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ABSTRACT - In this paper, a finite element based dynamic model is presented for bending, 
axial, and torsional vibrations of an outer CANDU fuel element subjected to multiple unilateral 
frictional contact (MUFC) constraints. The Bozzak-Newmark relaxation-integration scheme is 
used to discretize the equations of motion in the time domain. At a time step, equations of state 
of the fuel element with MUFC constraints reduce to a linear complementarity problem (LCP). 
Results are compared with those available in the literature. Good agreement is achieved. The 2D 
sliding and stiction motion of a fuel element at points of contact is obtained for harmonic 
excitations. 

Introduction 

In a CANDU fuel channel, the heavy water coolant flows through a string of fuel bundles and 
brings out the heat generated by fuel elements for steam production. To understand the complex 
behaviour of flow-induced vibration of the fuel string, accurate and reliable models must be 
developed to capture the elasto-rigid motions of fuel elements subjected to non-smooth unilateral 
frictional contact constraints at multiple locations. The friction between the outer fuel element's 
bearing pads and the pressure tube is two-dimensional. An individual fuel element moves with 
the fuel bundle in a rigid body manner in the closely packed spaces of a fuel channel, and 
deforms as a slender structure in the form of bending, axial and torsional deformations. 

Yetisir and Fisher [1] investigated the effect of turbulence excitation on fretting wear between 
fuel element bearing pads and pressure tube. Hassan and Rogers [2] studied vibration of a fuel 
element by applying several frictional models to investigate the effect of tube-support clearance 
and preload. Xu et al. [3] investigated bending vibration of a single fuel element subjected to 
frictionless contact by means of beam fmite element method and the Wilson-0 method. Recently 
Yu and Fadaee [4] presented a finite element model for bending, axial, and torsional free 
vibrations of a straight beam using three-node higher-order mixed fmite element. As of today, 
the effects of 2D friction on fuel element vibration are not investigated. 

Considering the complex geometry of a fuel element and the non-smooth constraints, a valid 
vibration model of a fuel element should be based on the finite element method. Practically fuel 
elements experience small rigid displacements and small elastic displacements due to the limited 
available spaces inside a fuel channel. This allows for the use of linear theories (linear 
relationships between stresses and strains, and linear relationships between strains and 
displacement gradients), and more importantly consideration of rigid body displacements within 
the framework of the structural finite elements. This makes it possible to develop a feasible fuel 
string vibration model for simulating fuel string fretting and fretting induced component wear in 
a fuel channel. 

1 

	
  
	
  
12th	
  International	
  Conference	
  on	
  CANDU	
  Fuel	
  
Holiday-­‐Inn	
  Waterfront	
  Hotel	
  	
  
Kingston,	
  Ontario,	
  Canada,	
  2013	
  September	
  15-­‐18	
  

	
   1	
  

Modeling coupled bending, axial, and torsional vibrations of a CANDU fuel rod subjected 
to multiple frictional contact constraints 

 
M. Fadaee and S. D. Yu  

Department of Mechanical and Industrial Engineering 
Ryerson University, Toronto, Ontario, Canada M5B 2K3   

 
ABSTRACT - In this paper, a finite element based dynamic model is presented for bending, 
axial, and torsional vibrations of an outer CANDU fuel element subjected to multiple unilateral 
frictional contact (MUFC) constraints. The Bozzak-Newmark relaxation-integration scheme is 
used to discretize the equations of motion in the time domain. At a time step, equations of state 
of the fuel element with MUFC constraints reduce to a linear complementarity problem (LCP). 
Results are compared with those available in the literature. Good agreement is achieved.  The 2D 
sliding and stiction motion of a fuel element at points of contact is obtained for harmonic 
excitations. 
 

Introduction 
 
In a CANDU fuel channel, the heavy water coolant flows through a string of fuel bundles and 
brings out the heat generated by fuel elements for steam production. To understand the complex 
behaviour of flow-induced vibration of the fuel string, accurate and reliable models must be 
developed to capture the elasto-rigid motions of fuel elements subjected to non-smooth unilateral 
frictional contact constraints at multiple locations. The friction between the outer fuel element’s 
bearing pads and the pressure tube is two-dimensional. An individual fuel element moves with 
the fuel bundle in a rigid body manner in the closely packed spaces of a fuel channel, and 
deforms as a slender structure in the form of bending, axial and torsional deformations.  
 
Yetisir and Fisher [1] investigated the effect of turbulence excitation on fretting wear between 
fuel element bearing pads and pressure tube. Hassan and Rogers [2] studied vibration of a fuel 
element by applying several frictional models to investigate the effect of tube-support clearance 
and preload.  Xu et al. [3] investigated bending vibration of a single fuel element subjected to 
frictionless contact by means of beam finite element method and the Wilson-𝜃 method. Recently 
Yu and Fadaee [4] presented a finite element model for bending, axial, and torsional free 
vibrations of a straight beam using three-node higher-order mixed finite element. As of today, 
the effects of 2D friction on fuel element vibration are not investigated.     
 
Considering the complex geometry of a fuel element and the non-smooth constraints, a valid 
vibration model of a fuel element should be based on the finite element method. Practically fuel 
elements experience small rigid displacements and small elastic displacements due to the limited 
available spaces inside a fuel channel. This allows for the use of linear theories (linear 
relationships between stresses and strains, and linear relationships between strains and 
displacement gradients), and more importantly consideration of rigid body displacements within 
the framework of the structural finite elements. This makes it possible to develop a feasible fuel 
string vibration model for simulating fuel string fretting and fretting induced component wear in 
a fuel channel.  
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In this paper, the discrete equations of motion of an unconstrained CANDU fuel element are 
derived by means of the Lagrange equations. An implicit incremental displacement Bozzak-
Newmark scheme is then employed to seek a numerical solution in the time domain for 
predicting harmonically excited bending, axial and torsional vibrations of an outer fuel element 
subjected to 2D friction and unilateral contact constraints with the pressure tube. To be able to 
effectively handle the two types of the non-smooth constraints - 2D friction and unilateral 
contact, the equations of system states are formulated in terms of the incremental displacements. 
In handling the multiple unilateral frictional constraints at a time step, the sub-structuring method 
is used to eliminate all interior DOF's [5]. The coupled gap equations in the directions of all 
probable contact points and the their associated frictional forces in the two tangential directions 
(axial and circumferential) are reduced, through variable transformations and an auxiliary 
incremental displacement variable, to a linear complementarity problem (LCP) for which a 
solution can be obtained using the Lemke algorithm. At each time step, the incremental 
displacement vectors are resolved into the tangential and normal directions of motion. Base on 
Coulomb's law of friction, the frictional force acts in the direction opposite to the true direction 
of motion or tendency of motion. In the proposed approach, the direction angle of the frictional 
force is estimated based on the velocities at the end of the previous time step. For small time 
steps, the proposed scheme yields satisfactory results without iterations. The contact forces in the 
radial direction and the frictional force in the tangential direction along with the sliding velocities 
are computed for each paired contact. These parameters can be used to assess the material loss of 
the pressure tube. 

