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ABSTRACT 

A large break in the Primary Heat Transport System (PHTS) is considered each break with a size 
greater than the largest feeder diameter. The break discharges coolant to the containment, 
causing PHTS depressurization and consequent increase of temperature and pressure inside 
containment. The PHTS depressurization induces coolant voiding and, due to the positive 
reactivity void coefficient, power increases until reactor shuts down on a neutronic or a process-
conditioned trip parameter. During the power pulse phase, due to degraded fuel cooling, the 
sheath may fail. 

The heat transport system flow decreases faster in the core pass downstream the break. Some 
channels in the broken loop may become steam filled and others can experience stratified two-
phase flow, exposing some fuel elements to steam cooling, inducing fuel temperature rises. A 
rise in fuel temperature increases the internal fuel element gas pressure, whereas a rise in sheath 
temperature reduces the sheath strength. If the channel coolant pressure falls below the fuel 
element internal gas pressure, the sheath stress is increased. Increased internal fuel element gas 
pressure, along with the decreased coolant pressure, increases fuel sheath stresses. If fuel 
temperature becomes high enough, sheath failure can occur in a large number of fuel bundles, 
releasing fission products to the coolant. 

One of the challenges met during the fuel analysis was to set a credible, yet conservative 
"image" of the in-core fuel power/burnup distribution. Consequently, a statistical analysis was 
performed to find the best-estimate plus uncertainties map for the power/burnup distribution of 
all in-core fuel elements. For each power/burnup bin in the map, the fission product inventory 
and the fuel parameters at the end of the steady-state irradiation stage were computed. 
Afterwards, for each power/burnup bin in the map, the fuel behavior is simulated during the 
transient. Based on the fuel failure criteria, the failed fuel elements are identified, providing the 
total radioactive release to the coolant circuit, base for the final radioactive releases outside 
containment and dose assessment. 

The present paper reviews the methodology and results for typical Large Loss Of Cooling 
Accident with All Safety System Available. Methodologies used in the analysis and results, 
focused upon fuel behavior, are presented. 
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Introduction 

A large break for CANDU type of reactors is defined as a break with a size greater than the 
diameter of the largest feeder from the Primary Heat Transport System (PHTS). At CANDU 6 
reactor, a large break is any break larger than about 2.5% of the reactor inlet header cross-sectional 
area. 

The consequences arising from a postulated large break in the PHTS are examined since such 
event could lead to a degraded fuel cooling in a large number of fuel channels. The increase in fuel 
or sheath temperature could lead to fuel failure and, hence, to a consequent release of fission 
products to the coolant. Analysis of these breaks provides a basis for assessing the design and 
effectiveness of the safety systems performance. Three break locations are assumed in the Large 
Loss Of Cooling Accident (LOCA) type of analyses for CANDU reactors: Large break in the 
Reactor Outlet Header (ROH break); Large break in the Pump Suction Header (PSH break) or 
Large break in the Reactor Inlet Header (RIH break). 

1. Large Break LOCA — Event Sequence 

Wherever the postulated break is located, a certain sequence of events develops: 

a) A large break occurs in a large diameter pipe of the PHTS, discharging coolant to the 
containment. Pressure, temperature and humidity of the containment atmosphere increase. 

b) PHTS depressurization causes coolant voiding and, consequently, an increase in core 
reactivity. 

c) For large breaks exceeding certain limits, Reactor Regulating System cannot compensate the 
rate of reactivity increase. Power increases until the reactor shuts down on a neutronic or a 
process-conditioned trip parameter. The net effect is a short overpower pulse followed by 
power rundown to fission products decay power. 

d) Containment isolation is automatically initiated on a high reactor building pressure signal. The 
high reactor building pressure signal also conditions the Emergency Core Cooling System 
(ECCS) injection signal and the steam generator crash cooldown signal. 

e) PHTS loses inventory and depressurize at a rate depending on break size and location. 
f) PHTS flow decreases faster in the core pass downstream the break. If the break is large 

enough, the flow will reverse in the pass. For some break sizes, flow momentarily falls very 
low as the break upstream of the core pass balances the pumps. Some channels may become 
steam filled and others experience stratified two-phase flow, exposing some fuel elements to 
steam cooling. Fuel and sheath temperatures rise. A rise in fuel temperature increases the 
internal fuel element gas pressure, while a rise in the sheath temperature reduces sheath 
strength. Channel coolant pressure falls below the fuel element internal gas pressure, stressing 
the sheath. If sheath temperature becomes high enough, sheath failure can occur. 

