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ABSTRACT — Thoria (ThO2) has several advantages over Urania (UO2) as a nuclear fuel; its 
higher thermal conductivity results in lower operating temperatures, and its higher melting point 
and chemical inertness promise better stability under postulated accident conditions. Thorium is 
a "fertile" material, breeding mainly fissile 233U as it is irradiated, making it more proliferation 
resistant. Thorium is also abundant as a natural resource, and is therefore an attractive future 
energy source. Past irradiation tests have shown that pellet microstructure greatly influences the 
irradiation performance of thoria fuels (e.g., fission-gas release is strongly influenced by the as-
fabricated fuel microstructure). The "DME-221" test, conducted at AECL's Chalk River 
Laboratories, was designed to demonstrate the superior irradiation performance of thoria fuels 
characterized by homogeneous, high-density microstructures. Eighteen DME-221 fuel elements 
were irradiated in the National Research Universal (NRU) loops in a 36-element demountable 
bundle. Six of the elements had pellets comprised of natural thoria (ThO2), and twelve 
comprised of thoria blended with 1.0 wt.% or 1.5 wt% 233U in {Th, U)02. Various power 
histories were achieved as a result of the varied initial fissile concentration. To date, DME-221 
thoria fuel has demonstrated excellent performance to burnups up to -930 MWhikg1TE (39 
GWd/tITE); fission-gas release is substantially lower than that expected from UO2 fuels 
experiencing similar operating histories. This paper hi . blights the fabrication, irradiation testing 
and post-irradiation examination of twelve DME-221 fuel elements. The remaining six DME-221 
elements are currently planned for irradiation in NRU to burnups up to 1500 MWhikgBE (42-63 
GWd/tITE). 

Introduction 

AECL has over 50 years experience with thoria fuel development, irradiation testing and 
performance assessments [1]. ThO2-based fuel has many advantages when compared to UO2 
fuel, a result of thoria's superior physical and chemical properties such as higher melting point, 
higher thermal conductivity, and greater chemical inertness relative to UO2. Previous studies 
have noted that ThO2-based fuel will release fewer fission products than UO2-based fuel 
operating under similar conditions [2]. 

The DME-221 experiment involves the fabrication, irradiation and post-irradiation examination 
(PIE) of eighteen demountable CANLUB-coated Zircaloy-4 elements fuelled with ThO2 and 
(Th, U)02 pellets. The objectives are: to compare the performance of ThO2 with UO2 fuel; show 
that the fuel's microstructure is crucial to performance improvement [3]; and determine fission-
gas release (FGR) from thoria fuels for three different power histories. The DME-221 elements 
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were irradiated on the outer ring of a CANDU-type demountable element (DME) fuel bundle in 
the Ul and U2 test loops of the National Research Universal (NRU) reactor at Chalk River 
Laboratories (CRL). This paper presents the post-irradiation examination (PIE) results for 
twelve DME-221 elements, irradiated at maximum sustained mid-plane element powers ranging 
from 36 kW/m to 55 kW/m, to burnups ranging from 360 MWh/kgHE (15 GWd/tITE) to 930 
MWh/kgITE (39 GWd/tITE). The remaining six elements are expected to continue their 
irradiation to proposed burnups of 1000 to 1500 MWh/kgITE (42 to 63 GWd/tITE). 

1. Fuel. Design and Fabricadon 

The DME-221 fuel was fabricated in the Chalk River Advanced Fuel Technologies (CRAFT) 
laboratories at CRL. The fabrication comprised six pellet types: natural ThO2 featuring standard 
length pellets (L/131 —1.3) and short pellets (LID —0.7); ThO2 + 1.0 wt.% 235U in heavy elements 
(HE) (standard L/13 and short L/D pellets); and ThO2 + 1.5 wt.% 235U in HE (standard L/13 and 
short LID pellets). Shorter-length pellets are expected to reduce sheath ridging at the pellet 
interfaces and improve the resistance of the fuel to stress-corrosion cracking (SCC) at high 
burnup. Enriched UO2 (93.1 wt.% 235U in total U) was used to achieve the target concentrations 
of 235U in the blended crh, u)02 pellets. The elements also contained plena (made of Zr-4) 
installed at one end to accommodate fission-gas release. Plena were 17 mm long in elements 
containing reduced LID pellets, and 24 mm long in elements containing standard LJD pellets. 