1. Equation of Motion of a Single Fuel Element 

Assume that a fuel bundle is concentrically placed inside a straight pressure tube. The origin of 
the bundle coordinates oxyz is at the bundle geometric centre with three axes oriented as shown 
in Figure 1. The origin of the coordinates (oxyz)i for fuel element i is at the midspan with the 
three axes oriented along the radial, tangential and axial directions. The coordinates for the 
centre fuel element are identical to the bundle coordinates. 

Although the dominating dynamic response of a fuel element appears to be bending, the axial 
vibration and torsional vibration are also present when the effects of bearing pads and endplates 
are considered. A CANDU-6 fuel element is a very slender structure with a length-to-diameter 
ratio of about 38. Under normal operating conditions, the sheath is expected to be fully collapsed 
onto the pellets. The sheath along with the pellets form a monolithic compound beam. As a 
result, we decided to employ the classical theories for all three types of vibrations of a fuel 
element. 
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In this paper, the discrete equations of motion of an unconstrained CANDU fuel element are 
derived by means of the Lagrange equations. An implicit incremental displacement Bozzak-
Newmark scheme is then employed to seek a numerical solution in the time domain for 
predicting harmonically excited bending, axial and torsional vibrations of an outer fuel element 
subjected to 2D friction and unilateral contact constraints with the pressure tube. To be able to 
effectively handle the two types of the non-smooth constraints - 2D friction and unilateral 
contact, the equations of system states are formulated in terms of the incremental displacements. 
In handling the multiple unilateral frictional constraints at a time step, the sub-structuring method 
is used to eliminate all interior DOF's [5]. The coupled gap equations in the directions of all 
probable contact points and the their associated frictional forces in the two tangential directions 
(axial and circumferential) are reduced, through variable transformations and an auxiliary 
incremental displacement variable, to a linear complementarity problem (LCP) for which a 
solution can be obtained using the Lemke algorithm. At each time step, the incremental 
displacement vectors are resolved into the tangential and normal directions of motion. Base on 
Coulomb’s law of friction, the frictional force acts in the direction opposite to the true direction 
of motion or tendency of motion.  In the proposed approach, the direction angle of the frictional 
force is estimated based on the velocities at the end of the previous time step. For small time 
steps, the proposed scheme yields satisfactory results without iterations. The contact forces in the 
radial direction and the frictional force in the tangential direction along with the sliding velocities 
are computed for each paired contact. These parameters can be used to assess the material loss of 
the pressure tube.  
 
1. Equation of Motion of a Single Fuel Element  
 
Assume that a fuel bundle is concentrically placed inside a straight pressure tube. The origin of 
the bundle coordinates oxyz is at the bundle geometric centre with three axes oriented as shown 
in Figure 1. The origin of the coordinates (oxyz)i for fuel element i is at the midspan with the 
three axes oriented along the radial, tangential and axial directions. The coordinates for the 
centre fuel element are identical to the bundle coordinates.  
 
Although the dominating dynamic response of a fuel element appears to be bending, the axial 
vibration and torsional vibration are also present when the effects of bearing pads and endplates 
are considered. A CANDU-6 fuel element is a very slender structure with a length-to-diameter 
ratio of about 38. Under normal operating conditions, the sheath is expected to be fully collapsed 
onto the pellets.  The sheath along with the pellets form a monolithic compound beam. As a 
result, we decided to employ the classical theories for all three types of vibrations of a fuel 
element. 
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Figure 1 Cross sectional view of an outer most fuel element and pressure tube 

According to the classical theories of bending, axial stretching, and torsion, the displacements of 
a material point in a fuel element are related to four one-dimensional field variables as described 
in [4], 

ux(x, y, z, 0 = u(z, t) — y0 (z, 0 

uy (x, y, z, 0 = v(z, t) + x0(z, 0 

(z, 0 (z, 0 
uz (x, y, z,t) = w(z,t) 

xau 
az  

Yav 

Oz 

where, ux , uy and uz are the displacements of a material point (x, y, z) in the three 
coordinate directions, respectively; u and v are the lateral displacements associated with 
bending; w is the axial displacement; 0 is the angle of twist associated with torsion. Under 
dynamic loads, a fuel element subjected to ordinary and unilateral frictional contact constraints 
can exhibit very complex vibrational behavior. Using the finite element method and the 
Lagrange equations, we may obtain the following equations of motion in terms of the 
generalized coordinates as 

[AM} + M{q} + [K]{q} = (Q} + tQl f l — (Qc} 

(1) 

(2) 

where [M] , [K] and [C] are the mass, stiffness and damping matrices, respectively; (Q} is the 
excitation force vector; NA is the frictional force vector; and (Qc} is the unilateral contact 
forces; {q} is the generalized displacement vector. 

