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Modeling coupled bending, axial, and torsional vibrations of a CANDU fuel rod subjected
to multiple frictional contact constraints
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ABSTRACT - In this paper, a finite element based dynamic model is presented for bending,
axial, and torsional vibrations of an outer CANDU fuel element subjected to multiple unilateral
frictional contact (MUFC) constraints. The Bozzak-Newmark relaxation-integration scheme is
used to discretize the equations of motion in the time domain. At a time step, equations of state
of the fuel element with MUFC constraints reduce to a linear complementarity problem (LCP).
Results are compared with those available in the literature. Good agreement is achieved. The 2D
sliding and stiction motion of a fuel element at points of contact is obtained for harmonic
excitations.

Introduction

In a CANDU fuel channel, the heavy water coolant flows through a string of fuel bundles and
brings out the heat generated by fuel elements for steam production. To understand the complex
behaviour of flow-induced vibration of the fuel string, accurate and reliable models must be
developed to capture the elasto-rigid motions of fuel elements subjected to non-smooth unilateral
frictional contact constraints at multiple locations. The friction between the outer fuel element’s
bearing pads and the pressure tube is two-dimensional. An individual fuel element moves with
the fuel bundle in a rigid body manner in the closely packed spaces of a fuel channel, and
deforms as a slender structure in the form of bending, axial and torsional deformations.

Yetisir and Fisher [1] investigated the effect of turbulence excitation on fretting wear between
fuel element bearing pads and pressure tube. Hassan and Rogers [2] studied vibration of a fuel
element by applying several frictional models to investigate the effect of tube-support clearance
and preload. Xu et al. [3] investigated bending vibration of a single fuel element subjected to
frictionless contact by means of beam finite element method and the Wilson-6 method. Recently
Yu and Fadaee [4] presented a finite element model for bending, axial, and torsional free
vibrations of a straight beam using three-node higher-order mixed finite element. As of today,
the effects of 2D friction on fuel element vibration are not investigated.

Considering the complex geometry of a fuel element and the non-smooth constraints, a valid
vibration model of a fuel element should be based on the finite element method. Practically fuel
elements experience small rigid displacements and small elastic displacements due to the limited
available spaces inside a fuel channel. This allows for the use of linear theories (linear
relationships between stresses and strains, and linear relationships between strains and
displacement gradients), and more importantly consideration of rigid body displacements within
the framework of the structural finite elements. This makes it possible to develop a feasible fuel
string vibration model for simulating fuel string fretting and fretting induced component wear in
a fuel channel.
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In this paper, the discrete equations of motion of an unconstrained CANDU fuel element are
derived by means of the Lagrange equations. An implicit incremental displacement Bozzak-
Newmark scheme is then employed to seek a numerical solution in the time domain for
predicting harmonically excited bending, axial and torsional vibrations of an outer fuel element
subjected to 2D friction and unilateral contact constraints with the pressure tube. To be able to
effectively handle the two types of the non-smooth constraints - 2D friction and unilateral
contact, the equations of system states are formulated in terms of the incremental displacements.
In handling the multiple unilateral frictional constraints at a time step, the sub-structuring method
is used to eliminate all interior DOF's [5]. The coupled gap equations in the directions of all
probable contact points and the their associated frictional forces in the two tangential directions
(axial and circumferential) are reduced, through variable transformations and an auxiliary
incremental displacement variable, to a linear complementarity problem (LCP) for which a
solution can be obtained using the Lemke algorithm. At each time step, the incremental
displacement vectors are resolved into the tangential and normal directions of motion. Base on
Coulomb’s law of friction, the frictional force acts in the direction opposite to the true direction
of motion or tendency of motion. In the proposed approach, the direction angle of the frictional
force is estimated based on the velocities at the end of the previous time step. For small time
steps, the proposed scheme yields satisfactory results without iterations. The contact forces in the
radial direction and the frictional force in the tangential direction along with the sliding velocities
are computed for each paired contact. These parameters can be used to assess the material loss of
the pressure tube.

1. Equation of Motion of a Single Fuel Element

Assume that a fuel bundle is concentrically placed inside a straight pressure tube. The origin of
the bundle coordinates oxyz is at the bundle geometric centre with three axes oriented as shown
in Figure 1. The origin of the coordinates (oxyz); for fuel element i is at the midspan with the
three axes oriented along the radial, tangential and axial directions. The coordinates for the
centre fuel element are identical to the bundle coordinates.

