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Abstract 

Lead or lead-alloy cooled fast reactor with good fuel proliferation and nuclear waste 
transmutation capability, as well as high security and economy, is a great potential for the 
development of fourth-generation nuclear energy systems. Small natural circulation reactor is 
an important technical route lead cooled fast reactors industrial applications, which has been 
chosen as one of the three reference technical for solution lead or lead-alloy cooled fast 
reactors by GIF lead-cooled fast reactor steering committee. The School of Nuclear Science 
and Technology of USTC proposed a small 100MWth natural circulation lead cooled fast 
reactor concept called SNCLFR-100 based realistic technology. This article describes the 
SNCLFR-100 reactor of the overall technical program, core physics calculation and analysis. 
The results show that: SNCLFR-100 with good neutronic and safety performance and relevant 
design parameters meet the security requirements with feasibility. 

Keywords: LFR, natural circulation, lead-alloy cooled, SNCLFR-100 

1. Introduction 

Small Modular Reactor (SMR) are ideal for providing the electricity to countries with 
small, limited, or distributed electricity grid system. In recent years, due to their attractive 
advantages such as reduced capital costs and enhanced safety, small modular reactor has 
attracted particular attentions and been attracting considerable attention around the world such 
as been developed in the USA, Russia, China, Japan, Korea, France, and other countries. 
Several small module natural circulation lead or lead-alloy cooled fast reactors (LFRs) have 
been developed in the past decades due to the good natural circulation performance of lead or 
lead-alloy. In 1990s, Rubbia [1] proposed using a natural circulation LFR to serve as a sub-
critical reactor for an Accelerator Driven System (ADS) in European Organization for Nuclear 
Research (CERN). In the early of 2000s, MacDonald and Todreas [2] carried out some 
research works on the natural circulation Lead—Bismuth Eutectic (LBE) cooled reactor for 
actinide burning and low cost electricity producing in Massachusetts Institute of Technology 
(MIT) and Idaho National Engineering and Environmental Laboratory (INEEL). In the late of 
2000s, Sienicki [3,4] developed several small modular natural circulation LFR concepts in 
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Argonne National Laboratory (ANL), including SSTAR [3,5] and SUPERSTAR [4]. In 2011, 
Seoul National University designed a 100MWt/35MWe lead—bismuth-cooled small modular 
reactor called PASCAR[6] that is targeted to be the first generation of small modular reactor 
system as a long-life robust power unit[7,8]. At the same time a small natural circulation LFR 
has been developed to serve as an ADS research platform under the supported of the Chinese 
Academy of Sciences (CAS) Strategic Priority Research Program named "Advanced Nuclear 
Fission Energy-ADS Transmutation System" [9-11]. 

Small natural circulation of lead-cooled fast reactor using a full natural circulation cooling 
circuit, during operation does not require an active circuit pumps and other mechanical 
equipment, and the reactors with good passive safety features. In addition, a small natural 
circulation lead cooled fast reactors can avoid a series of manufacturing and running problem 
come from lead-based materials pump, which can effectively reduce the lead cooled fast 
reactor material performance requirements, reduce the difficulty of engineering construction, 
and improve reactor project feasibility. But at the same time, compared with the more mature 
forced circulation cooling technology, all-natural circulation cooling small natural circulation 
lead cooled fast reactors need to face a new series of technical challenges, such as the natural 
circulation cooling is closely related to thermal-hydraulic phenomena, safety characteristics 
and so on. 

SNCLFR-100 is a Small, 100MWt, Natural Circulation, Lead or Lead-alloy cooled Fast 
Reactor (LFR) which is one of the potential candidates for LFR development. In this paper a 
preliminary conceptual neutronics design study for the SNCLFR-100 is presented. The core 
configuration with level of fuel rods has been developed meeting the foremost requirements of 
limiting the reactivity swing over the core lifetime and flattening the radial power profiles, and 
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Fig 1 Illustration of SNCLFR-100 
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incorporating fissile self-sufficiency for efficient utilization of uranium resources. Reactivity 
coefficients and kinetic parameters have been evaluated for the reference beginning-of-life, 
middle-of-life and end-of-life core configurations. 

2. SNCLFR-100 technical solutions 

2.1 Overall technical parameters 

SNCLFR-100 is designed based on the realistic technical small natural circulation lead 
cooled fast reactor, adopting an integrated arrangement, modular design and other advanced 
design concepts, with a simple system, flexible using, good economy, and high security 
features. The overall structure of SNCLFR-100 reactor is shown in Figure 1 and its overall 
technical parameters is shown in Table 1. 

