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ABSTRACT — Fissile materials within a fuel pellet can be discerned rapidly and non-destructively 
via the analysis of post-irradiation delayed neutron emissions. The delayed neutron counting 
technique is well established within the Canadian nuclear industry, and uses include the detection of 
defective CANDU fuel. This work discusses these neutron emissions from CANDU fuel in the 
context of detection and attribution. Monte Carlo simulations of these emissions from current and 
proposed CANDU fuels (thoria and mix oxide based) have been_performed. These simulations are 
compared to measurements of delayed neutron emissions from 25'1] and 2351.1, and the feasibility of 
CANDU fuel characterization is discussed 

I. Introduction 

Nuclear Forensic Analysis (NFA) uses a variety of analytical techniques and 
instrumentation to characterize nuclear materials with the eventual goal of their attribution [1]. The 
assay of special nuclear materials (SNM), mu, 2351J and 239ft , has been particularly emphasized as 
these materials may be diverted for illicit means [2]. The Royal Military College of Canada 
(RMCC) is part of an international technical working group concerned with enhancing and 
evaluating the NFA capabilities of government laboratories in Canada and other member states [3]. 
The RMCC has the necessary licenses to work with SNM, in addition to varied nuclear 
instrumentation including: inductively coupled plasma mass spectroscopy, gamma and alpha 
spectroscopy, liquid scintillation counting and more recently, delayed neutron counting. 

Delayed neutron counting is currently employed by Canadian industry to determine 
uranium content in geological samples and to detect failed fuel in CANDU reactors. A delayed 
neutron counting (DNC) system was developed and implemented at the RMCC with the specific 
intent of analyzing fissile content for NFA applications [4]. The DNC system has been validated for 
the analysis of samples containing just one known fissile isotope via the examination of delayed 
neutron (DN) temporal behaviour. This research is currently expanding to record the DNs emitted 
after the irradiation of binary fissile mixtures. 

This paper uses previously published work on DN analysis at the RMCC to extend these efforts into 
CANDU fuel analysis applications. If diverted CANDU fuel were to be intercepted by authorities, 
the prompt and non-destructive characterization of the fissile content could assist in determining a 
source of origin. Such information would be of valuable in law enforcement and security contexts. 
Building on work presented at the 2012 Canadian Nuclear Society Student Conference in 
Saskatoon, SK, the behaviour of DN signatures produced by various CANDU file's is modelled in 
MCNP6 and compared to experimental measurements conducted at the RMCC. 
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2. Theory 

If a fuel pellet were irradiated in the SLOWPOKE-2 reactor at the RMCC, the (n,f) 
interaction with the fissile materials present would result in the release of prompt neutrons and 
fission products. Many of these fission products are denoted as DN precursors as they will undergo 
0- decay and produce a daughter isotope with an unbound neutron. This results in the release of 
delayed neutrons at a rate consistent with the half-life of their associated precursor. DNs are often 
grouped according to their half-lives [5] and given an associated yield, ai, which is characteristic of 
the isotope, j, undergoing fission. The total count rate, S(t) can be approximated as shown in Eqn. 1 
[6]: 

n 86f V 
„,

rt'a • ATA 8 

S(t) 
= M.

  au (1 — e- Aitirr)(e- Aitd)(e- Ait)]mi + B(t) (1) 
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Where n is the number of fissile isotopes present in a sample, mm is the mass of the fissile isotope j 
[g], & is efficiency of neutron detection, o-f is the fission cross section [b], v1 is the number of DNs 
produced in the fission of that isotope, 0 is the neutron flux [cm 251], NA is Avogadro's number 

M the isotope's molecular mass [g Ai is the decay constant for group i [s-1], tin. the 
irradiation duration of the sample [s], td the decay time of the sample [s], t the count time [s], and 
B(t) is the neutron background of the system. 