g) Following the reactor trip, fuel temperature decreases as the heat generation rate decreases and 
the temperature profile in the fuel pin flattens out. 
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h) ECCS is activated when the broken loop pressure falls below specified setpoint and is followed 
by the isolation the two PHTS loops. 

i) Soon after PHTS loops isolation, ECCS injection refills the broken loop. As a result, fuel and 
sheath temperatures start to decrease. Depending on their initial temperatures, some fuel 
sheaths may fail due to thermal shock following rewet. 

j) If fuel sheath fails, some fission products are released to the coolant and are carried into 
containment through PHTS piping break. They can become airborne in the containment 
atmosphere although most of the soluble radioactive material is carried out with the liquid 
phase to the reactor building floor. Once in the containment atmosphere, fission products plate 
out on the walls and internal surfaces. Some are washed out by dousing and some will decay 
away. During containment over-pressure period, some airborne fission products could leak to 
the outside environment. 

k) Long term cooling of the broken loop is maintained by the ECCS flow through the circuit, with 
decay heat removed by ECCS heat exchangers and through the break while the intact loop 
cooling is maintained by thermosyphoning, with decay heat removal by steam generators. 

2. Trip Coverage 

The design trip parameters for Large LOCA events are the high neutron power and the high 
neutron power log rate. Other relevant trip parameters for these events could be high reactor 
building pressure, low PHTS pressure or low PHTS differential pressure. 

3. Methodology for Reactor Physics Analysis 

The power transient analyses are simulated by coupling the thermalhydraulic code CATHENA 
with the reactor physics code RFSP. 

3.1 Heat transport circuit model for thermalhydraulic simulations (CATHENA code) 

The thermalhydraulic part of the analysis is performed by using a two-loop, multiple average 
channel circuit model. Since power pulse depends mainly on voiding rate within channels 
downstream the break, these channels are grouped into seven average channels, based on channel 
power, channel elevation and header/feeder connection elevation. 

Analyses are performed for an aged plant, at 5500 FPD (about 18 years of service at 85% FP). 
Due to increase in bundle power and reduction in coolant flow and pressure, during the initial 
blowdown phase of the accident, many fuel elements will dry-out during the overpower transient. 
If, from thermalhydraulic point of view, the onset of dry-out would maximize fuel and sheath 
temperatures, from the neutronic point of view, dry-out reduces vapor generation (coolant voiding) 
and, in turn, the resulted power pulse decreases. Thus, in a conservative manner, during blowdown 
phase, complete dry-out was assumed in the thermalhydraulic analysis. 
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3.2 Core model for neutronic calculations (RFSP code) 

For the reactor core at equilibrium, the starting point for a Large LOCA transient is achieved in 
several steps. From a time-average calculation, an equivalent instantaneous core configuration is 
obtained (reproducing the time-average power distribution, burnup distribution and core 
reactivity). Then, a long shutdown, followed by a restart to near full power is simulated. The long 
shutdown simulation is needed to maximize the poison concentration within moderator ( — 2.3 ppm 
of boron), as the presence of poison increases void reactivity effect during LOCA. The reactor 
power level at the moment of LOCA initiation was determined by imposing a side-to-side power 
tilt of about 8%. The break is assumed to occur on the high-tilt side of the core, conservatively 
enhancing void reactivity and power pulse. 

4. Methodology for Thermalhydraulic Analysis (Circuit and Single Channel) 

The thennalhydraulic response of the plant during the imposed transient is simulated using the 
thermalhydraulic code CATHENA. The heat transport circuit model consists of two loops and 
includes the PHTS, the steam and feedwater systems, part of the reheater drains system, part of the 
blowdown system and the ECCS. Seven average channels in parallel are represented on each of the 
four core cooling passes. 

For the Single Channel Analyses, a number of six channels are modeled in CATHENA: A9, 
B10, 06, 06-mod, S10 and W10. The selection is based on channel elevation, channel power and 
header/feeder connection elevation. Note that channel 06-mod has the same geometry as channel 
06 but the channel power and powers on the two central bundles are modified to the licensing 
limits of 7.3 MW/channel and 935 kW/bundle, respectively. Each model includes the feeders, end 
fitting and fuel channel. The inlet and outlet header conditions, imposed as boundary conditions, 
are taken from circuit simulations. 