Table 1 Design parameter of reference rector for SNCLFR-100 

Design factor Design value 

Core thermal power 100 MWth 

Metallic fuel composition MOX (20 wt % ) 

Core lifetime 60 years 
Refueling cycle 5 years 

Core average burn-up 56 MWd kg-1 (HM) 
Maximum reactivity swing 378 pcm 

Size of the reactor 'b6 mx10 m 

Number of main heat exchanger device 
4x Shell and tube heat 

exchangers 
1st circuit coolant Pb (1) 

1st circuit operating temperature 400-480 °C 
1st circuit operating pressure 0.1 MPa 

Drive natural circulation 
Loop height 4 m 

1st circuit coolant flow 8528 kg/s 
2nd circuit coolant H2O 

2nd circuit operating temperature 330-430 °C 
2nd circuit operating pressure 18 MPa 

2.2 Core design 
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The SNCLFR-100 reactor core considers the needs of whole natural circulation cooling by 
using a shorter axial height, a larger pitch to diameter ratio (P/D) and other methods to reduce 
the flow resistance of the core. The core is composed of 204 fuel assemblies, 36control rod 
assembly (24CR+12SR) , 48 reflective layer assembly and 84 shield layer assembly. There 
are three fuel zones district in the fuel layer assembly. The core is flat structure with lm 
height and 2.8m equivalent diameter of the active area. As is shown, the core arrangement of 
SNCLFR-100 is shown in Figure 2 core design parameters in Table 2. 
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Fig 2 SNCLFR-100 core layout with location of primary (black) and secondary (green) 
FAR systems, 

SNCLFR-100 fuel assemblies using 9 x 9 quadrangle arrangement for fixed 6-layer lattice 
fixed and the total length is 3.4 m, as shown in fig 3. Control rod assembly arrangement using 
9 x 9 quadrangle, but in the center of 3 x 3 region is replaced with B4C, as shown in fig 4. In 
order to overcome the problems of buoyancy caused by liquid lead, when do the mechanical 
design of the fuel assemblies and control rod assemblies need to consider the weight program, 
such as using heavy metals or other tungsten counterweight. 
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Table 2 SNCLFR-100 core design information 

Design factor Design value 
Number of fuel assemblies 204 

Number of control assemblies 24 
Number of 2nd shutdown 

assemblies 
12 

Number of fuel rods 19116 
Number of reflection assemblies 48 
Number of shielding assemblies 84 

total height of the core 3.4 m 
Total core radius 1.73 m 

Active core height 1 m 
Active core radius 1.4 m 

fuel 
1st PuO216%+U0284% 
2nd PuO219%+U0281% 
3rd PuO224%+U0276% 

Fuel pellet diameter 9.8 mm 
Fuel rod outer diameter 12.2 mm 

Pin pitch 17.4 mm 
Pitch to diameter ratio (P/D) 1.43 
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Fig 3 Structure diagram of fuel assembly for SNCLFR-100 core 

The fuel comes from the reprocessing of PWR spent UO2 fuel burnt up to 45GWdit, with a 
4.5% initial enrichment in 235U and 15 years of cooling period has been performed in [12,13]. 
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The nature isotopic composition for Pb is reported in [14]. The lead density depends on the 
temperature as [15]: 

p [kg/m3]=11367-1.1944xT[K] 

For 400 °C and 480 'C, this corresponds to 10.56 g/cm3 and 10.47 g/cm3 respectively. 
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Fig 4 Structure diagram of control assembly for SNCLFR-100 core 

3. Neutronic calculate and analysis 

3.1 Tools and modeling 

Neutronics analyses have been performed by means of MCNP[16] coupled with JEFF-3.2 
[17] data library and the code for automatic generating of multi-temperature continuous-
energy neutron cross section libraries[18]. 

3.2 Control system 

Table 3 Control system worth. 

Absorber set 
Reactivity worth ( $ ) 

Bol Mol Eol 

Primary 12.56 12.49 12.68 

Secondary 8.07 8.45 8.46 
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Control assemblies have three principal functions: (1) startup and shutdown capability; 
(2) reactivity compensation during a cycle; and (3) rapid shutdown for abnormal conditions. 
Neutron absorption material is natural boron in the form of B4C. For a proper assessment of 
both control systems efficacy, a Monte Carlo method has been applied to the calculated FARs 
reactivity worth. The result is shown in table 3 and fig 5. The primary and secondary systems 
have shown a control worth of 12.56$ and 8.07$ respectively that is equivalent to 4.53%Ak/k 
and 2.91%Ak/k at BoL. Hence, each system alone can provide a sufficient shutdown margin. 
Both systems can be inserted together to give a total worth of 20.63$ or 7.44%Ak/k. 

5000 
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1 
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BoL 

4.— MoL 

A— EoL 

20 40 60 80 100 

CR insertion share (cm) 

Fig 5 Reactivity worth of the primary control system at BoL, MoL and EoL 

3.3 Key core performances 

The key core performances, reactivity coefficients, and kinetic parameters of SNCLFR-100 
are shown as follows: 

Table 4 SNCLFR-100 key core performances. 