2. Handling 2D Friction and Unilateral Contact 

A fuel element is subjected to unilateral contact and 2D frictional constraints. The contact forces 
and the friction forces are not known a priori. A solution to the governing differential equations 
cannot be obtained in a straightforward manner. To seek a solution in the time domain, the entire 
time interval of interest, t E [to, tr] , is divided into n small and equal time intervals: 
[to, t1], [t1, t2], ..., [ti,t i+1], ... ,[tn_1, tn], where ti = to + ih, i = 0,1,2, ... , n, h is the uniform 
time step. It should be noted that no temporal convergence has been investigated for this work. If 
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Figure 1 Cross sectional view of an outer most fuel element and pressure tube 

 
According to the classical theories of bending, axial stretching, and torsion, the displacements of 
a material point in a fuel element are related to four one-dimensional field variables as described 
in [4],   

𝑢!(𝑥,𝑦, 𝑧, 𝑡) = 𝑢(𝑧, 𝑡)− 𝑦∅(𝑧, 𝑡) 

𝑢!(𝑥,𝑦, 𝑧, 𝑡) = 𝑣(𝑧, 𝑡)+ 𝑥∅(𝑧, 𝑡) 

𝑢!(𝑥,𝑦, 𝑧, 𝑡) = 𝑤(𝑧, 𝑡)− 𝑥
𝜕𝑢(𝑧, 𝑡)
𝜕𝑧 − 𝑦

𝜕𝑣(𝑧, 𝑡)
𝜕𝑧  

(1) 

where, 𝑢! ,	
  𝑢! 	
  and	
  𝑢! 	
  are	
   the	
   displacements	
   of	
   a	
   material	
   point	
   (𝑥,𝑦, 𝑧) 	
  in	
   the	
   three	
  
coordinate	
  directions,	
   respectively;	
  u	
   and	
  v	
   are	
   the	
   lateral	
  displacements	
  associated	
  with	
  
bending;	
  w	
  is	
  the	
  axial	
  displacement;	
  ∅	
  is	
  the	
  angle	
  of	
  twist	
  associated	
  with	
  torsion.	
  Under 
dynamic loads, a fuel element subjected to ordinary and unilateral frictional contact constraints 
can exhibit very complex vibrational behavior. Using the finite element method and the 
Lagrange equations, we may obtain the following equations of motion in terms of the 
generalized coordinates as	
  
 

𝑀 𝑞 + 𝐶 𝑞 + 𝐾 𝑞 = 𝑄 + 𝑄! − 𝑄!  (2) 

where	
   𝑀 , 𝐾  and 𝐶  are the mass, stiffness and damping matrices, respectively; 𝑄  is the 
excitation force vector; 𝑄!  is the frictional force vector; and 𝑄!  is the unilateral contact 
forces; 𝑞  is the generalized displacement vector.  
 
2. Handling 2D Friction and Unilateral Contact 
 
A fuel element is subjected to unilateral contact and 2D frictional constraints.  The contact forces 
and the friction forces are not known a priori. A solution to the governing differential equations 
cannot be obtained in a straightforward manner. To seek a solution in the time domain, the entire 
time interval of interest, 𝑡 ∈    [𝑡!, 𝑡!] , is divided into n small and equal time intervals: 
𝑡!, 𝑡! , 𝑡!, 𝑡! ,… , 𝑡! , 𝑡!!! ,… , [𝑡!!!, 𝑡!], where 𝑡! = 𝑡! + 𝑖ℎ, 𝑖 = 0,1,2,… ,𝑛, h is the uniform 
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the state of the dynamical system at t = ti is determined, the state of the system at t = 
be found by solving the following differential equations 

(1 + a) [m]{i}j„ — a[m][}i+1 + [c]t(i}i-Fi + [K]{a}i-Fi 

ti may 

— W}i+i + f(2fLi tQc}i+1 (3)

where a is the relaxation factor. By using Newmark integration scheme, Eq. (3) could be written 
as 

where 

[ { + = Q + + f Qfli+ — {Qc}i + 

[k*] = (1 + a) k [m] + Rh[c] [k],

{(21i+1
toi+i + 

[m]
G+h2a toi + 1 -ir: ha {4}i (21,6 1 + 213) i) 

[c] (AM — 1) (411 + — 1) 111411) - [VIM i 
fAq}i-Fi = (01+1 — {a}1 

(4) 

where y and f.? are Newmark coefficients. In this study, the following values are used, 
a = = 0.5,y = 0.6. 

2.1 Sub-structuring and Transformations 

Since the interior displacements are not involved explicitly in the contact formulations, the 
generalized force due to contact associated with interior DOF's are zero. To eliminate the 
interior DOF's, we use the following transformation 

(Ago
tan (5) 

j )1+1 

where subscript "o" refer to interior and "j" refers to interfacial DOF's. Substituting Eq. (5) into 
Eq. (4) and pre-multiplying the so-obtained equations by [T]T we obtain 

['coo 
Ic10

/Q41140' {Q* 0 

I• = *0 + f foi 
Ic11_(Aqj 1+1 Q i+i Qf1 — (Qc)i-Fi 

(6) 

We can now eliminate the interior displacements by representing them as a function of interfacial 
DOF's, 

*01+1 = koo ({2* 0}i+i — ko jtAqi) i+i) (7) 

Substitute Eq. (7) into Eq. (6) and re-write the equilibrium equation only considering interfacial 
DOF's, 

4 

	
  
	
  
12th	
  International	
  Conference	
  on	
  CANDU	
  Fuel	
  
Holiday-­‐Inn	
  Waterfront	
  Hotel	
  	
  
Kingston,	
  Ontario,	
  Canada,	
  2013	
  September	
  15-­‐18	
  

	
   4	
  

the state of the dynamical system at 𝑡 = 𝑡! is determined, the state of the system at 𝑡 = 𝑡!!! may 
be found by solving the following differential equations 
 

1 + 𝛼 𝑀 𝑞 !!! − 𝛼 𝑀 𝑞 !!! + 𝐶 𝑞 !!! + 𝐾 𝑞 !!!

= 𝑄 !!! + 𝑄𝑓 𝑖+1
− 𝑄𝑐 𝑖+1

 (3) 

where α is the relaxation factor. By using Newmark integration scheme, Eq. (3) could be written 
as  

𝑘∗ ∆𝑞 !!! = 𝑄∗ !!! + 𝑄! !!!
− 𝑄! !!! 

(4) 

where 
𝑘∗ = 1+ 𝛼 !

!!!
𝑚 + !

!!
𝑐 + 𝑘 ,  

𝑄∗ !!! = 𝑄 !!! + 𝑚
1+ 𝛼
𝛽ℎ! 𝑞 ! +

1+ 𝛼
𝛽ℎ 𝑞 ! +

1
2𝛽 − 1+

𝛼
2𝛽 𝑞 !         

+ 𝑐
𝛾
𝛽ℎ 𝑞 ! +

𝛾
𝛽 − 1 𝑞 ! +

𝛾
2𝛽 − 1 ℎ 𝑞 ! − 𝑘∗ 𝑞 !   