Previous fabrication experience at AECL has demonstrated that Th02-based fuels with high 
(?95% of theoretical) densities can be produced that contain micro-structural irregularities which 
affect fuel performance. In these cases, the granular structure of the press-feed was not destroyed 
during final pressing. The sintered pellets contained very dense regions, corresponding to the 
original press-feed granules, surrounded by porous regions. The irradiation performance of such 
fuels was below expectations with respect to fission gas release [3]. The fabrication route for 
DME-221 pellets was chosen to avoid producing this granular structure. The DME-221 fuel was 
fabricated to very high densities (98.7% of theoretical)2 with a homogenous microstructure. An 
image of standard-IJD DME-221 pellets, as well as the pre-irradiated fuel microstructure, are 
shown in Figure 1; minimal porosity and no residual granules can be observed in the as-
fabricated fuel. 

I/D is the ratio of pond length to diarrctcr. 
2 Thcorctical density apt= thorium dioxide —10.00 gicin3 at 298.15 1C. [2). 
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1 L/D is the ratio of pellet length to diameter. 
2 Theoretical density of pure thorium dioxide = 10.00 g/cm3 at 298.15 K [2].  
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Figure 1 Typical DME-221 Fuel Pellets are shown in the top image (standard-length 
pellets). Typical pre-irradiation porosity and fuel microstructure are shown in the bottom 

two images. As-fabricated grain size averaged — 6-8 um. 

2. Irradiation History 

Irradiation testing in the NRU loops is facilitated by the use of a fuel carriage that accommodates 
a string of six test bundles [4]. The centre element of CANDU-type bundles is replaced with a 
guide tube to accommodate the fuel carriage central tie rod which extends vertically through the 
central element position [4]. The flux shape along the string is roughly cosine, with the 
maximum flux slightly below centre line at bundle position #4 (Figure 2). 

The DME-221 elements experienced three different operating histories, based on the three initial 
fuel compositions (summarized in Table 1). The natural thoria-fuelled elements (four examined 
in the hot cells) were subject to a steadily increasing power history, as fissile 233U was produced 
in the fuel during irradiation. These elements achieved maximum sustained mid-plane powers 
ranging from 36 kW/m to 41 kW/m, to mid-plane burnups ranging from 361 MWh/kgHE (15 
GWd/tHE) to 619 MWh/kg1-IE (26 GWd/t1TE). 
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Figure 1  Typical DME-221 Fuel Pellets are shown in the top image (standard-length 

pellets). Typical pre-irradiation porosity and fuel microstructure are shown in the bottom 

two images. As-fabricated grain size averaged ~ 6-8 µm. 
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The Th02 + 1.0 wt.% 235U fuelled elements (three examined) were subject to a constant power 
history with maximum sustained mid-plane powers ranging from 40 kW/m to 46 kW/m (the 
point at which FGR in UO2 fuels starts to increase), to mid-plane burnups ranging from 499 
MWh/kgHE (21 GWd/tHE) to 839 MWh/kgHE (35 GWd/tHE). 

The ThO2 + 1.5 wt.% 235U fuelled elements (five examined) were subject to a declining power 
history with mid-plane beginning-of-life (BOL) powers between 52 kW/m and 55 kW/m (FGR in 
UO2 fuel is relatively large in this range, but expected to be lower in thoria fuels), to burnups 
ranging from 594 MWh/kgHE (25 GWd/tHE) to 929 MWh/kgHE (39 GWd/tHE). BOL powers 
decreased to mid-plane powers of 40 kW/m during the irradiation. 

Table 1 Summary of DME-221 Element Operating Histories 

DME-221 Fuel 
Composition 

Elements 
Examined 

Operating 
History 

Normalized* 
Maximum Normalized* Outer 

Element Burnup, 
MWh/kg BE 
(GWelit BE) 

Sustained Linear 
Power at Mid-Plane, 

kW/m 

Natural ThO2 4 Increasing 36 — 41 361 — 619 (15 — 26) 
ThO2 + 1.0 wt.% 235u 3 Constant 40 — 46 499 — 839 (21— 35) 
ThO2 + 1.5 wt.% 23$u 5 Decreasing 52 — 55 594 — 929 (25 — 39) 
* Normalized to Chemically-Measured Burnups 