Parameter BoL MoL EoL Units 

keff 0.99989 1.00004 1.00006 - 

Reactivity,p -11 4 6 pcm 

Primary FAR set insertion share 40.7 20.2 0 cm 
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3.3    Key core performances 

The key core performances, reactivity coefficients, and kinetic parameters of SNCLFR-100 

are shown as follows: 

Table 4 SNCLFR-100 key core performances. 

Parameter BoL MoL EoL Units 

keff 0.99989 1.00004 1.00006 - 

Reactivity,ρ -11 4 6 pcm 

Primary FAR set insertion share 40.7 20.2 0 cm 
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Average power density 16.24 16.24 16.24 W cm-3

Average linear power 52.3 52.3 52.3 W cm-1

Average neutron flux 2.830E14 2.863E14 2.917E14 cm-2 s-1

Table 5 Reactivity coefficients and kinetic parameters 

Parameter BoL MoL EoL Units 

Coolant Doppler coefficient* -0.19 -0.57 -0.19 pcm K-1

Fuel Doppler coefficient -0.49 -0.64 -1.13 pcm K-1

Axial expansion coefficient -0.17 -0.13 -0.17 - 

Radial expansion coefficient -0.42 -0.51 -0.55 - 

Delayed neutron fraction, 0 368 362 353 pcm 

Prompt neutron lifetime, A 552.06 552.42 542.08 ns 

*Coolant temperature coefficient with the density change. 

From the results of Doppler coefficient, lead density coefficient show that SNCLFR-100 
has negative temperature reactivity effect which was conductive to the safety operation of the 
reactor. Negative expansion coefficient make the core remain steady state. 

The thermal power density distribution of SNCLFR-100 core is shown in fig 6 and table 6. 
As it is shown, the peak position of the power density distribution is similar the same about 
the peak position of the neutron flux. As a result of the different fuels zones filled in different 
materials, the core produce different peak power values at the flux peak position, where the 
maximum axial power peak factor is 1.49 and the maximum radial power peak factor is 1.32. 

Table 6 Peak power factor distribution of the rods for the hottest assembly (No.43) 

0.99427 1.02642 1.01275 1.03199 1.03465 1.02968 1.05565 1.0392 1.05286 
1.01207 1.0248 1.02199 1.02643 1.02901 1.04348 1.02974 1.05078 1.05561 
0.98249 1.00491 1.01429 1.02333 1.02961 1.03432 1.02792 1.02151 1.01979 
1.00143 1.01308 1.00756 1.02707 1.01186 1.02319 1.02009 1.03802 1.02944 
0.99197 0.98832 0.99953 0.99953 1.02119 1.00708 1.01322 0.99479 1.01937 
0.98925 0.99497 0.99493 0.9872 0.98375 0.99997 0.99927 0.99004 1.01062 
0.95101 0.95213 0.99309 0.97507 0.98794 0.96489 1.00203 0.99967 0.98688 
0.93725 0.97256 0.96593 0.96229 0.96871 0.99553 0.98479 0.98595 0.98899 
0.92004 0.92513 0.94174 0.95512 0.95317 0.95931 0.96201 0.97027 0.95221 
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As it is shown, the peak position of the power density distribution is similar the same about 

the peak position of the neutron flux. As a result of the different fuels zones filled in different 

materials, the core produce different peak power values at the flux peak position, where the 

maximum axial power peak factor is 1.49 and the maximum radial power peak factor is 1.32. 

Table 6 Peak power factor distribution of the rods for the hottest assembly（No.43） 

0.99427 1.02642 1.01275 1.03199 1.03465 1.02968 1.05565 1.0392 1.05286

1.01207 1.0248 1.02199 1.02643 1.02901 1.04348 1.02974 1.05078 1.05561

0.98249 1.00491 1.01429 1.02333 1.02961 1.03432 1.02792 1.02151 1.01979

1.00143 1.01308 1.00756 1.02707 1.01186 1.02319 1.02009 1.03802 1.02944

0.99197 0.98832 0.99953 0.99953 1.02119 1.00708 1.01322 0.99479 1.01937

0.98925 0.99497 0.99493 0.9872 0.98375 0.99997 0.99927 0.99004 1.01062

0.95101 0.95213 0.99309 0.97507 0.98794 0.96489 1.00203 0.99967 0.98688

0.93725 0.97256 0.96593 0.96229 0.96871 0.99553 0.98479 0.98595 0.98899

0.92004 0.92513 0.94174 0.95512 0.95317 0.95931 0.96201 0.97027 0.95221  
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Fig 6 Power distribution of the fuel assembly along the radial (BOL) 

4. Conclusion 

Based on the viable technology, safety reliability and technology continuity requirements, 
the preliminary conceptual design of SNCLFR-100 has been developed which is related to the 
overall technical program design and core design. By computational analysis, the main 
properties of neutronics for the SNCLFR-100 core was complete& The results showed that 
SNCLFR-100 has good neutronics, relevant design parameters to meet safety design 
requirements. In the future the core will be optimized_ 
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