∆𝑞 !!! = 𝑞 !!! − 𝑞 ! 
 

where 𝛾  and 𝛽  are Newmark coefficients. In this study, the following values are used, 
𝛼 = 0.1,𝛽 = 0.5, 𝛾 = 0.6.	
  	
   
 
2.1 Sub-structuring and Transformations    
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Eq. (4) and pre-multiplying the so-obtained equations by 𝑇 ! we obtain  
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KtAqjli+i = Ic2{Q*0}i+1 + (Q*Ai+i + tQfli+i - {Qc}i-Ft (8) 

where, ki = k11 - kjo k;g- ko; And ki = -k Ic; 

To formulate the gap equations, the incremental displacement vector are first expressed in terms 
of the radial, circumferential and axial components. The transformation may be written as (see 
Figure 1) 

Au} [cos 0 -sin 0 0  Aul 
Av = sin 0 cos 0 0 Due
Aw 0 0 1 Aw 

(9) 

When contact occurs, the circumferential and axial displacements of the fuel element at the point 
of contact are two-dimensional motion. By choosing a small time step, we may assume that these 
two incremental displacements are in a 2D plane on the inner surface of pressure tube. However 
the trajectory of the point of contact on this 2D plane is not known a priori. The axial and 
circumferential incremental displacements, Aw and Due, may be resolved in terms of tangential 
and normal directions as shown in Figure 2. 

eZ

Path' _.. 

ee

Figure 2 Transformation of incremental displacement 

This may be written as 
ipug. 1 0 0 Wu,. 
Aue = 0 cos cp - sin cp put
pw 0 sin cp cos cp Au, 

The two transformations may be written together as 
cos 0 -sin 0 0 1 0 0 Aur Au,. {Au} 

Av = sin 0 cos 0 0 0 cos cp - sin cp put
{ 

= [A] put
Aw 0 0 1 0 sin cp cos cp Dun Au, 

Substitute Eq. (11) into Eq. (8) and pre-multiply by A-1, 
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𝑘!∗ ∆𝑞! !!!
= 𝑘!∗ 𝑄

∗
! !!! + 𝑄∗! !!!

+ 𝑄! !!!
−    𝑄! !!! (8) 

where, 𝑘!∗ = 𝑘!! − 𝑘!"  𝑘!!!!𝑘!"    And     𝑘!∗ = −𝑘!"  𝑘!!!!.  

To formulate the gap equations, the incremental displacement vector are first expressed in terms 
of the radial, circumferential and axial components.  The transformation may be written as (see 
Figure 1) 
 

∆𝑢
∆𝑣  
∆𝑤

=
cos 𝜃 −sin 𝜃 0
sin 𝜃 cos 𝜃 0
0 0 1

∆𝑢!
∆𝑢!   
∆𝑤

   (9) 

 
When contact occurs, the circumferential and axial displacements of the fuel element at the point 
of contact are two-dimensional motion. By choosing a small time step, we may assume that these 
two incremental displacements are in a 2D plane on the inner surface of pressure tube. However 
the trajectory of the point of contact on this 2D plane is not known a priori. The axial and 
circumferential incremental displacements, ∆𝑤 and ∆𝑢!, may be resolved in terms of tangential 
and normal directions as shown in Figure 2. 
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ir licTAtAgni+i

= A-11c2{12* o}i+i + A-1 t(2* 7.1 
i-Ft 

+ A-1{Qf}i+1— {Qc}i-Ft 

After some rearrangement, we obtain 

where, 

14114;l i+1 = {Q **}i+1 — 

(12) 

i+1 Qfli+i (13) 

{Q 
**

}i+1 = 142(Q* + (Q 1 *J}
 142 = 11-1k;, 

i-Ft' 
Vectors in Eq. (13) are given below, 

Aur Q;* 

(4;1 =fritt , {Q**} = (QT}, (Q*} = rot (TA =F?"-
Mtn Wi* 0 0 

where Ff and Fc indicate the frictional and contact force respectively. Notice that the frictional 
force in the direction normal to the direction of motion is zero. Now from Eq. (13), the 
incremental displacement in the normal direction may be represented as a function of the radial 
and tangential incremental displacement as 

-1(Qn**1+1 kr*131AUri+1 Auni+1 = kr*1-33 

Substitute Eq. (14) into Eq. (13) 

— 14132Auti+1) 

Aur

kr*i ixut

14133 - (Q kn 1+1 -- A r131-Uri+i 14132AUti+i) i±i

Now first and second row in Eq. (15) could be written as 

Where, 

Fc= {Q(2 + Ff'k**(27'1* 1+1 0 i-Ft 

(14) 

(15) 

KfAUL.+1 + (Q}i-Ft = {Qc}i+i + tQfli-Fi (16) 

= 14111 — 41134133 -1 k * k* 41-12 — 41134133-1k;132 
CAUJi.+1 

41 21 - 41 2341 33-1k ; 1 31 41 22 - 4'1 234'1 33-141 32 

r r i -1 Q**t o ri+i 33 n Q;* 
kr _..*, 23 - k* -1-Q.„—}1+1 Qt )

( 0 ) 
f tF j f i+i 

6 
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Out i i+i
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𝐴!!𝑘!∗𝐴 ∆𝑞!∗ !!!

= 𝐴!!𝑘!∗ 𝑄
∗
! !!! + 𝐴!! 𝑄∗! !!!

+ 𝐴!! 𝑄! !!!
− 𝐴!!   𝑄! !!! 

(12) 

After some rearrangement, we obtain  
 

𝑘!!∗ ∆𝑞!∗ !!!
= 𝑄∗∗ !!! −    𝑄𝑐

∗
!!!

+ 𝑄𝑓
∗
!!!
   

(13) 

where, 
𝑄∗∗ !!! = 𝑘!!∗ 𝑄∗! !!! + 𝐴!! 𝑄∗! !!!

, 𝑘!!∗ = 𝐴!!𝑘!∗𝐴,              𝑘!!∗ = 𝐴!!𝑘!∗ , 
Vectors in Eq. (13) are given below, 

∆𝑞!∗ =
∆𝑢!
∆𝑢!  
∆𝑢!  

