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ABSTRACT 

The first phase of the feasibility study of using a Multiphysics Object-Oriented Simulation 
Environment (MOOSE) for modeling a CANDU fuel element is presented. A two dimensional 
model of a fuel pellet and sheath was created to examine the contact algorithm within MOOSE. 
The results obtained show the expected behaviour of contact pressure and penetration in 2D. 
Preliminary results for a 3D model of a quarter fuel pellet and sheath are provided but at present 
contain anomalies currently being investigated. The next steps in the feasibility study are outlined. 

1. Introduction 

Predictive modeling capabilities provide valuable insight into nuclear fuel behaviour from the 
perspectives of the industry and regulators. Computational constraints arise when the geometrical 
size and physical complexity of the model increase. Multiple computational models have been 
generated that are detailed in either geometry or physics but not both simultaneously because of the 
difficulty and cost associated with large complex models using current commercial software. For 
example the finite element analysis package ANSYS requires a (High Performance Computer) HPC 
license to run on multiple cores. The cost of this license increases as the number of cores to be used 
increases. 

A variety of researchers have developed finite element models for predicting the behavior of 
nuclear fuel of varying geometrical size and physical complexity using commercial software. 
Prudil et al. have created a physically complex model involving heat generation and transport, 
thermal expansion, elastic strain, densification, fission product swelling, contact, grain growth, 
fission gas release, gas and coolant pressure and sheath creep of a quarter cross-section of a fuel 
pellet and sheath in the radial and axial dimensions. The results obtained were in excellent 
agreement with experiment and Industry Standard Toolset ELESTRES [1]. Bell et al. examined the 
thermal deformation of an entire 37 CANDU fuel bundle. The fuel elements were modeled using 
beam elements, the bearing and spacer pads were ignored, and inter-element contact was not 
modeled. Average fuel temperatures were in reasonable agreement with ELESTRES and bundle 
deformation results were in excellent agreement with the BOW code and out of reactor experiments 
[2]. Williams et al. at Atomic Energy of Canada Limited (AECL) have developed a complex-three-
dimensional model of a quarter of a fuel element using ANSYS. Results are in good agreement 
with experimental results however convergence issues are encountered when the sheath detaches 
from the pellets during cooling [3]. The final model of great interest to the industry is a full 37-
element bundle model, with inter-element contact as well as the details of the pellets in each fuel 
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element, with computational fluid dynamics (CFD) used for fuel subchannel conditions. Although 
the models described above are useful and correct for their particular application, they cannot be 
extended to geometric large and physically complex models due to the numerical instabilities 
introduced, or computational resources required using the software employed. As the geometrical 
size of the model increases, the amount of physics can be included must decline. Therefore, a more 
computationally efficient and robust solution method is required. 

Idaho National Laboratory (INL) has developed the MOOSE framework used for solving fully 
coupled differential equations built upon a Jacobian Free Newton-Krylov (JFNK) method. The 
MOOSE framework is inherently parallel allowing for large models to be run on multiple 
processors with no additional cost. To determine the capabilities of MOOSE, an analysis of the 
contact algorithm employed was completed. The dependence of the interpenetration of the pellet 
and sheath, and the interfacial pressure between the two bodies as a function of the penalty factor 
was determined for both cases in 2D and 3D. The penalty factor is the spring constant of the 
artificial spring that is introduced between the contacting surfaces, which relates the 
interpenetration distance to the contact force. Then using the nodal area of each individual node, 
the contact pressure at that location can be determined from the contact force. Temperature profiles 
were also produced. The preliminary results of this analysis are provided in this paper. 

2. The Computational Framework 

It is important to note that MOOSE is only a computational framework to solve complex 
physics problems and contains no physics of its own. The kernels, boundary conditions, and 
material properties are contained within other applications built upon the MOOSE framework. 
The developers of MOOSE insist that any application built upon the framework is also given an 
animal name. The Extended Library of Kernels (ELK) houses general physics that is applicable 
to a variety of research fields such as solid mechanics, Navier-Stokes, heat transfer and contact. 
Built on top of ELK is FOX which is a more specialized library containing general nuclear 
performance equations. It is upon FOX that the HORizontal nuclear fuel Simulation 
Environment (HORSE) developed within this work is being built. Additional MOOSE based 
applications are built upon ELK that examine problems in a variety of fields of science and 
engineering including but not limited to, reactive transport and microstructure evolution. 