The power history of DME-221 elements was calculated using AECL's BURFEL code [5]. 
Sections of fuel were removed from the mid-element location of DME-221 elements for burnup 
determination by 139La (measured by HPLC) and U isotopic analysis (measured by TIMS). The 
derived burnups based on the La concentrations were determined using WIMS and WOBI codes 
[6]. WIMS was also used to calculate burnup based on the U isotopic ratios. The 
BURFEL-calculated burnups were then normalized to the chemically measured ones, and the 
normalized data were used to plot the power history for the DME-221 elements. Figure 3 to 
Figure 5 illustrate the element power histories for each of the three fuel compositions. Maximum 
sustained power is defined as the highest power experienced by the fuel element for any 
sustained 12-hour period during a given burnup step. 
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Figure 2 A Schematic of a Fuel String in an NRU Test Section Showing Bundle Positions 
and Typical BURFEL-Calculated Flux Profile. DME-221 elements were irradiated on a 

CANDU-type demountable fuel bundle in position #3 in the NRU loops. 
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Figure 2  A Schematic of a Fuel String in an NRU Test Section Showing Bundle Positions 

and Typical BURFEL-Calculated Flux Profile. DME-221 elements were irradiated on a 

CANDU-type demountable fuel bundle in position #3 in the NRU loops.  
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Figure 3 Increasing Power History Experienced by DME-221 Natural Th02 Fuelled 
Elements. Two of four elements (all with similar power histories) are shown. 
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Figure 4 Constant Power History Experienced by DME-221 (Th,U)02 Elements with 1.0 
wt.% 235U in total RE. Two of three elements (all having similar power histories) are 

shown. 
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Figure 3  Increasing Power History Experienced by DME-221 Natural ThO2 Fuelled 

Elements. Two of four elements (all with similar power histories) are shown. 
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Figure 5 Declining Power History Experienced by DME-221 (Th,U)02 Elements with IZ 
wt.% 235U in total HE. Two of five elements (all having similar power histories) are shown. 

3. Post-Irradiation Examination 

3.1 Element Profilometry 

The outer elements were removed from the demountable bundle core, and profilometry was 
conducted in the CRL hot cells. The measured element diameters showed that the residual 
sheath strains were mainly compressive at the mid-pellet (MP) and pellet-interface (PI) locations 
for elements with mid-plane burnups < 600 MWh/kgHE. For elements achieving burnups of 600 
- 930 MWh/kgHE, MP sheath strains were negligible (-, 0 %), but slightly tensile at PI locations. 

The highest strains were observed in DME-221 elements BC17 and BC18, which experienced 
declining power histories from BOL powers of 53 kW/m and 52 kW/m, to burnups of 914 
MWh/kgHE and 903 MWh/kgHE, respectively. These elements had slightly tensile average MP 
sheath strains of +0.1% (maximum of +0.3%), with average PI strains of +0.4% (maximum 
+0.5%). Table 2 summarizes the residual mid-plane sheath strain results for the twelve examined 
DME-221 elements. Figure 6 compares average mid-pellet sheath strains from DME-221 
elements to that of UO2 elements with similar operating histories and burnup ranges. Overall, the 
DME-221 elements that experienced a declining power history with a relatively high BOL power 
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exhibited larger sheath strains, which tended to increase with burnup, as expected. DME-221 
elements with reduced-LJD pellets did not appear to exhibit any significant reduction in sheath 
strain at the mid-pellet or pellet interface regions compared to elements containing standard LID 
pellets. 

Overall, the DME-221 thoria-fuelled elements exhibited lower MP sheath strains compared to 
standard UO2 fuels with similar power histories (Figure 6). Purdy et al. [7] assessed 20 years of 
UO2 fuel irradiation data in CANDU power plants. The frequency distributions of average outer 
element MP strain data for normally operated UO2 bundles is +0.09% (standard deviation of 
0.19%) [7]. Outer element MP sheath strains for UO2 bundles within the normal operating 
envelope (discharged at burnups < 450 MWh/kgU) were mostly tensile (with 99% confidence, 
maximum sheath strains can be expected to reach 0.7%) [7]. Higher burnup natural UO2 fuels 
(500-800 MWh/kgU) exhibit MP sheath strains up to 1.5% [8]. The DME-221 sheath strain 
results suggest that Th02-based fuels can be irradiated at higher power ratings and for longer 
burnups than UO2-based fuels to produce the same dimensional changes. 