, 𝑄∗∗ =
𝑄!∗∗
𝑄!∗∗  
𝑄!∗∗  

, 𝑄!∗ =
𝐹!
0  
0  

, 𝑄!∗ =
0
𝐹!   
0  

 

where 𝐹! and 𝐹! indicate the frictional and contact force respectively. Notice that the frictional 
force in the direction normal to the direction of motion is zero. Now from Eq. (13), the 
incremental displacement in the normal direction may be represented as a function of the radial 
and tangential incremental displacement as 
 

∆𝑢!!!! = 𝑘!!∗ !!
!!(𝑄!∗∗!!! − 𝑘!!

∗
!"∆𝑢!!!! − 𝑘!!

∗
!"∆𝑢!!!!) (14) 

Substitute Eq. (14) into Eq. (13) 
 

𝑘!!∗
∆𝑢𝑟
∆𝑢𝑡  

𝑘!!∗ !!
!!(𝑄!∗∗!!! − 𝑘!!

∗
!"∆𝑢!!!! − 𝑘!!

∗
!"∆𝑢!!!!)   𝑖+1

=
𝑄!∗∗
𝑄!∗∗  
𝑄!∗∗   !!!

+   
𝐹!
𝐹!   
0   !!!

     
(15) 

Now first and second row in Eq. (15) could be written as 
 

𝐾 ∆𝑈 !!! + 𝑄 !!! = −   𝑄! !!! + 𝑄! !!!
 

(16) 

Where, 
 

𝐾 =
𝑘!!∗ !! − 𝑘!!

∗
!"𝑘!!

∗
!!
!!𝑘!!∗ !" 𝑘!!∗ !" − 𝑘!!

∗
!"𝑘!!

∗
!!
!!𝑘!!∗ !"

𝑘!!∗ !" − 𝑘!!
∗
!"𝑘!!

∗
!!
!!𝑘!!∗ !" 𝑘!!∗ !! − 𝑘!!

∗
!"𝑘!!

∗
!!
!!𝑘!!∗ !"

, ∆𝑈 !!! =
∆𝑢!
∆𝑢!   !!!

,

𝑄 !!! =
𝑘!!∗ !"𝑘!!

∗
!!
!!𝑄!∗∗

𝑘!!∗ !"𝑘!!
∗
!!
!!𝑄!∗∗   !!!

− 𝑄!∗∗
𝑄!∗∗   !!!

, 𝑄! !!! =
𝐹!
0   !!!

,

𝑄! !!!
=

0
𝐹!    !!!
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2.2 Handling 2D Friction 

According to Coulomb's law of friction, the frictional force is applied from the pressure tube to 
the node of contact on the fuel element opposite in direction to the motion and proportional to 
the normal force between two surfaces. In the normal direction to the contacting surfaces, the 
following equation of equilibrium hold true 

(P}i+i = (N}i+i (17) 

where (P)1+1 is the summation of all external normal forces applied on that node of contact at 
ti+1 and (N)1+1 is the collective normal forces acting on the node of contact from the pressure 
tube. Multiplying Eq. (17) by µ, coefficient of friction we will obtain 

1061 — = (0} (18) 

In this paper, the kinetic coefficient of friction is used for both stiction and sliding states. Four 
different scenarios are possible for the motion of the contact node at fuel element on the pressure 
tube, forward slip, stick with the tendency of motion in forward, stick with the tendency of 
moving backward and backward slip. In each possible state of motion frictional force may be 
represented as 

1) Forward slip: Auti+i > 0, (Ff)t+i = —(2/V)t+1 

2) Forward stiction: Auti+i = 0, —(2/V)t+i < (Ff)t+i < 0 

3) Backward stiction: Auti+i = 0, 0< (Ff)t+1 < (2/V)t+1 (19) 

4) Backward slip: Auti+i < 0, (Ff)t+1 = (2/V)t+1 

States 1 and 2 in Eq. (19) represent the motion or tendency of motion in the tangential direction 
where Auti+i > 0, and states 3 and 4 represent the motion or tendency of motion in the negative 
tangential coordinate direction where Auti+i < 0. For the states 1 and 2, we have 

+ (Ff)i+1 > 0 (20) 

For this state we would like to introduce following two new variables, 

(Aut)i+t = sup (Auti+i, 0) 

(•§) i +1 = (µN) i+1 (Ff)i+1 

(21) 

(22) 

where sup is the supremum of a set of variables, (Aut)i+1 is the value of the incremental 
displacement if it is moving in positive direction and (S)i+1 is the value of the slack force. It 
could be verified that (Aut)1+1 and (S)i+1 are non-negative and satisfy the complementary 
condition, which could be written as 

Dut > 0, .Ss > 0, Aut..§ = 0 (23) 

Now for states 3 and 4 in Eq. (19), which are describing the motion or tendency of motion of the 
mass in negative tangent coordinate, Aut 0, friction force is pointing toward positive tangent 
direction. According to the Coulomb's law of friction we may write, 

7 
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2.2 Handling 2D Friction 
 
According to Coulomb’s law of friction, the frictional force is applied from the pressure tube to 
the node of contact on the fuel element opposite in direction to the motion and proportional to 
the normal force between two surfaces. In the normal direction to the contacting surfaces, the 
following equation of equilibrium hold true 

𝑃 !!! = 𝑁 !!! (17) 

where 𝑃 !!! is the summation of all external normal forces applied on that node of contact at 
𝑡!!! and 𝑁 !!! is the collective normal forces acting on the node of contact from the pressure 
tube. Multiplying Eq. (17) by 𝜇, coefficient of friction we will obtain 

𝜇 𝑁 !!! − 𝜇 𝑃 !!! = 0  (18) 
In this paper, the kinetic coefficient of friction is used for both stiction and sliding states. Four 
different scenarios are possible for the motion of the contact node at fuel element on the pressure 
tube, forward slip, stick with the tendency of motion in forward, stick with the tendency of 
moving backward and backward slip. In each possible state of motion frictional force may be 
represented as 

1) Forward slip: ∆𝑢!!!! > 0,      (𝐹!)!!! = −(𝜇𝑁)!!! 

2) Forward stiction: ∆𝑢!!!! = 0, −(𝜇𝑁)!!! ≤ (𝐹!)!!! ≤ 0 

3) Backward stiction: ∆𝑢!!!! = 0, 0 ≤ (𝐹!)!!! ≤ (𝜇𝑁)!!! 

