13 -0.13 -0.10
2.0 1.02307 -0.16 -0.14 -0.11 -0.09
HzP 4.0 1.07949 -0.20 -0.13 -0.13 -0.11
6.0 1.10890 -0.21 -0.11 -0.12 -0.11
8.0 1.13299 -0.25 -0.12 -0.13 -0.13
Table 4
Comparison of k, of different resonance interference schemes for UO, pin cell problems
Error/%
Condition Enrichment/% Reference
Iteration RNG RIF Fast RIF
0711 0.66435 -0.11 -0.11 -0.14 -0.10
16 0.95649 -0.13 -0.13 -0.15 -0.14
24 1.09335 -0.14 -0.14 -0.14 -0.11
HFP 3.1 1.17098 -0.16 -0.16 -0.15 -0.13
3.9 1.23340 -0.17 -0.17 -0.15 -0.13
45 1.26872 -0.18 -0.18 -0.14 -0.12
5.0 1.29312 -0.19 -0.19 -0.15 -0.13
0711 0.66902 -0.12 -0.12 -0.11 -0.09
16 0.96307 -0.14 -0.14 -0.12 -0.12
24 110091 -0.15 -0.15 -0.12 -0.10
HzP 3.1 1.17880 -0.16 -0.16 -0.12 -0.10
3.9 1.24161 -0.18 -0.18 -0.13 -0.11
4.5 1.27701 -0.18 -0.18 -0.11 -0.10
5.0 130144 -0.19 -0.19 -0.11 -0.10
4. Conclusions

In this paper, the fast RIF scheme is proposed to treat the resonance interference effect and this new
scheme is compared with the conventional schemes. The RIF schemes, including the conventional
RIF scheme and the fast RIF scheme, estimate effective self-shielded cross sections more accurately.
Compared with the iteration scheme, the RNG scheme saves half of the computation time for the
MOX pin cell problems. The accuracy of the fast RIF and the conventional RIF scheme is at the
same level while the fast RIF scheme consumes much less computation resources. The speed up
ratio of the fast RIF scheme is ~4.5 for MOX pin cell problems compared the conventional RIF
scheme.
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