Current commercial software packages such as ANSYS and COMSOL use the Newton-
Raphson method to solve the system of fully coupled nonlinear equations. The Newton-
Raphson technique has fast convergence properties but requires the analytical computation of 
what is known as the Jacobian matrix, in which elements are analytical derivatives of every 
nonlinear equation with respect to every field variable in the system. To avoid the large 
computational requirements to perform analytical derivatives and to store the Jacobian, 
MOOSE uses what is known as a Jacobian-Free Newton Krylov (JFNK) technique for solving 
the system of equations. The details of the Jacobian-Free technique are given in the following 
subsections. 
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2.1 Newton's Method 

Newton's Tithed is a root finding method of solving nonlinear equations. For a nonlinear 
equation of a single variable Newton's method yields 

xn.ki = x.„ + (1) 

where x, is the current value of the variable, x,,+2 is the next iteration of the variable and 

x — „„ f •(xn) 
f (x„) 

For a single variable it is quite simple to solve this equation, computational constraints can 
become a factor when solving a system of nonlinear equations as one obtains 

(2) 

ifitiettn+1. —R(Itn) (3) 

where R is the residual vector given by the weak form of each nonlinear equation and J is the 
Jacobian matrix with it elements given by 

aRi(u.)
Ar au; (4) 

It can be seen from equation (4) that the Jacobian matrix is a complex object to find The 
elements of the Jacobian are given by taking the partial derivative of each nonlinear equation in 
the system with respect to each variable being solved for in the system. Derivative calculations 
can be difficult and error prone. Therefore, a method that eliminates the need to solve for the 
Jacobian explicitly is desired. Equation (3) is essentially a system of linear equations that need 
to be solved to obtain 6u, _1 which is then used to solve the nonlinear system as given by 
equation (1) but in vector form. The system of linear equations is solved using a Krylov solver. 

2.2 Krylov Method 

MOOSE employs the Generalized Minimized Residual (GMRES) iterative Krylov solver. In 
this method the representation of the solution to the linear system of equations is given by 

64 +1 = aoro + a1 Jr0 + agr o + ...+ aker o (5) 

where k is the Krylov iteration number. Using equation (5), the Krylov method is iterated until 
the right-hand side of equation (3) is within some specified tolerance of zero. By examining 
equation 5 it can be seen that for every Krylov iteration an additional term is added to the right 
hand side of the equation. Once that is achieved the nonlinear step is said to have converged. 
Equation 5 also illustrates that only the action of the Jacobian on a vector is required which can 
be approximated by a finite difference of the form [4] 
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R(u + sv) — R(u) 
Jv •-• (6) 

where, 

1 
VN 

NIIvIIzX 
but (7) 

and b =1,p x 10-9, is the number of unknowns, and. v is a Krylov vector (i.e. v E 0,jr„ 
J = r„ ...)). The advantage of using this approximation is that a large amount of computational 
time is saved as analytical derivatives are not required to compute J and no memory space is 
needed to store the potentially large J matrix. However, since the GMRES solver stores all of 
the previous Krylov vectors in memory, it is necessary to minimize the number of Krylov 
iterations to solve the linear system of equations [5]. 

2.3 Preconditioning 

Minimization of the Krylov iterations is accomplished by using right preconditioning. For each 
Krylov iteration preconditioning is achieved by solving 

flu c)P -1P6u;;+1 = —R(un (8) 

where P represents the preconditioning matrix and P -1 the inverse of the preconditioning 
matrix. Right preconditioning is achieved through a two-step process. The first step is to solve 

J(41`)P-lw = —R(41`) (9) 

for w, Then solve 

p - l w

for „which yields the right preconditioned form of equation 6 given by [4] 

JP-lv sk4
R(u + EP -1v) — R(u) 

(10) 