4) Backward slip: ∆𝑢!!!! < 0,      (𝐹!)!!! = (𝜇𝑁)!!! 

(19) 

States 1 and 2 in Eq. (19) represent the motion or tendency of motion in the tangential direction 
where ∆𝑢!!!! ≥ 0, and states 3 and 4 represent the motion or tendency of motion in the negative 
tangential coordinate direction where ∆𝑢!!!! ≤ 0. For the states 1 and 2, we have 

(𝜇𝑁)!!! + (𝐹!)!!! ≥ 0 (20) 

For this state we would like to introduce following two new variables, 
(∆𝑢!)!!! = sup  (∆𝑢!!!!, 0) (21) 

 
(𝑠)!!! = (𝜇𝑁)!!! + (𝐹!)!!! (22) 

where sup is the supremum of a set of variables, (∆𝑢!)!!! is the value of the incremental 
displacement if it is moving in positive direction and (𝑠)!!! is the value of the slack force. It 
could be verified that (∆𝑢!)!!!  and (𝑠)!!!  are non-negative and satisfy the complementary 
condition, which could be written as 

∆𝑢! ≥ 0, 𝑠 ≥ 0, ∆𝑢! . 𝑠 = 0 (23) 
Now for states 3 and 4 in Eq. (19), which are describing the motion or tendency of motion of the 
mass in negative tangent coordinate, ∆𝑢! ≤ 0, friction force is pointing toward positive tangent 
direction. According to the Coulomb’s law of friction we may write, 

{ } { } 

{ } 
{ } 

{ } { } { } 
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02A0i+1 - (Ff)i-Fi > 0 (24) 

We introduce following two new variables, 

(Aut)i+i = sup (-Auti+i, 0) (25) 

(S)i+1 = (01)i-F1 - (Ff)i-Fi (26) 

Again (Aut)1+1 and (S)i+1 are complementary to each other and the state of frictional interaction 
may be written as 

Dut > 0, > 0, Aut..§ = 0 (27) 

It can be verified that the incremental displacement in tangent direction could be written in terms 
of supremum variables as 

Aut = Dut - AT.it

Write incremental displacements in terms of supremum variables in Eq. (16), 
KAU - AU}i+1 + (0)i-F1 = tQc,rli+i + 

Add Eq. (29) with Eq. (18) and subtract Eq. (29) from Eq. (18), 
KUP - A-011+1 + (Q}i-Ft = tQc,rli+1 + tQf,rli+i + {ithr}i+1 {i/P}i+1 

-Kgr/ - - (Q)i+1 = tQc,r)i+i tQf,rli+i + (0)1+1 - {i/P}i+i 

Substitute Eq. (22) and (26) into Eq. (30) and (31), 
KtAV - A-011+1 + {0}i+1 = + (}i-Ft {i/P}i+1 

-K{P - }1+1 - = tQcrli+i + {g}i-Ft {i/P}i+1 

(28) 

(29) 

(30) 

(31) 

(32) 

(33) 

The contact force from pressure tube acting on fuel element is modelled as a gap activated 
spring. The contact force will present only when the initial gap is consumed. An auxiliary 
coordinate y introduced to represent the position of the spring end plate. If the stiffness of the gap 
activated spring is K equation of equilibrium at time ti+1 may be written as 

Kyi+i = Fci+1

Considering Figure 1, the gap in the radial direction at time ti+1 may be written as 
gi-Fi = Yi+1 - ur i+i + A 

where i is the initial gap, from Eq. (35) we may obtain 
Yi-Fi = gi-Fi + Auri+i + uri - A 

In matrix form this may be written as 

8 

(34) 

(35) 

(36) 
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(𝜇𝑁)!!! − (𝐹!)!!! ≥ 0 (24) 

We introduce following two new variables, 
(∆𝑢!)!!! = sup  (−∆𝑢!!!!, 0) (25) 

 
(𝑠)!!! = (𝜇𝑁)!!! − (𝐹!)!!! (26) 

Again (∆𝑢!)!!! and (𝑠)!!! are complementary to each other and the state of frictional interaction 
may be written as 

∆𝑢! ≥ 0, 𝑠 ≥ 0, ∆𝑢! . 𝑠 = 0 (27) 

It can be verified that the incremental displacement in tangent direction could be written in terms 
of supremum variables as 

∆𝑢! = ∆𝑢! − ∆𝑢! (28) 
Write incremental displacements in terms of supremum variables in Eq. (16), 

𝐾 ∆𝑈 − ∆𝑈
!!!

+ 𝑄 !!! = 𝑄!,! !!!
+ 𝑄!,! !!!

 
(29) 

Add Eq. (29) with Eq. (18) and subtract Eq. (29) from Eq. (18), 
𝐾 ∆𝑈 − ∆𝑈

!!!
+ 𝑄 !!! = −   𝑄!,! !!!

+ 𝑄!,! !!!
+ 𝜇𝑁 !!! − 𝜇𝑃 !!! (30) 

−𝐾 ∆𝑈 − ∆𝑈
!!!

− 𝑄 !!! =    𝑄!,! !!!
− 𝑄!,! !!!

+ 𝜇𝑁 !!! − 𝜇𝑃 !!! (31) 

Substitute Eq. (22) and (26) into Eq. (30) and (31), 
𝐾 ∆𝑈 − ∆𝑈

!!!
+ 𝑄 !!! =   − 𝑄!,! !!!

+ 𝑠 !!! − 𝜇𝑃 !!! (32) 

−𝐾 ∆𝑈 − ∆𝑈
!!!