Although the dominating dynamic response of a fuel element appears to be bending, the axial
vibration and torsional vibration are also present when the effects of bearing pads and endplates
are considered. A CANDU-6 fuel element is a very slender structure with a length-to-diameter
ratio of about 38. Under normal operating conditions, the sheath is expected to be fully collapsed
onto the pellets. The sheath along with the pellets form a monolithic compound beam. As a
result, we decided to employ the classical theories for all three types of vibrations of a fuel
element.
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Figure 1 Cross sectional view of an outer most fuel element and pressure tube

According to the classical theories of bending, axial stretching, and torsion, the displacements of
a material point in a fuel element are related to four one-dimensional field variables as described
in [4],

Uy (x,y,z,t) =u(z,t) —yd(z,1t)

Uy (x,y,2,t) =v(zt) + x0(z,t)

du(z,t) ov(z,t)
0z rr

where, u,, u, and u, are the displacements of a material point (x,y,z) in the three
coordinate directions, respectively; u and v are the lateral displacements associated with
bending; w is the axial displacement; @ is the angle of twist associated with torsion. Under
dynamic loads, a fuel element subjected to ordinary and unilateral frictional contact constraints
can exhibit very complex vibrational behavior. Using the finite element method and the
Lagrange equations, we may obtain the following equations of motion in terms of the
generalized coordinates as

(D

u,(x,y,z,t) =w(z,t) —x

[M1{g} + [C1{q} + [K){q} = {Q} + {Q} — {Q.} @)
where [M], [K] and [C] are the mass, stiffness and damping matrices, respectively; {Q} is the
excitation force vector; {Qf} is the frictional force vector; and {Q.}is the unilateral contact
forces; {q} is the generalized displacement vector.

2. Handling 2D Friction and Unilateral Contact

A fuel element is subjected to unilateral contact and 2D frictional constraints. The contact forces
and the friction forces are not known a priori. A solution to the governing differential equations
cannot be obtained in a straightforward manner. To seek a solution in the time domain, the entire
time interval of interest, t € [to,tf], is divided into »n small and equal time intervals:
[to, t1], [t1, t2), o) [0 tiva], o) [tne1, tn], Where t; =ty + ih, i = 0,1,2,...,n, A is the uniform
time step. It should be noted that no temporal convergence has been investigated for this work. If
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the state of the dynamical system at t = t; is determined, the state of the system at t = t;,; may
be found by solving the following differential equations

1+ ) [MI{G}iv1 — alMI{G}iv1 + [CHG}is1 + [KI{q}i41
= @ +{Q] —{0,, 3)

where a is the relaxation factor. By using Newmark integration scheme, Eq. (3) could be written
as

{Qc}i+1

[k HAg}in = (@ Yiws +{Qf),,, — @)

where

[k*] = (1+a)ﬁ[ 1+ 25 [l + [K],
(@b = QYivs + ) (7

Pl + g+ (55 1+ 5) )
+le) (g ladio+ (5= 1) @i+ (2 7 1)) - D lia
(Bq}iv1 = (@} — gk

where y and f are Newmark coefficients. In this study, the following values are used,
a=0.1=057y=0.6.

2.1 Sub-structuring and Transformations

Since the interior displacements are not involved explicitly in the contact formulations, the
generalized force due to contact associated with interior DOF’s are zero. To eliminate the
interior DOF's, we use the following transformation

8aliss = Mg} )

where subscript “o” refer to interior and *” refers to interfacial DOF’s. Substituting Eq. (5) into
Eq. (4) and pre-multiplying the so- obtamed equations by [T]” we obtain

[Ilij: llij]j] {igz)} ) {gij}iﬂ * {Qof}iﬂ - {ro}i+1 (©)

i+1

We can now eliminate the interior displacements by representing them as a function of interfacial
DOF’s,

{Aqo}iv1 = koo ({Q*o}i+1 - koj{AQj}i+1) (7)

Substitute Eq. (7) into Eq. (6) and re-write the equilibrium equation only considering interfacial
DOF’s,
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ki{ag} = kiQ Y +{Q7 f}m +{0r},,. — {Qc}isa ()

To formulate the gap equations, the incremental displacement vector are first expressed in terms
of the radial, circumferential and axial components. The transformation may be written as (see

Figure 1)
Au cosf@ —sinf 0](Au, 9
{Av } =|sinf cosf 0]jAug ©)
Aw 0 0 I\ Aw

When contact occurs, the circumferential and axial displacements of the fuel element at the point
of contact are two-dimensional motion. By choosing a small time step, we may assume that these
two incremental displacements are in a 2D plane on the inner surface of pressure tube. However
the trajectory of the point of contact on this 2D plane is not known a priori. The axial and
circumferential incremental displacements, Aw and Augy, may be resolved in terms of tangential
and normal directions as shown in Figure 2.