For equilibrium core, a number of three transients were analyzed: 
• 100% ROH break, 
• 35% RIH break, 
• 50% PSH break. 
Mentioned locations and sizes for the break are selected from a break survey, with maximum 

time in stagnant conditions and maximum sheath temperature as selection criteria. 

5. Methodology for Fuel Behavior Analysis 

5.1 Analysis steps 

Since intact loop is expected to be well cooled, the objective of the fuel analysis will be to 
estimate the quantity and timing of fission products release from failed fuel to coolant in the 
broken loop. The interaction between codes is presented in Figure 1. 
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Activation of shutdown systems and ECCS ensures that the period of fuel heat-up will be short 
and the extent of fuel failures will be, likewise, limited. If sheaths fail, fission products from those 
fuel elements are available for release. However, sheath failure does not imply immediate release 
of fission products from grain surface or from within grains. Releases from grain to gap are 
temperature and time dependent. For large breaks, where fuel heat-up period is not long, release of 
fission products from grain surface or from grain boundary is expected to be less than 1% of the 
total inventory within pellet. Moreover, free gap inventory is not released immediately following 
sheath failure. Examinations of fuel elements with high gas release, operated at high powers, have 
shown deposits of some fission products on the sheath inside surface. Iodine is expected to 
chemically combine with Cs and be retained on fuel and sheath surfaces. Noble gases, such as Kr 
and Xe, are expected to be released mostly at the time of sheath failure, since they are not 
chemically active. 

Calculation of fission products release is done by determining the number of failed fuel 
elements and the timing of failure. Conservatively, it is assumed that radioactive release from 
failed fuel element consists of the total gap inventory plus 1% of grain inventory. Also, it is 
assumed, in the same conservatively manner, that release occurs at the time of failure. 

Basic steps of a fuel failure analysis are the following: 
1. A preliminary Sensitive Analysis on fuel design parameters is necessary for evaluating 

their impact on gaseous fission products fractional release from fuel matrix to the gap. Fuel 
design parameters are modified within a ±2a range and the combination that maximizes the 
fractional release is selected to be further used in fuel behavior simulations with 
ELESTRES. 

2. Obtain power/burnup distribution of the in-core fuel elements. This distribution must be a 
consistent "image" of the reactor core during steady operation at full power. 

3. Derive a credible, yet conservative, set of irradiation histories (linear power vs. burnup) for 
all in-core fuel elements that should cover "real" histories under normal operating 
conditions. The irradiation histories will be produced based on the so-called Limiting 
Overpower Envelope (LOE). 

4. Evaluate fission products inventory (total and within gap) for fuel elements grouped in each 
bin of the power/burnup distribution. 

5. Predict power/burnup distribution of the fuel elements expected to fail, based on the Fuel 
Failure Threshold methodology. 

5.2 Sensitive analysis on fuel design parameters 

The result of the sensitive analysis on fuel design parameters is given in Table 1. 

5.3 Power/Burnup distribution of in-core fuel elements 

During reactor operating history, fuel elements experience a wide spectrum of power/burnup 
values, while irradiation changes continuously. If an accident analysis is to be performed then a 
period reasonably long of the reactor lifetime must be analyzed. It means that several millions of 
simulations are required to study fuel behavior for all in-core fuel elements — obviously, an 
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unreasonable time consuming process. To avoid it, the alternative is to derive, by a statistical 
analysis, the most "representative", yet conservative, power/burnup distribution of the fuel 
elements within reactor core. An analysis extended over two years of operation gives a consistent 
"image" of the fuel elements distribution within an equilibrium core, at full power, valid at any 
moment of the reactor lifetime. 

Reactor operation is routinely tracked, every few days of operation at high power, by core 
simulations performed with the RFSP code. The results obtained from each simulation are used 
to plot the number of fuel elements in each bin of a linear power vs. burnup map. The ranges for 
fuel element linear power and burnup were selected to cover all possible values during reactor 
operation at full power: 1 — 65 kW/m, in steps of 1 kW/m, for linear power and 
10 — 270 MWh/kgU, in steps of 10 MWh/kgU, for burnup. A statistical analysis was performed 
on the set of power/burnup maps (one map for each core simulation). Finally, the power/burnup 
Best Estimate Distribution (BED) of the fuel elements within the reactor core was obtained by 
plotting the average number of fuel elements in each power/burnup bin. The corresponding 
standard errors were also calculated to be used in obtaining the best estimate plus uncertainty 
map — the Limit Estimate Distribution (LED). Figure 2 gives the LED map, with a 95% level of 
confidence. 