By choosing the correct preconditioner -1 the number of Krylov iterations in the GMRES Tithed 
can be minimized. The difficulty that arises is to choose the correct type of preconditioner for the 
nonlinear system under consideradon. There are many options typically used such as Newton-
Krylov-Schwarz, Multigrid and physics-based preconditioners [4]. A common physics based 
preconditioner is operator splitting. Operator splitting refers to the splitting of the solution process 
based on different types of physics [6] The types of preconditioning offered in MOOSE are 
included in the Portable, Extensible Toolkit for Scientific Computation (PETSc) library. The 
details of the different preconditioners can be found in the PETSc User Manual [7]. In the contact 
analysis completed in this work a Single Matrix Preconditioner (SMP) was used. The MOOSE 
developers advise new users to use the default block diagonal preconditioner until convergence 
issues are encountered [8]. The SMP was chosen for this work because convergence issues were 
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being encountered when using the default preconditioner. The choice of SMP over other available 
preconditioners was that it has been used in numerous example problems of the MOOSE based 
application BISON, which simulates the nuclear fuel performance of light water reactors fuel rods 
and other fuel types. 

3. Assessment Methodology 

The first step of the feasibility analysis was to examine the robustness and behaviour of the contact 
algorithm employed in MOOSE. To complete the analysis, both a two-dimensional and three-
dimensional model were produced to determine if the contact algorithm behaved differently in the 
different dimensions. Both models contained constant material properties and heat generation to 
isolate the contact behaviour from other effects such as temperature dependent material properties, 
non-uniform heat generation. For the contact analysis, constant material properties were used. The 
next subsections provide in detail the geometry and mesh, material properties, and boundary 
conditions for both the two and three-dimesional cases. 

4. Model Development 

In thermomechanical modeling the variables of interest are temperatures and displacements. 
Temperature is determined using energy conversation through the heat conduction equation 
given by 

dT 
pCp + v • q — ef t' = 0 (12) 

where 
q = —k7T (13) 

and p is the density, Cp is the specific heat, and k is the thermal conductivity of the material. 

In the internal heat generation term ef is the energy produced per fission within the fuel and 
is a volumetric fission rate that is a function of space and time. Momentum conversation is 
determined at each time increment by Cauchy's equation which states 

—g=0  (14) 

where c is the Cauchy stress tensor given by 

F a XX a XZ 

)rx
YY yz 

zz 

(15) 

and g is the gravity force. The displacement field u can be determined from strains using the stress-
strain relationship for the material. These fully coupled equations are solved simultaneously at each 
mesh point for each time increment until a converged solution is achieved [9]. 
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4.1 Two-Dimensions 

4.1.1 Geomtery and Mesh 

The model analyzed in two dimensions was an axial cross section of a pellet of nuclear fuel and 
sheath with a helium filled gap. A mesh of 1360 quadrilateral elements was created and trials were 
completed for first (1481 nodes) and second (4321 nodes) order elements. Second order elements 
add midside nodes to all edges of an element. Through the thickness of the sheath four elements 
were used to accurately determine the stresses and strains within the material [10]. Figure 1 (a) 
shows the geometry with dimensions and (b) shows the mesh. 
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Figure 1: (a) 2D geometry with dimensions, (b) Quadrilateral mesh for 2D contact analysis. 

4.1.2 Material Properties 

The contact analysis contained three materials, UO2 fuel, Zircaloy 4 sheath, and helium filled gap. 
Table 1 provides the material properties used for the fuel and sheath. Note that constant properties 
are currently used to isolate contact modeling from other effects. 

Table 1: Material properties used in 2D contact analysis for UO2 fuel and zircaloy-4 sheath 

Property Fuel Sheath 
Density (kg m'') 10431.0 6551.0 
Young's Modulus (GPa) 180 70 
Poisson's Ratio 0.3 0.3 
Thermal Expansion 
Coeffcient (I(4) 

13.9x1e 5.7x10-6 

Thermal Conductivity 
(W m' K-') 

3 16 

Specific Heat (J m'31(4) 320 330 
Linear Power* (kW m') 45 - 
*The linear power was converted to a volumetric heat generation rate applied uniformly within the fuel. 
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were used to accurately determine the stresses and strains within the material [10]. Figure 1 (a) 
shows the geometry with dimensions and (b) shows the mesh. 