1N

S
>

Figure 2 Transformation of incremental displacement

This may be written as

Au, 1 0 0 Au,
{Aug } = [0 cosg —sing {Aut } (10)
Aw 0 sing cose 1\Au,

The two transformations may be written together as

Au cos§ —sinf O0][1 O 0 Au, Au,
{Av } =|sind cosf 0|0 cosp —sing|{Au; = [A]{Au; (11)
Aw 0 0 1110 sing cos¢ 1\Au, Au,

Substitute Eq. (11) into Eq. (8) and pre-multiply by A™1,
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—-17,% *
A7'kiA{Ag3) (12)
= ATIGQ i +A7HQ ] +ATHQs),, — A7 Qi
After some rearrangement, we obtain

knfdail,, =10 - {0, +{of},, (13)

where,
{Q"}is1 = k:Z{Q*o}i+1 +A™ {Q*j}i+1 ) kri = A7'k1A, krp = A_lk;r

Vectors in Eq. (13) are given below,

Au, v F, 0

{aqj} = {Aut } 3= {QZ‘* } {0} = {o } {07} = {Ff}

Au, (0} 0 0
where Fy and F, indicate the frictional and contact force respectively. Notice that the frictional
force in the direction normal to the direction of motion is zero. Now from Eq. (13), the
incremental displacement in the normal direction may be represented as a function of the radial
and tangential incremental displacement as

— Lx* -1 %
Aunz+1 r133 @ i+1 T131Auri+1 kr132Auti+1) (14)
Substitute Eq. (14) into Eq. (13)
Au, T F,
* Au — *% F
e e KT (1
133 (@ i+1 r131 Uripr — Krizp uti+1) i+1 On i+1 0/;
Now first and second row in Eq. (15) could be written as

K{AU}Hl + {Q}Hl = - {Qc}i+1 + {Gf}i+1

(16)
Where,
ki — ki ki .tk ki — ki ki ke
72 111 1137133 frizg 112 r113"r133  rizy (AU}, = Au,
k* k* k* =17 % k* k* * -1 % 4 i+1 — Aut . ’
rlpq rlp3™rizg rl31 rlop ripz3™rizg rl3p i+1

_ k* k* =1 A xx % B F
R TG S 4 SR ST
kT123k‘r‘133 n i1 t i+1 i+1
_ 0
{Qf}i+1 :{F }

f i1
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2.2 Handling 2D Friction

According to Coulomb’s law of friction, the frictional force is applied from the pressure tube to
the node of contact on the fuel element opposite in direction to the motion and proportional to
the normal force between two surfaces. In the normal direction to the contacting surfaces, the
following equation of equilibrium hold true

{P}iv1 = {N}ipq (17)

where {P};,, is the summation of all external normal forces applied on that node of contact at
ti+1 and {N},;,; is the collective normal forces acting on the node of contact from the pressure
tube. Multiplying Eq. (17) by u, coefficient of friction we will obtain

u{N}iv1 — u{P}ivq = {0} (18)

In this paper, the kinetic coefficient of friction is used for both stiction and sliding states. Four
different scenarios are possible for the motion of the contact node at fuel element on the pressure
tube, forward slip, stick with the tendency of motion in forward, stick with the tendency of
moving backward and backward slip. In each possible state of motion frictional force may be
represented as

1) Forward slip: Aug, , >0, (Fp)iv1 = —(UN)i4q

2) Forward stiction: Aug, . =0, —(uN)j41 < (Fp)iy1 <0
3) Backward stiction: Aug, . =0, 0 < (Ff)iy1 < (UN) 41 (19)
4) Backward slip: Aug; , <0, (Fp)ip1 = (UN)iy1

States 1 and 2 in Eq. (19) represent the motion or tendency of motion in the tangential direction
where Aug, . = 0, and states 3 and 4 represent the motion or tendency of motion in the negative

tangential coordinate direction where Au,. . < 0. For the states 1 and 2, we have
g ti+1

(UN)is1 + (Fr)iv1 2 0 (20)