− 𝑄 !!! =    𝑄!,! !!!
+ 𝑠 !!! − 𝜇𝑃 !!! (33) 

The contact force from pressure tube acting on fuel element is modelled as a gap activated 
spring. The contact force will present only when the initial gap is consumed. An auxiliary 
coordinate y introduced to represent the position of the spring end plate. If the stiffness of the gap 
activated spring is K equation of equilibrium at time 𝑡!!! may be written as 
 

𝐾𝑦!!! = 𝐹!!!! (34) 

Considering Figure 1, the gap in the radial direction at time 𝑡!!! may be written as 
𝑔𝑖+1 = 𝑦𝑖+1 − 𝑢!𝑖+1 + ∆ (35) 

where ∆ is the initial gap, from Eq. (35) we may obtain 
𝑦𝑖+1 = 𝑔𝑖+1 + ∆𝑢!!!! + 𝑢!𝑖 − ∆ (36) 

In matrix form this may be written as 

- V 

-{- -} {-} { } { } 

-{- -} {-} { } { } { } { } 

-{- -} {-} { } { } { } { } 

-{- -} {-} { } {"} { } 

-{- - } { -} { } { V} { } 



12th International Conference on CANDU Fuel 
Holiday-Inn Watezfront Hotel 
Kingston, Ontario, Canada, 2013 September 15-18 

0 0 0 0 
0 1 0 0 0 {a1} 

&U :6,-(1 

[1 

= 0 0 1 0 0 
yqr 0 0 0 1 0 

1 0 —1 0 1 

10 0 1 
+ 0 

gqr ur i  A 

Write equations Eq. (32), (33) and (34) in matrix form, 

I[ K —K 0 
—K K 0 
0 0 K 

1 0 0 0 1 
SU Q 0 1 0 0 —it 
MI + j-Qt = 0 0 1 0 —1 
Yur 0 0 0 0 1 —It 

0 0 0 0 1 

After some rearrangement we may obtain 

Sr

Sr - {Au} = (coo 
Fcr gqr

1 Sr 
Sr 

Fcr 

(37) 

(38) 

(39) 

Equation Eq. (39) along with conditions in Eqs. (23) and (27) are the LCP. It was proven by Sha 
et al. [6] that a unique solution exists and can be found if coefficient matrix is positive defmite or 
positive semi-definite. Here matrix [Tc] is a positive semi definite matrix. 

3. Examples 

In the first example a simply supported beam under a uniform load shown in Figure 3 is studied. 
The beam is subjected to unilateral constraints at the midspan without friction. The beam is 
modelled using 19 three-node finite elements. A uniformly distributed load of 400 N/m is 
applied suddenly at time t = 0. Results up to 0.1 seconds are obtained using the proposed method 
with a time step of 0.1 ms. All other geometric and material properties are same as the second 
example. Figure 4 represents the results for both 15 and 20 mm of initial gap. Good agreement 
with Xu et al. [3] has been observed. 

y 

400 N/m 

• • I W 

Initial Gap 

Figure 3 Simply support beam under uniform load 
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∆𝑈
∆𝑈
𝑦!!

=

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
1 0 −1 0 1

∆𝑈
∆𝑈
𝑔!!

+
0
0

𝑢!! − ∆
 

(37) 

Write equations Eq. (32), (33) and (34) in matrix form, 
 

𝐾 −𝐾 0
−𝐾 𝐾 0
0 0 𝐾

∆𝑈
∆𝑈
𝑦!!

+
𝑄
−𝑄
0

=

1 0 0 0 1
0 1 0 0 −𝜇
0 0 1 0 −1
0 0 0 1 −𝜇
0 0 0 0 1

𝑠!
𝑠!
𝐹!!

 

(38) 

After some rearrangement we may obtain 
 

𝑠!
𝑠!
𝐹!!

− 𝐾!
∆𝑈
∆𝑈
𝑔𝑞𝑟

= 𝑄!  
(39) 

Equation Eq. (39) along with conditions in Eqs. (23) and (27) are the LCP. It was proven by Sha 
et al. [6] that a unique solution exists and can be found if coefficient matrix is positive definite or 
positive semi-definite. Here matrix 𝐾!  is a positive semi definite matrix. 
 
3. Examples 
 
In the first example a simply supported beam under a uniform load shown in Figure 3 is studied. 
The beam is subjected to unilateral constraints at the midspan without friction. The beam is 
modelled using 19 three-node finite elements. A uniformly distributed load of 400 N/m is 
applied suddenly at time t = 0. Results up to 0.1 seconds are obtained using the proposed method 
with a time step of 0.1 ms. All other geometric and material properties are same as the second 
example. Figure 4 represents the results for both 15 and 20 mm of initial gap. Good agreement 
with Xu et al. [3] has been observed.    

	
  
Figure 3 Simply support beam under uniform load 
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Figure 4 Displacement of the mid point (a) this paper, (b) Reference [3] 

Xu et al. implemented Wilson 8 integration scheme in order to find the dynamic response of the 
rod. Scheme presented by Xu et al. can only model the unilateral contact without friction. Model 
presented in this paper is developed using Newmark integration scheme and will handle several 
unilateral contact subjected to two-dimensional contact. 
In the second example a beam at 6 o'clock position with the clamped-clamped boundary 
conditions is studied. No structural damping is considered. The following harmonic excitations 
are applied to the centre of the beam in the three coordinate directions as shown in Figure 5, 
Q„ = 5 cos(cout) , Qv = —15 cos(cui,t) and Qi,„ = 8 cos(cow 0 where coy = 0.5 radl sec and 
co„ = cow = 5 radl sec. Harmonic excitation is plotted in Figure 6 (a) and (b). 

Pressure Tube 

Q„, 

Bearing pad 

Cross section view 
of midspan 

Midspan 

y 

Qv 

Qu 

x 

Pressure Tube 

\\
\\
\ 

\\
\~

 

Figure 5 Three external excitation applied at the centre of the rod 

Local contact stiffness and coefficient of friction are chosen as K = 1.0E8 N Im, µ = 0.5 
respectively, and all geometric and material properties are given below: 
Length of fuel element L = 0.5, Outside diameter of fuel element Do = 0.01308, Inside 
diameter of fuel element Di = 0.01228 , Inside diameter of pressure tube DPT = 0.103 , 
Thickness of bearing pads t = 0.00145, Length of bearing pads Lbp = 0.0254, Location of first 
bearing pad 11 = 0.0445, Location of second bearing pad /2 = 0.24765, Location of third 
bearing pad /3 = 0.45080, Initial gap between fuel element and PT A= 0, Young's modulus 
E = 80e9, Shear modulus G = 26.2e9, Density of fuel element p = 7850. 