4.1.2 Material Properties 

The contact analysis contained three materials, UO2 fuel, Zircaloy 4 sheath, and helium filled gap. 
Table 1 provides the material properties used for the fuel and sheath. Note that constant properties 
are currently used to isolate contact modeling from other effects. 

Property Fuel Sheath 
Density (kg m-j) 10431.0 6551.0 
Young's Modulus (0Pa) 180 70 
Poisson's Ratio 0.3 0.3 
Thermal Expansion 13.9x 10-0 5.7x10-o 
Coeffcient (K1

) 

Thermal Conductivity 
..., 

16 .) 

(W m-1 K 1
) 

Specific Heat (J m-5 K 1
) 320 330 

Linear Power* (kW m-1
) 45 -

*The linear power was converted to a volmnetric heat generation rate applied uniformly within the fuel. 
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To facilitate convergence and obtain accurate results, suitable boundary conditions are required to 
accurately model the scenario of interest, as well as to prevent rigid body motion from occuring. 
Rigid body motion is when the location in space of a body cannot be determined in the finite 
element solver. To mitigate this, the problem must be sufficiently constrained. 

The initial temperature of all bodies was set to 300 K. A convective boundary condition was 
applied to the outside of the sheath to simulate the coolant. The bulk coolant temperature and the 
heat transfer coefficient were assumed to be 583 K and 50 000 Wm' K-', respectively. In addition, 
a uniform pressure of 10 MPa was applied to the outside of the sheath in the inward radial direction. 
To sufficiently constrain a problem like this the centre point can be fixed to not move in the the 
vertical or horizontal directions. 

4.2 Three-Dimensions 

4.2.1 Geometry and Mesh 

Symmetry was used to reduce the computational time required for analysis and therefore a quarter 
of a fuel pellet and sheath was modeled. Note that the fuel chamfer and dish were ignored at this 
stage. Three different mesh densities of single order hexahedral elements were used to determine if 
the same results could be obtained with less nodes. Fewer nodes mean fewer calculations and less 
computational time. The original mesh contained 6304 nodes and 5100 elements, the half mesh 
contained 3752 nodes and 2912 elements, and the quarter mesh contained 1992 nodes and 1452 
elements. Figure 2 (a) shows the geometry with dimensions for the 3D case and (b) provides an 
isometric view of the original three-dimensional mesh. The pellet radius, sheath inner and outer 
radii and intial gap size are the same as the 2D model. 
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16.12 mm 
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Figure 2: (a) 3D geometry with dimensions, (b) Original mesh for the 3D contact analysis (6304 nodes, 5100 elements). 

4.2.2 Material Properties 

The material properties used in the three-dimensional case are the same as two dimensions and can 
be found in Tables 1 and 2. 
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To facilitate convergence and obtain accurate results, suitable boundary conditions are required to 
accurately model the scenario of interest, as well as to prevent rigid body motion from occuring. 
Rigid body motion is when the location in space of a body cannot be determined in the finite 
element solver. To mitigate this, the problem must be sufficiently constrained. 

The initial temperature of all bodies was set to 300 K. A convective boundary condition was 
applied to the outside of the sheath to simulate the coolant. The bulk coolant temperature and the 
heat transfer coefficient were assumed to be 583 Kand 50 000 Wm-1K-1

, respectively. In addition, 
a uniform pressure of 10 MPa was applied to the outside of the sheath in the inward radial direction. 
To sufficiently constrain a problem like this the centre point can be fixed to not move in the the 
vertical or horizontal directions. 

4.2 Three-Dimensions 

4.2.1 Geometry and Mesh 

Symmetry was used to reduce the computational time required for analysis and therefore a quarter 
of a fuel pellet and sheath was modeled. Note that the fuel chamfer and dish were ignored at this 
stage. Three different mesh densities of single order hexahedral elements were used to determine if 
the same results could be obtained with less nodes. Fewer nodes mean fewer calculations and less 
computational time. The original mesh contained 6304 nodes and 5100 elements, the half mesh 
contained 3752 nodes and 2912 elements, and the quarter mesh contained 1992 nodes and 1452 
elements. Figure 2 (a) shows the geometry with dimensions for the JD case and (b) provides an 
isometric view of the original three-dimensional mesh. The pellet radius, sheath inner and outer 
radii and intial gap size are the same as the 2D model. 