Table 2 Residual Sheath Strain at Mid-Pellet (MP) and Pellet Interface (PI) Locations 

DME-221 Fuel 
Composition 

Burnup Range, 
MWhilcgliE 
(GWd/tILE) 

Operating

History 

Sheath Strain 

Average 
MP (%) 

Average 
PI (%) 

Th02 361 — 619 (15 — 26) Increasing -0.3 to 0.0 -0.1 to +0.2 

Th02 + 1.0 we/0 235U 499 — 839 (21 — 35) Constant -0.4 to 0.0 -0.1 to +0.3 
Th02 + 1.5 wt% 235U 594 — 929 (25 — 39) Declining -0.2 to +0.1 0.0 to +0.4 
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element MP strain data for normally operated UO2 bundles is +0.09% (standard deviation of 

0.19%) [7].  Outer element MP sheath strains for UO2 bundles within the normal operating 

envelope (discharged at burnups < 450 MWh/kgU) were mostly tensile (with 99% confidence, 

maximum sheath strains can be expected to reach 0.7%) [7].  Higher burnup natural UO2 fuels 

(500-800 MWh/kgU) exhibit MP sheath strains up to 1.5% [8].  The DME-221 sheath strain 

results suggest that ThO2-based fuels can be irradiated at higher power ratings and for longer 

burnups than UO2-based fuels to produce the same dimensional changes. 

 

Table 2 Residual Sheath Strain at Mid-Pellet (MP) and Pellet Interface (PI) Locations 
 

DME-221 Fuel 

Composition 

Burnup Range, 

MWh/kgHE 

(GWd/tHE) 

Operating 

History  

Sheath Strain 

Average 

MP (%) 

Average 

PI (%) 

ThO2 361 – 619  (15 – 26) Increasing -0.3 to 0.0 -0.1 to +0.2 

ThO2 + 1.0 wt% 
235

U 499 – 839  (21 – 35) Constant -0.4 to 0.0 -0.1 to +0.3 

ThO2 + 1.5 wt% 
235

U 594 – 929  (25 – 39) Declining -0.2 to +0.1  0.0 to +0.4 
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Figure 6 Comparison of Average Mid-Pellet Sheath Strains in DME-221 Elements 
Compared to UO2 Outer Elements with Similar Burnup Ranges and Operating Histories. 

Error bars indicate the standard deviation from the average MP sheath strain value. 

3.2 Fission Gas Analysis 

Fission-gas release (FGR) is temperature-driven, originating mainly in the centre of fuel pellets 
where the highest temperatures are achieved, coinciding with grain growth, grain-boundary 
bubble formation, and swelling [8]. Some of the produced fission-gas (mainly xenon and 
krypton) ultimately migrates to the element internal void space. The FGR results for each of the 
three fuel compositions are given in Table 3. 

The DME-221 elements generally exhibited very low FGR (< 3%), attributed to low operating 
fuel temperatures resulting from the higher thermal conductivity, and to a dense, homogeneous 
microstructure. DME-221 elements irradiated to burnups < 600 MWh/kgI-IE, regardless of their 
power history or fuel composition, achieved FGR below 0.11%. Elements with burnups between 
840 MWh/kgI-IE and 930 MWh/kgI-IE showed a slight increase in FGR, ranging from -1.2% to 
2.8%. The highest FGR was observed in elements BC09 (2.8%) and BC17 (2.6%), both having a 
declining power history, and irradiated to burnups of -.930 MWIilkgHE and 914 MW1ilkg1TE, 
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respectively. Figure 7 compares DME-221 FGR to that of UO2 outer elements with similar 
operating histories; thoria FGR is observed to be significantly lower than UO2 FGR. 