For this state we would like to introduce following two new variables,
(Bu)i41 = sup (Buy,, ,,0) Q1)
(8i+1 = WUN)iv1 + (Fpiva (22)

where sup is the supremum of a set of variables, (Au;);4; is the value of the incremental
displacement if it is moving in positive direction and (8);1 is the value of the slack force. It
could be verified that (Au;);;, and (§);4, are non-negative and satisfy the complementary
condition, which could be written as

Au, > 0, §=20, Aup.3=0 (23)

Now for states 3 and 4 in Eq. (19), which are describing the motion or tendency of motion of the
mass in negative tangent coordinate, Au, < 0, friction force is pointing toward positive tangent
direction. According to the Coulomb’s law of friction we may write,

7
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UN)iv1 — (Fp)i1 =0 (24)

We introduce following two new variables,
(A\{Lt)Hl = sup (—Auti+1, 0) (25)
(®i+1 = WN)iv1 = (Fr)ia (26)

Again (Au,);4; and (8);4, are complementary to each other and the state of frictional interaction
may be written as

Au; >0, §=0, Au.3s=0 27)
It can be verified that the incremental displacement in tangent direction could be written in terms
of supremum variables as

Au, = Au, — Au, (28)

Write incremental displacements in terms of supremum variables in Eq. (16),

K{AU - A\l//}iﬂ +{Q}is1 = {chr}i+1 + {Qf'r}i+1 (29)

Add Eq. (29) with Eq. (1_8) and subtract Eq. (29) from Eq. (18),
K{AU - AU}iH +{Q}is1=—{Qcr}.  + {Qf,r}i_l_l + {uN}ip1 — {uP}ise (30)

i+1

—K{AU = AU}, | = (@his1 = {Qerbyy, = {Qpr),,, + (Nisa — (WPYiss 3D

i+1
Substitute Eq. (22) and (26) into Eq. (30) and (31),

K{AU — AU}, +{Q}is1 = —{Qcr},,, + (8is1 — (1PYins (32)

i+1

—K{AU - A\l/]}iJr1 —{Q}ir1 = {Qcr)

i+1

+ {8}i41 — WP}iva (33)

The contact force from pressure tube acting on fuel element is modelled as a gap activated
spring. The contact force will present only when the initial gap is consumed. An auxiliary
coordinate y introduced to represent the position of the spring end plate. If the stiffness of the gap
activated spring is K equation of equilibrium at time t;,; may be written as

Kyiy1 =F, (34)

Considering Figure 1, the gap in the radial direction at time t;,; may be written as
gi+1 = Yi+1 —Ur; gt A (35)

where A is the initial gap, from Eq. (35) we may obtain
Yi+1 = gi+1 + Aurl’+1 +u,; — A (36)

In matrix form this may be written as
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1 0 0 0 O
AU) lo 1 o o o|(AU 0 (37)
AU;=[0 0 1 0 O[KRAU +{ 0 }
Ya, 0 0 0 1 0f\lygq, Uy, — A
1 0 -1 0 1
Write equations Eq. (32), (33) and (34) in matrix form,
1 0 0 0 1
K -k o](AU) (@) |0 1 0 0 —pul(5 (38)
-K K 0|jAU +{—Q}=0 0 1 0 —1f{3
o o0 Kkl 0 00 0 1 —puflk,
0 00 0 1
After some rearrangement we may obtain
) (ABny (39)
Sr _[Kn] AU ={Qn}
FCr gqr

Equation Eq. (39) along with conditions in Egs. (23) and (27) are the LCP. It was proven by Sha
et al. [6] that a unique solution exists and can be found if coefficient matrix is positive definite or
positive semi-definite. Here matrix [K,,] is a positive semi definite matrix.

3. Examples

In the first example a simply supported beam under a uniform load shown in Figure 3 is studied.
The beam is subjected to unilateral constraints at the midspan without friction. The beam is
modelled using 19 three-node finite elements. A uniformly distributed load of 400 N/m is
applied suddenly at time ¢ = 0. Results up to 0.1 seconds are obtained using the proposed method
with a time step of 0.1 ms. All other geometric and material properties are same as the second
example. Figure 4 represents the results for both 15 and 20 mm of initial gap. Good agreement
with Xu et al. [3] has been observed.

¥

400 N/m

— c — e — e ———— -— - Z

Initial Gap

o T,
Figure 3 Simply support beam under uniform load
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Figure 4 Displacement of the mid point (a) this paper, (b) Reference [3]

Xu et al. implemented Wilson 6 integration scheme in order to find the dynamic response of the
rod. Scheme presented by Xu et al. can only model the unilateral contact without friction. Model
presented in this paper is developed using Newmark integration scheme and will handle several
unilateral contact subjected to two-dimensional contact.