Therefore in the case of a fully characterized system (where flux, efficiency and 
neutron background are well established), the only unknown in Eq. 1 is the masses of fissile 
isotopes present. In the case of a sample containing two fissile isotopes, i.e. 233U and 235U, the count 
rate can be written as: 

Where 
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Thus, the relative quantities and total fissile content in a specimen can be determined via a least 
squares fit to experimental measurements. 
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3. Experimental 

Samples containing fissile content were prepared from natural uranium (CRM 4321C, 
NIST, Gaithersburg, MD), and 99 atom % 233U (CRM 111-A, 99.49 atom% 233U, New Brunswick 
Laboratory, Argonne, IL). The fissile content was dissolved in HNO3 (Optima, ThermoFisher 
Scientific, Ottawa, ON) and firther diluted by distilled deionised water. Each sample contained 
various combinations of 233U and 235U (each fissile solution was contained its own 1.5 ml 
polyethylene vial). The individual aqueous fissile solutions were then heat sealed in a larger 7 ml 
polyethylene vial to create a fissile mixture. 

After preparation, a sample was sent to the RMCC's SLOWPOKE-2 [7] reactor for a 
60 s irradiation. Upon the expiration of this irradiation period, the sample was transferred via 
pneumatic tubing to a counting arrangement consisting of six 3He detectors embedded in paraffin. 
The sample emits DNs isotropically, which are recorded by customized LabVIEWlm software. The 
sample is then sent to a disposal unit where they can be retrieved for additional tests or safely 
disposed of at the end of the counting period. Further information on the experimental set up can be 
found in Reference 4. 

4. The MCNP6 Model 

MCNP6 [8] is the newest release of a Monte Carlo code developed by Los Alamos 
National Laboratory. The counting system described in the experimental section was modelled in 
this software and is shown in Figure 1. The irradiation and counting portions of experiments were 
reproduced using the fixed source option in MCNP6. This MCNP6 model was slightly modified 
from the original described in Reference 9 to accommodate a small piece of CANDU fuel of 
varying composition. 
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Figure 1 A Schematic of the Delayed Neutron Counting System [9] 
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5. Results and Discussion 

5.1 Temporal Behaviour of 233U and 235U Delayed Neutrons: Simulations & Experiments 

The assay of fissile mixtures via delayed neutron counting is dependent on the temporal 
behaviour of the emitted neutrons with count time. Dead time effects and timing uncertainties must 
be properly accounted for to reduce their distortion of the temporal behaviour of recorded DNs. 
Figure 2 depicts the measured and MCNP6 simulated temporal behaviour of small quantities of 
233U and 235U. Figure 3 shows the same data, however differences in temporal behaviour are 
emphasized by normalizing all initial count rates to the same value. This normalization also 
eliminates uncertainties arising from flux, system efficiency characterizations and the fissile 
concentrations of solutions. Figure 3 shows a more rapid decay for 235U (as it has relatively fewer 
long lived delayed neutron precursors) for both simulations and measurements. 
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Figure 2: MCNP6 Delayed Neutron Behaviour & Experimental Measurements 
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Figure 3: Normalized MCNP6 Delayed Neutron Behaviour & Experimental Measurements 

5.2 Fissile Mixture Characterization via Delayed Neutron Counting 

50 60 

MCNP6 model predictions and measurements have confirmed the distinct DN 
temporal behaviour of 233U and 235U after their irradiation. Recent work [10] has attempted to 
quantify the relative ratios of 233U and 235U in mixtures. Table 1 shows the relative ratios of 233U 

to quantify
as a percentage of total fissile mass, ranging from 0 % 233U in Sample 1 to 100 % 233U in 

Sample 10. The Experimental Ratio column shows the average results after solving Eq. (2) for 
En1233u1. Each individual measurement was found to have a high degree of uncertainty, and the 
[m235u
relative amounts of 233U and 235U had to be determined through duplicate measurements of each 
sample. This is easily facilitated due to the non-destructive and rapid nature of delayed neutron 
counting. The system was able to determine the ratio of 233U content to that of 235U after duplicate 
measurements, with an average absolute error of ± 4 %. 
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Table 1: DNC Determination of the Ratio of 233U to 235U in Fissile Mixtures [10] 