To account for the errors in power calculation with RFSP, the fuel elements powers, obtained 
from core simulations, are, conservatively, increased by 3%, producing the map for 103% FP, to 
be used in further fuel behavior analyses (Figure 2). 

5.4 Limiting overpower envelope (LOE) 

Both thermo-mechanical behavior and radioactive nuclide inventory of a fuel element under 
normal operating conditions are predicted by the ELESTRES computer code and depend on 
irradiation history (linear power vs. burnup). Since the number of ELESTRES simulations 
necessary to cover all possible irradiation histories is unreasonable high, the alternative is to 
derive a limited set of power/burnup histories, consistent with the real ones occurring in-core. 

The curve plotting maximum fuel element linear power reached in each burnup bin in the 
LED map is the so-called Reference Overpower Envelope (ROE). Since this curve is derived 
from a limited number of core simulations, it is possible for some fuel elements to exceed it, 
during the reactor lifetime, for a short time, due to unusual or abnormal fuelling or due to short-
term power control transients. However, throughout reactor lifetime, most of the in-core fuel 
elements are expected to have their irradiation histories covered by ROE. 

Starting from ROE, the so-called Limiting Overpower Envelope (LOE) is produced by 
scaling ROE in the way its peak corresponds to the linear power on an element from the outer 
ring of a bundle, operating at the license limit of 935 kW/bundle. 

It is assumed that the irradiation history for any in-core fuel element, at any time in the 
operating history, follows LOE shape. Thus, scaling LOE to the current linear power and burnup, 
the irradiation history can be derived for all in-core fuel elements (Figure 3). 
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standard errors were also calculated to be used in obtaining the best estimate plus uncertainty 
map – the Limit Estimate Distribution (LED). Figure 2 gives the LED map, with a 95% level of 
confidence. 

 
To account for the errors in power calculation with RFSP, the fuel elements powers, obtained 

from core simulations, are, conservatively, increased by 3%, producing the map for 103% FP, to 
be used in further fuel behavior analyses (Figure 2). 
 
5.4 Limiting overpower envelope (LOE) 

 
Both thermo-mechanical behavior and radioactive nuclide inventory of a fuel element under 

normal operating conditions are predicted by the ELESTRES computer code and depend on 
irradiation history (linear power vs. burnup). Since the number of ELESTRES simulations 
necessary to cover all possible irradiation histories is unreasonable high, the alternative is to 
derive a limited set of power/burnup histories, consistent with the real ones occurring in-core. 

 
The curve plotting maximum fuel element linear power reached in each burnup bin in the 

LED map is the so-called Reference Overpower Envelope (ROE). Since this curve is derived 
from a limited number of core simulations, it is possible for some fuel elements to exceed it, 
during the reactor lifetime, for a short time, due to unusual or abnormal fuelling or due to short-
term power control transients. However, throughout reactor lifetime, most of the in-core fuel 
elements are expected to have their irradiation histories covered by ROE.  

 
Starting from ROE, the so-called Limiting Overpower Envelope (LOE) is produced by 

scaling ROE in the way its peak corresponds to the linear power on an element from the outer 
ring of a bundle, operating at the license limit of 935 kW/bundle. 

  
It is assumed that the irradiation history for any in-core fuel element, at any time in the 

operating history, follows LOE shape. Thus, scaling LOE to the current linear power and burnup, 
the irradiation history can be derived for all in-core fuel elements (Figure 3). 
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5.5 Fuel failure threshold 

For a given burnup, fuel failure threshold is given by the maximum linear power for which 
a fuel element, operating under the accident transient conditions, is predicted not to fail 
(Figure 2). Fuel element behavior during accident is simulated by the ELOCA computer code 
using as input data: 
• pre-transient fuel element thermo-mechanical data supplied by ELESTRES simulations (note 

that these simulations provide also the fission products inventories within gap and pellet), 
• transient thermalhydraulic boundary conditions (coolant temperature, coolant pressure and 

heat transfer coefficient from sheath to coolant) predicted by a Single Channel Analysis 
(using CATHENA code). Conservatively, it is assumed that all in-core fuel elements will 
experience the conditions from top, outer ring, fuel element of bundle 7, in the 06-mod fuel 
channel. 