4.2.2 Material Properties 

The material properties used in the three-dimensional case are the same as two dimensions and can 
be found in Tables 1 and 2. 
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4.2.3 Boundary Conditions 

Since planes of symmtery were employed in the 3D case, additional boundary conditions are 
required. The same conditions as in 2D were applied to the outside of the sheath. At the vertical 
symmetry plane, all nodes were constrained to move in the vertical direction as well as the 
temperature gradient was set to zero across the boundary. Similarly, for the horizontal symmetry 
planes, all nodes were constrained to move in the horizontal direction. On the front and back faces 
of the fuel pellet the temperature flux was also set to zero to simulate additional pellets being in 
contact with these surfaces. Lastly, the corner node at the intersection of the symmetry planes was 
fixed from moving in the axial direction for the fuel pellet. In addition, the front face of the sheath 
was fixed from moving in the axial direction to prevent rigid body motion in that direction. 

5. Results 

Several contact trials were completed to determine the behaviour of the contact algorithm employed 
in MOOSE and it's affect on temperature and pellet hourglassing. Contact is a transient 
phenemonon and thus the simulations were run as transient simulations until a steady state solution 
was achieved. The temperature, pellet hourglassing, and contact behaviour results are presented. 

5.1 Temperature 

The temperature profile for both the two and three-dimensional cases are as expected. The highest 
temperature is located at the centre of the fuel pellet and the coolest at the outside of the sheath. 
The centreline temperature is lower than expected because the gap model is simplified and the 
material properties are constant. Figure 3 presents the temperature profiles for (a) 2D first order 
mesh and (b) 3D original mesh. 
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Figure 3: Temperature profiles in Kelvin for (a) 2D, (b) 3D original mesh. 

5.2 Pellet Hourglassing 

A plot of the y-displacement demonstrates the expected pellet hourglassing in three-dimensions. 
The behaviour in two dimensions will be similar to the midplane of the fuel pellet in three 
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The temperature profile for both the two and three-dimensional cases are as expected. The highest 
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dimensions. The hourglassing profile is magnified to show the ridging phenomenon experienced by 
the pellet. Figure 4 shows the hourglassed pellet. It is encouraging that even with simplified 
material properties and gap behaviour, the pellet still behaves in the expected manner. 

5.3 Contact Algorithm 

The contact algorithm employed by MOOSE analyzed in this work is the penalty method. A 
penalty factor is defined which is used to minimize interpenetration between the two bodies. In 
penalty contact, the contact force is calculated by adding a fictitious spring between the fuel and 
sheath where the stiffness of the spring is given by the penalty factor, and the distance the spring is 
displaced is the interpeneteration of the two bodies. A tangential tolerance is also provided to help 
extend contact surfaces by a small amount at locations of symmetry to ensure each master node has 
a corresponding slave surface directly in front of it. The behaviour of the contact pressure and 
penetration as a function of the penalty factor for all mesh types described is provided. 

disp_ Y 
9,44050-5 

8e-5 

6e-5 

4e-5 

2e-5 

0 

Figure 4: Plot of the fuel pellet exhibiting pellet hour glassing. Deformation in meters is exaggerated. 

Table 2 outlines the contact parameters used across the gap. Two forms of contact are required, 
mechanical contact to ensure stresses and strains are calculated correctly, and thermal contact to 
ensure that the temperature profile is continuous across the gap. 