Sample Actual Ratio Experimental Ratio Sample Actual Ratio Experimental Ratio 

1 0 : 100 4 : 96 (± 3) 6 37 : 63 (± 1) 45 : 55 (± 8) 
2 13.1 : 86.9 (± 0.3) 11 : 89 (± 4) 7 51 : 49 (± 2) 50 : 50 (± 6) 
3 17.7 : 82.3 (± 0.3) 19 : 81 (± 5) 8 71 : 29 (± 1) 78 : 22 (± 6) 
4 31.3 : 68.7 (± 0.6) 27 : 73 (± 4) 9 96 : 4 (± 4) 92 : 8 (± 2) 
5 36 : 64 (± 1) 44 : 56 (± 4) 10 100 : 0 97 : 3 (± 2) 

5.3 CANDU Fuel Applications 

The MCNP6 model developed for previous work has been extended to simulate the 
investigation of three CANDU fuel pellet compositions in the DNC system. The first composition 
was natural UO2 used in operational CANDU reactors. The second pellet fragment contained an 
oxide composition corresponding to a proposed thorium cycle [ 11 ]; it had both thorium and 
uranium content with the uranium isotopics consisting of 62 % 233U, 23 % 234U, 6 % 235U, and 9 % 
236U. The third composition is a proposed mixed oxide (MOX) fuel containing 94 wt% ThO2 and 6 
wt% PuO2 (with a 239Pu to 240Pu ratio of 15.7:1) [12]. Only a small fragment of each fuel pellet type 
was modelled, as this reflects the limitation with regard to the fissile content of a SLOWPOKE-2 
irradiation site. The simulation assumed fresh, unirradiated fuel, thus any changes in fissile content 
as a function of fuel burnup were neglected. MCNP6 predicted significant temporal differences in 
the three types of fuel, they are shown in Figure 4. 

The Monte Carlo models of the fuel pellets account for sub-critical multiplicity effects 
and matrix self-shielding, and results in unique temporal behaviours for each pellet of interest. 
Figure 5 shows a comparison of the predicted temporal decay behaviour of the natural UO2 pellet 
and measurements of irradiated natural U solutions. A comparison of the normalized count rates 
shows excellent agreement between simulations and measurements. MCNP6 simulations of the 
Th/U oxide pellet and the accompanying 233U measurements are also shown in Figure 5. However 
measurements only agree with simulations until count—  times of 60 s. The simulatedyellet fragment 
contained 61 % 233U and 6 % 235U content whereas the irradiated sample had no 233U content; this 
difference in 235U content accounts for the discrepancy. Other fissionable isotopes were present in 
the simulations however these would produce negligible DNs when irradiated in the SLOWPOKE-2 
due to the high thermal to fast flux ratio of the reactor. 
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Figure 5: Fuel Pellet Simulations Compared to DNC system Measurements 
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6. Conclusions 

Analysis of 233U:235U by DNC using the SLOWPOKE-2 Facility demonstrates that the 
collection and analysis of temporal data facilitates the determination of 233U and 235U fissile content 
in mixed systems with accuracy and precision that are acceptable for NFA. These data also 
demonstrate that a small mass of fissile content is required to perform DNC analysis. This supports 
the hypothesis that only a small portion of the fuel pellet would be required for analysis DNC, 
liberating the vast majority of the pellet for immediate NFA with other instrumentation. Moreover, 
the non-destructive nature of DNC allows for the preservation of the fragment as evidence in the 
case prosecution is required. Monte Carlo simulations provide a valuable modeling and 
development tool. These simulations have indicated the fuel pellets would produce DNs with 
comparable temporal behaviour to that measured at the RMCC. Although measurements conducted 
at the RMCC using unirradiated fuel have a far higher signal to noise background than would be 
expected in the analyses of irradiated fuel pellet fragments, instrument development is underway to 
limit the affects gamma-ray interference. 
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