10 
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(a) 

 
(b) 

Figure 4 Displacement of the mid point (a) this paper, (b) Reference [3] 
 
Xu et al. implemented Wilson 𝜃 integration scheme in order to find the dynamic response of the 
rod. Scheme presented by Xu et al. can only model the unilateral contact without friction. Model 
presented in this paper is developed using Newmark integration scheme and will handle several 
unilateral contact subjected to two-dimensional contact. 
In the second example a beam at 6 o’clock position with the clamped-clamped boundary 
conditions is studied. No structural damping is considered. The following harmonic excitations 
are applied to the centre of the beam in the three coordinate directions as shown in Figure 5, 
𝑄! = 5 cos(𝜔!𝑡) , 𝑄! = −15 cos(𝜔!𝑡)  and 𝑄! = 8 cos(𝜔!𝑡)  where 𝜔! = 0.5  𝑟𝑎𝑑/𝑠𝑒𝑐  and 
𝜔! = 𝜔! = 5  𝑟𝑎𝑑/𝑠𝑒𝑐. Harmonic excitation is plotted in Figure 6 (a) and (b). 

	
  
Figure 5 Three external excitation applied at the centre of the rod 

 
Local contact stiffness and coefficient of friction are chosen as 𝐾 = 1.0𝐸8  𝑁/𝑚 , 𝜇 = 0.5 
respectively, and all geometric and material properties are given below:  
Length of fuel element 𝐿 = 0.5 , Outside diameter of fuel element 𝐷! = 0.01308 , Inside 
diameter of fuel element 𝐷! = 0.01228 , Inside diameter of pressure tube 𝐷!" = 0.103 , 
Thickness of bearing pads 𝑡 = 0.00145, Length of bearing pads 𝐿!" = 0.0254, Location of first 
bearing pad 𝑙! = 0.0445, Location of second bearing pad 𝑙! = 0.24765, Location of third 
bearing pad 𝑙! = 0.45080, Initial gap between fuel element and PT ∆= 0, Young’s modulus 
𝐸 = 80𝑒9, Shear modulus 𝐺 = 26.2𝑒9, Density of fuel element 𝜌 = 7850. 
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Figure 6 (c) and (d) shows the lateral, axial and torsional displacements of the beam at the 
tnidspan; Figure 7 shows the normal contact forces. The fuel element is modelled using 19 
higher order finite elements. We did not consider the effect of pellets in this example and fuel 
element modelled as a hollow tube. One point of contact considered at the middle of central 
bearing pad. Three sinusoidal excitations applied at the midspan as mentioned before. The 
response was obtained for 20 seconds with a time step of 5 ms. The external excitation in the y 
direction had been given a low frequency coy = 0.5 rad/s, compared to the bending and axial 
excitations with an excitation frequency of 5 rad/s. With the procedure presented in this paper, 
the frictional forces handled as a two-dimensional friction successfully. As it can be seen from 
Figure 6 (c) and (d), sliding and stiction motion of the point of contact at the midspan observed 
in both bending and axial displacement. For the first period of the motion contact occurs from 
t = 0 till approximately t = 6.1 sec when fuel element separate from the pressure tube. In each 
period of time that contact happens damping in sliding motion due to friction can be seen from 
Figure 6 (c) and (d) in both axial and lateral displacements. 
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Figure 6 (a) Harmonic excitations in x andy directions, (b) Axial and torsional harmonic 
excitations (c) Lateral displacement in in x and y directions, (d) axial and torsional displacements 
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midspan; Figure 7 shows the normal contact forces. The fuel element is modelled using 19 
higher order finite elements. We did not consider the effect of pellets in this example and fuel 
element modelled as a hollow tube. One point of contact considered at the middle of central 
bearing pad. Three sinusoidal excitations applied at the midspan as mentioned before. The 
response was obtained for 20 seconds with a time step of 5 ms. The external excitation in the y 
direction had been given a low frequency 𝜔! = 0.5 rad/s, compared to the bending and axial 
excitations with an excitation frequency of 5 rad/s.  With the procedure presented in this paper, 
the frictional forces handled as a two-dimensional friction successfully. As it can be seen from 
Figure 6 (c) and (d), sliding and stiction motion of the point of contact at the midspan observed 
in both bending and axial displacement. For the first period of the motion contact occurs from 
𝑡 = 0 till approximately 𝑡 = 6.1  𝑠𝑒𝑐 when fuel element separate from the pressure tube. In each 
period of time that contact happens damping in sliding motion due to friction can be seen from 
Figure 6 (c) and (d) in both axial and lateral displacements. 
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Figure 7 Normal contact forces 

2'

Small torsional dispalacment that observed in Figure 6 (d) is the result of coupling between 
lateral and torsional displacement due to presences of bearing pads. ; Figure 7 shows the normal 
contact forces for this particular example. It can be seen that the magnitude of the normal force 
increases and then decreases during the contact period due to the external excitation in the Y 
direction. These contact forces can be used to find the wear rate at the point of contact. 

4. Conclusion 

The Bozzak-Newmark relaxation-integration scheme implemented successfully to discretize the 
equations of motion in the time domain for a single fuel element subjected to unilateral contact 
and 2D frictional constraints. Through a variable transformation, contacts and their associated 
frictional forces, the state of the system subjected to non-smooth constraints are reduced to a 
LCP for which a solution may be obtained using the Lemke algorithm. 
To model CANDU fuel bundle vibration, the proposed procedure is being implemented into a 
computer code for modeling unilateral frictional contact between fuel elements through spacer 
pads and also between fuel bundle and pressure tube through bearing pads. 
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Small torsional dispalacment that observed in Figure 6	
   (d) is the result of coupling between 
lateral and torsional displacement due to presences of bearing pads. ; Figure 7 shows the normal 
contact forces for this particular example. It can be seen that the magnitude of the normal force 
increases and then decreases during the contact period due to the external excitation in the 𝑌 
direction. These contact forces can be used to find the wear rate at the point of contact. 
 
4. Conclusion 
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equations of motion in the time domain for a single fuel element subjected to unilateral contact 
and 2D frictional constraints. Through a variable transformation, contacts and their associated 
frictional forces, the state of the system subjected to non-smooth constraints are reduced to a 
LCP for which a solution may be obtained using the Lemke algorithm.  
To model CANDU fuel bundle vibration, the proposed procedure is being implemented into a 
computer code for modeling unilateral frictional contact between fuel elements through spacer 
pads and also between fuel bundle and pressure tube through bearing pads. 
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