Table 2: Mechanical and thermal contact parameters 

Parameter Mechanical Contact Thermal Contact 
Penalty Factor Varies -
Tangential Tolerance 10-4 

-

Gap Conductivity (Wm-1K-1) - 0.15 
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5.3.1 Contact Pressure 

Intuitively, as the penalty factor increases the contact pressure should increase until it reaches a 
plateau. The value at this plateau should be the contact pressure exerted by one body onto the other. 
The contact pressure asymptotically approaches a value because pressure between two bodies is 
constant in reality. In the 2D case this value is approximately 43 MPa. In 3D the midplane value is 
approximately 25 MPa and the ridge value is approximately 230 MPa. Figure 5 (a)-(d) presents the 
contact pressure results for the 2D case and the three different mesh densities in 3D. In the 2D case 
it can be seen that the second order trials approached the asymptotic limit slightly faster then the 
first order mesh. However, due to convergence issues, results at higher penalty functions could not 
be obtained and the 2nd order mesh never does reach the value of approximately 43 MPa. The 3D 
cases have two contact pressures, one for the ridge (ends) of the pellet and one for the midplane. 
The midplane pressure is about half of what was calculated in 2D. The contact pressure at the 
ridges is expected to be slightly higher than at the midplane. The pressure at the ridges are 
approximately 10 times higher than at the midplane, much higher than expected. Investigation is 
currently underway to improve the contact pressure results of the model at the ridge locations. The 
midplane pressure is about half of what was calculated in 2D, which is reasonable. The converged 
contact pressure for all 3D simulations seem to be independent of mesh density. However, the more 
coarse the mesh the higher penalty factor that can be used. In addition, computational requirements 
are greatly reduced using a quarter mesh compared to the original mesh. 
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Figure 5: Contact pressure as a function of penalty factor for (a) 2D, (b) 3D original mesh, (c) 3D half mesh, (d) 3D quarter 
mesh 
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5.3.2 Penetration 

Interpenetration between the fuel and sheath is inversely proportional to the penalty factor. As 
the penalty factor increases the penetration is supposed to asymptotically approach zero. 
Figure 6 (a)-(d) presents the penetration response to penalty factor for the 2D case and three 
mesh densities in 3D. Similarly to contact pressure, the 3D cases have both a penetration at the 
ridge location and midplane location. The results for the 2D case are as expected and verified 
by hand calculations. In 3D, the penetration results are reasonable at the midplane location but 
are higher than expected at the ridges. Investigation is currently underway to improve the 
model to produce more accurate results at the ridge locations. The desired result is to have the 
peneteration less than two microns as this is within the surface roughnesses of the fuel and 
sheath. For the 3D simulations, the ridge penetration is expected to be higher than at the 
midplane, as observed. Stresses and strains will be higher at the ridge locations and lead to 
sheath bambooing. 
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Figure 6: Penetration as a function of penalty factor for (a) 2D, (b) 3D original mesh, (c) 3D half mesh, (d) 3D quarter mesh 
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6. Future Work 

The analysis of the contact algorithm was the first step in the overall feasibility study of modeling 
CANDU fuel using Idaho National Laboratory's MOOSE framework. Isolation of contact is no 
longer required. The next steps are outlined below 

• Fuel and sheath material properties need to depend on temperature. The pellet-to-sheath heat 
transfer coeffcient needs to depend on the gap size and gas pressure when the gap is open, or 
the interface pressure when the gap is closed. The heat generation is another parameter and 
will be time-dependent. Temperature, displacement and stress results will be obtained. 

• Next, additional pellets are added to the full three-dimensional model two at a time until a full 
fuel element is generated. The expected additional challenge of this second phase is the 
additional contact pairings introduced between the individual pellets. 

• The final phase of this feasibility study is to begin adding additional fuel pheneomena that 
affects the temperature and stress strain results including, fuel swelling and densification, fuel 
and sheath thermal and irradiation creep, burnup, and fission gas production and release. 

• To benchmark the results obtained from HORSE simulations, comparisons will be made with 
the current ANSYS deformation model developed by Williams. Additional comparisons will 
be completed against ELESTRES-IST which has been validated against experiments. 

7. Conclusions 

In this work, the contact algorithm within INL's MOOSE was investigated. Temperature, pellet 
hourglassing, contact pressure and penetration results were presented and were as expected 
except for the penetration and contact pressure at the pellet ridges. Ridge and midplane effects 
produce differing results between these two locations in the 3D cases. The next steps of the 
feasibilty study have been outlined and the capabilities of MOOSE are promising for predictive 
modeling of CANDU fuel. 
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modeling of CANDU fuel. 
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