Among the results of the transient simulations, the ELOCA code calculates: fuel 
temperature, sheath temperature, sheath strains, pressure within gap, sheath oxidation level. 
Based on ELOCA simulations results, simple and conservative criteria are used to determine 
whether a fuel element fails or not. They are based on experimental data and experience in 
reactor operation. Fuel sheath is considered to remain intact if the followings are satisfied: 

a) No fuel centerline melting. A fuel element is assumed to fail if fuel centerline melting is 
reached. Failure occurs due to volume expansion, causing excessive sheath strain. 

b) No excessive diametral strain. Uniform sheath strain shall remain less than 5% for sheath 
temperatures lower than 1000 °C. 

c) No significant cracks in the oxide surface. Uniform strain shall remain below 2% for sheath 
temperatures higher than 1000 °C. 

d) No oxygen embrittlement. Oxygen concentration shall remain less than 0.7 w% over half of 
the sheath thickness. 

e) No sheath failure by beryllium-braze penetration at bearing pad and spacer pad locations. 

5.6 Transient fission product release 

This part of the analysis uses the results of the fuel failure threshold calculation. Release is 
estimated by summing the contribution from all fuel elements predicted to fail (above the failure 
threshold curve). 

6. Results 

Figure 4a and 4b show some examples for fuel sheath behavior during the 100% ROH break 
transient for two different burn-up values. The first case (Figure 4a) corresponds to a low 
relatively low burnup. Even the fuel sheath temperature increased significantly during the 
transient, fuel sheath failure did not occur until the strain increased above the 2% limit 
(significant cracks in the oxide surface). For the second case (Figure 5b), a larger burnup case 
was considered. For this case, the fuel sheath strain is relatively high but fuel sheath failure 
occurred only when the fuel sheath temperature increased over the 1000°C limit. 
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that these simulations provide also the fission products inventories within gap and pellet), 
• transient thermalhydraulic boundary conditions (coolant temperature, coolant pressure and 

heat transfer coefficient from sheath to coolant) predicted by a Single Channel Analysis 
(using CATHENA code). Conservatively, it is assumed that all in-core fuel elements will 
experience the conditions from top, outer ring, fuel element of bundle 7, in the O6-mod fuel 
channel. 

 
 Among the results of the transient simulations, the ELOCA code calculates: fuel 
temperature, sheath temperature, sheath strains, pressure within gap, sheath oxidation level. 
Based on ELOCA simulations results, simple and conservative criteria are used to determine 
whether a fuel element fails or not. They are based on experimental data and experience in 
reactor operation. Fuel sheath is considered to remain intact if the followings are satisfied: 
 
a) No fuel centerline melting. A fuel element is assumed to fail if fuel centerline melting is 

reached. Failure occurs due to volume expansion, causing excessive sheath strain. 
b) No excessive diametral strain. Uniform sheath strain shall remain less than 5% for sheath 

temperatures lower than 1000 ºC. 
c) No significant cracks in the oxide surface. Uniform strain shall remain below 2% for sheath 

temperatures higher than 1000 ºC. 
d) No oxygen embrittlement. Oxygen concentration shall remain less than 0.7 w% over half of 

the sheath thickness. 
e) No sheath failure by beryllium-braze penetration at bearing pad and spacer pad locations. 
 
5.6 Transient fission product release 
 
      This part of the analysis uses the results of the fuel failure threshold calculation. Release is 
estimated by summing the contribution from all fuel elements predicted to fail (above the failure 
threshold curve). 

 
 
6. Results 
 

Figure 4a and 4b show some examples for fuel sheath behavior during the 100% ROH break 

transient for two different burn-up values. The first case (Figure 4a) corresponds to a low 

relatively low burnup. Even the fuel sheath temperature increased significantly during the 

transient, fuel sheath failure did not occur until the strain increased above the 2% limit 

(significant cracks in the oxide surface). For the second case (Figure 5b), a larger burnup case 

was considered. For this case, the fuel sheath strain is relatively high but fuel sheath failure 

occurred only when the fuel sheath temperature increased over the 1000
0
C limit.   
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Figure 5a and 5b show some examples for fuel sheath behavior during the 35%RIH break 
transient for two different burn-up values, similar to the previous case. In the first case (Figure 
5a), even the fuel sheath temperature increased significantly, fuel failure did not occur because 
the fuel sheath strain remained low over the analyzed period. For the second case (Figure 5b), 
even the fuel sheath strain increased significantly from the beginning of the transient, fuel sheath 
failure occurred only when the fuel sheath temperature increased over the 1000°C limit 
(significant cracks in the oxide surface). 