In the second example a beam at 6 o’clock position with the clamped-clamped boundary
conditions is studied. No structural damping is considered. The following harmonic excitations
are applied to the centre of the beam in the three coordinate directions as shown in Figure 5,

Qy = 5cos(wyt), Q, = —15cos(w,t) and Q,, = 8 cos(w,,t) where w, = 0.5rad/sec and
w, = w,, = 5rad/sec. Harmonic excitation is plotted in Figure 6 (a) and (b).

; Pressure Tube

QH’
z
AN . v
Midspan
Bearing pad
g p ¥
Cross section view . X
of midspan

Pressure Tube

Figure 5 Three external excitation applied at the centre of the rod

Local contact stiffness and coefficient of friction are chosen as K = 1.0E8 N/m, u = 0.5
respectively, and all geometric and material properties are given below:

Length of fuel element L = 0.5, Outside diameter of fuel element D, = 0.01308, Inside
diameter of fuel element D; = 0.01228, Inside diameter of pressure tube Dp; = 0.103,
Thickness of bearing pads t = 0.00145, Length of bearing pads L, = 0.0254, Location of first
bearing pad [; = 0.0445, Location of second bearing pad [, = 0.24765, Location of third
bearing pad I3 = 0.45080, Initial gap between fuel element and PT A= 0, Young’s modulus
E = 80e9, Shear modulus G = 26.2e9, Density of fuel element p = 7850.

10
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Figure 6 (c) and (d) shows the lateral, axial and torsional displacements of the beam at the
midspan; Figure 7 shows the normal contact forces. The fuel element is modelled using 19
higher order finite elements. We did not consider the effect of pellets in this example and fuel
element modelled as a hollow tube. One point of contact considered at the middle of central
bearing pad. Three sinusoidal excitations applied at the midspan as mentioned before. The
response was obtained for 20 seconds with a time step of 5 ms. The external excitation in the y
direction had been given a low frequency w, = 0.5 rad/s, compared to the bending and axial
excitations with an excitation frequency of 5 rad/s. With the procedure presented in this paper,
the frictional forces handled as a two-dimensional friction successfully. As it can be seen from
Figure 6 (c) and (d), sliding and stiction motion of the point of contact at the midspan observed
in both bending and axial displacement. For the first period of the motion contact occurs from
t = 0 till approximately t = 6.1 sec when fuel element separate from the pressure tube. In each
period of time that contact happens damping in sliding motion due to friction can be seen from
Figure 6 (c) and (d) in both axial and lateral displacements.

Harmonic excitations (N)
Harmonic excitations (N)

. .
10 12
time (s)

a
L x1o g x10 . .
—
— - — phi

[ d
4

£ E.

@ @

= =

@« @«

=3 g o ] e — - ) -

§ @

o o

@ & 2

a [=]
<
61

3 L s L , , L s s L -8 L L 1 1 L L L L L
2 4 3 5 10 12 14 16 18 20 2 4 3 B 10 12 14 16 18 20
time (s) time (s)
(c) (d)

Figure 6 (a) Harmonic excitations in x and y directions, (b) Axial and torsional harmonic
excitations (c) Lateral displacement in in x and y directions, (d) axial and torsional displacements
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Foros (N)

2 4 6 ] 10 12 14 16 18 20
time (s)

Figure 7 Normal contact forces

Small torsional dispalacment that observed in Figure 6 (d) is the result of coupling between
lateral and torsional displacement due to presences of bearing pads. ; Figure 7 shows the normal
contact forces for this particular example. It can be seen that the magnitude of the normal force
increases and then decreases during the contact period due to the external excitation in the Y
direction. These contact forces can be used to find the wear rate at the point of contact.

4. Conclusion

The Bozzak-Newmark relaxation-integration scheme implemented successfully to discretize the
equations of motion in the time domain for a single fuel element subjected to unilateral contact
and 2D frictional constraints. Through a variable transformation, contacts and their associated
frictional forces, the state of the system subjected to non-smooth constraints are reduced to a
LCP for which a solution may be obtained using the Lemke algorithm.

To model CANDU fuel bundle vibration, the proposed procedure is being implemented into a
computer code for modeling unilateral frictional contact between fuel elements through spacer
pads and also between fuel bundle and pressure tube through bearing pads.
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