Table 3 DME-221 Element Fission-Gas Release (FGR) 

Element 
Identity 

Fuel Composition 
Burnup 
Range 

(MWh/kgHE) 

Power 
History 
Type 

%FGR 
(Xe + Kr) 

BC03, BC04, 
BC05, BC06 

ThO2 —360 to 620 Increasing 0.05 to 0.1 

BC07, BC 13, 
BC14 

Th02 + 1.0 wt% 2350 —500 to 840 Constant 0.06 to 1.2 

BC09, BC 11, 
BC15, BC17, 
BC 18 

Th02 + 1.5 wt% 235U —595 to 930 Declining 0.08 to 2.8 
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Figure 7 Comparison of Fission-Gas Release % (FGR) at Maximum Sustained Linear 
Powers in DME-221 and UO2 Elements with Similar Operating Histories and Burnup 

Ranges. 
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3.3 Ceramographic Examination 

DME-221 fuel was examined for grain size and microstructural features. The as-fabricated grain 
size of DME-221 fuel pellets averaged 6 to 8 µm. In general, little or no grain growth was 
observed at the pellet centre or other radial locations in irradiated DME-221 fuel up to 930 
MWh/kgHE. Only a slight increase in grain size at the pellet centre was observed in the elements 
with declining power histories and relatively high BOL powers (52-55 kW/m). In comparison, 
UO2 fuels irradiated at powers — 50 kW/m have exhibited grain-growth factors of 1.5 at 450 
MWh/kgBE, to as high as 3.5 at 750 MWh/kgBE [8]. At 59 kW/m and 540 MWh/kgBE, grain-
growth factors of 3.5 have been observed in UO2 fuel [9]. More significant equiaxed grain 
growth at the pellet centre region would thus be expected in UO2 irradiated at powers —55 kW/m. 
Grain-growth factor is the ratio of the observed pellet-centre grain size to that at the pellet 
periphery, assumed to represent the as-fabricated pellet-centre grain size. 

Fuel temperature is the primary driving force for grain growth. The lower grain growth observed 
for DME-221 fuel compared to similarly operated UO2 fuel is likely attributable to the same 
properties identified for the lower gas release; higher thermal conductivity, and a dense, 
homogeneous microstructure. The fact that thoria is a more refractory material than UO2 may 
also be a contributing factor. Several ceramographic images depicting typical DME-221 fuel 
microstructure are shown in Figure 8. 
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Figure 8 Ceramographic Images Showing Typical DME-221 Irradiated Fuel 
Microstructure. Microstructure was observed to be similar for all three DME-221 fuel 

compositions. The sharp-angled pores are the result of grain pullout during sample 
preparation. 

4. Summary 

DME-221 thoria elements have exhibited excellent in-reactor performance, attributed to the 
fuel's dense, homogeneous, as-fabricated microstructure, and ThO2-based fuels' inherent 
material properties. 

The DME-221 elements exhibited lower sheath strains at the MP locations when compared to 
standard UO2 fuels with similar power histories. Residual sheath strains were mainly 
compressive at the mid-pellet (MP) and pellet-interface (PI) locations for elements for mid-plane 
burnups < 600 MWhilcgRE (-0.4% to -0.2% at MP; and -0.1% to 0.0% at PI). Elements with 
burnups of 600-930 MWMcglIE had negligible MP sheath strains, and slightly tensile strains at 
PI locations (+0.1% to +0.4%). The elements experiencing a declining power history (relatively 
high BOL power) had more significant sheath strains that increased with burnup. DME-221 
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elements with reduced-LID pellets did not appear to exhibit a reduction in sheath strain at the 
mid-pellet or pellet interface regions when compared to standard L/D pellets. 

Little to no grain growth at the pellet centre was observed in DME-221 fuels. Some grain growth 
was observed at the pellet centre region in elements with relatively high BOL powers of 

55 kW/m. Fission-gas release was significantly lower in DME-221 fuel than for similarly 
operated UO2 fuels (ranging from <0.1% to —3%), attributed to low centreline temperatures. FGR 
was negligible in DME-221 elements irradiated to burnups < 600 MWh/kgBE (— 0.1%). DME-
221 elements experiencing burnups ranging from 844) MWh/kgBE to 930 MWh/kgITE were 
observed to have slightly higher FGR (-1% to 3%). 

5. Conclusions 

Overall, the DME-221 elements exhibited excellent fuel performance for each of the three fuel 
compositions and operating histories when compared to that of similarly operated UO2. No 
obvious difference in performance was observed in DME-221 elements having standard and 
reduced LID pellets. The improvement in fuel performance parameters (i.e., benign FGR, low 
sheath strains, and low grain growth) observed in DME-221 fuel compared to similarly operated 
UO2, are a result of the material property differences between Th02-based fuel and UO2-based 
fuel. Given these observations, no operations-related failures should occur in thoria-based fuels 
having compositions and operating conditions similar to that of the DME-221 elements. 
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