Similar methodology has been used to evaluate fuel behavior in case of 50% PSH break. 

The entire distribution of fuel pins burnups and linear powers was analyzed and, for each 
case, the time when the fuel sheath failure occurred has been recorded. Based on the specific 
conditions for that fuel pin, radioactive release from failed fuel element consists of the total gap 
inventory plus 1% of grain inventory. Conservatively, it was assumed that releases occur at the 
time of fuel sheath failure. Figure 6 presents the time evolution of the 1-131 releases during each 
transient. The maximum release are obtained for the case of 100% ROH break. Fission product 
releases has been used for detailed containment analyses and dose calculations. 

7. Conclusion 

The paper presented a review of the methodology used to analyze a Large LOCA event for 
Candu 6 reactor with all safety systems available. Typical results for critical breaks were 
presented from the perspective of the fuel behavior and fission product releases. 

Table 1— Results of Sensitive Analysis on fuel design parameters 

Parameter Max. Temp. Max. Strain Max. Inventory 

Pellet Diameter - - MAXIMUM 
Dish Depth - minimum minimum 
Land Width - MAXIMUM MAXIMUM 
Pellet Density minimum MAXIMUM minimum 
Pellet Roughness MAXIMUM minimum MAXIMUM 
UO2 Grain Size - minimum minimum 
Pellet Stack Length minimum MAXIMUM MAXIMUM 
Axial Clearance - minimum minimum 
Radial Clearance - minimum minimum 
Sheath Wall Thickness MAXIMUM minimum MAXIMUM 
He Fraction in the filling gas minimum minimum minimum 
Sheath Roughness MAXIMUM MAXIMUM MAXIMUM 
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Figure 5a and 5b show some examples for fuel sheath behavior during the 35%RIH break 

transient for two different burn-up values, similar to the previous case. In the first case (Figure 

5a), even the fuel sheath temperature increased significantly, fuel failure did not occur because 

the fuel sheath strain remained low over the analyzed period. For the second case (Figure 5b), 

even the fuel sheath strain increased significantly from the beginning of the transient, fuel sheath 

failure occurred only when the fuel sheath temperature increased over the 1000
0
C limit 

(significant cracks in the oxide surface).  

 

Similar methodology has been used to evaluate fuel behavior in case of 50% PSH break.  

 

The entire distribution of fuel pins burnups and linear powers was analyzed and, for each 

case, the time when the fuel sheath failure occurred has been recorded. Based on the specific 

conditions for that fuel pin, radioactive release from failed fuel element consists of the total gap 

inventory plus 1% of grain inventory. Conservatively, it was assumed that releases occur at the 

time of fuel sheath failure. Figure 6 presents the time evolution of the I-131 releases during each 

transient. The maximum release are obtained for the case of 100% ROH break. Fission product 

releases has been used for detailed containment analyses and dose calculations.  

 

 

7. Conclusion 
 

    The paper presented a review of the methodology used to analyze a Large LOCA event for 

Candu 6 reactor with all safety systems available. Typical results for critical breaks were 

presented from the perspective of the fuel behavior and fission product releases.   

 

 

Table 1 – Results of Sensitive Analysis on fuel design parameters 
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Max. Temp. Max. Strain Max. Inventory 

Pellet Diameter - - MAXIMUM 

Dish Depth - minimum minimum 

Land Width - MAXIMUM MAXIMUM 

Pellet Density minimum MAXIMUM minimum 
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Figure 4a – Sheath temperature and strain  for 100% ROH break              Figure 4b – Sheath temperature and  strain  for 100% ROH break 
                                 (burnup = 60 MWh/kgU)                                                                                     (burnup = 140 MWh/kgU) 
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Figure 6 — 1-131 inventory release during different accident scenarios 
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Figure 6 – I-131 inventory release during different accident scenarios 
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