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Abstract

The requirements for extensive computing time and large computer memory have been
recognized as major deficiencies of the collision probability method. This paper presents two
methods for speeding up the calculations in the above two areas. One method is concerned with
the calculation of collision probabilities, while the other allows a faster solution of resulting
systems of linear algebraic equations. In two-dimensional geometry, the collision probabilities
are expressed as linear combinations of Bickley functions, Ki;(x), the evaluation of which is the
main time consumer for small and medium size problems. The new method presented here
applies a numerical integration of the polar angle instead of Bickley function calculation. As a
result, the algorithm is more robust and twice as fast. The solution of the collision probability
equation is usually obtained by direct methods of matrix decomposition. The computing time is
proportional to the third degree of the number of unknowns and increases rapidly with the
increase of the problem size. To speed-up the calculation, the within-group matrix is subdivided
into a number of blocks. The solution is obtained iteratively by block-matrix iteration using the
traditional Gauss-Seidel method. Test results show a decrease in computing time by more than
one order of magnitude.

1. Introduction

Owing to both geometric flexibility and efficiency in treating strong absorbers, integral transport
methods have been used since the early era of reactor physics code development. The collision
probability method was the main engine for solution of the neutron transport equation in a series
of computer codes developed in 1960’s. The spectrum code THERMOS [1] is credited with
conceiving the use of the collision probability method as an efficient transport solver, while the
code WIMS [2] is the first code that encompassed the full functionality of reactor lattice
calculation by collision probability method. A few collocation methods based on Gaussian
quadrature formulae have been also developed [3], [4] for one-dimensional geometry. However,
the collision probability method prevailed because of the simplicity of mathematical apparatus
that allows an easy extension to two-dimensional geometry.

The size and the density of collision probability matrices were recognized as major deficiencies
requiring extensive computing time and large computer memory. Over time, the progress in
computer capabilities diminished the importance of these deficiencies, so that in 1990’s a new
generation of codes emerged, which extended the use of collision probability method from the
lattice cell level to the fuel assembly level. Typical representatives are: DRAGON [5] with
selected three-dimensional capabilities, GTRAN2 [6] with anisotropic scattering and parallel
processing, and HELIOS [7] that combines the current coupling and collision probability
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techniques. With today’s computer power it is to be expected that the area of application of
integral transport methods can be significantly extended.

WIMS-AECL is a two-dimensional multi-group collision probability code routinely used for
lattice calculations of CANDU®-type reactors. The code evolved from the UK code WIMS, a
copy of which was distributed to Chalk River Laboratories, AECL, in 1971. Over the years the
code has undergone extensive modifications, and today, it is recognized as an independent
version of the original UK code. The code capabilities were significantly extended with the
development of the version WIMS-AECL 3.1 [8].

In order to speed up calculations, new methods for both collision probability integration and
solution of large systems of equations have been developed and presented in this paper. The new
methods were implemented in a developmental version of WIMS-AECL, which, for the sake of
simplicity will be further referred to as “WIMS”. Section 2 reviews the basic mathematical
apparatus of the collision probability method and describes the new algorithm for numerical
integration. Section 3 presents the new method for solution of large systems of linear algebraic
equations generated by the collision probability method. Section 4 describes several test
problems and presents the numerical results.

2. Collision probability method

Assuming isotropic neutron scattering, the within-group integral transport equation can be cast in
either of the following two equivalent forms:

1 ,exp[—1(r,1")] , , )
p(r) =Ejvd3r =1 [Z‘S(r)go(r)+ S(r )] (1)
1 * ! 14 14 14 !
p(r)= pp \ dﬂjo ds exp[—t(r’,r)] [Zs(r) )+ S(r )] , r=r—sQ (2)

in which, the boundary term is omitted for the sake of simplicity, assuming that the spatial
domain V is either infinite or bounded by a boundary of convex shape surrounded by vacuum.
The group index is also omitted for the sake of clarity, while the quantities have the following
meanings:

r,r — Position vectors specified by spatial coordinates (x, v, z) and (x',y’, z")
Q= I:::’I — Neutron path direction specified by azimuth and polar angles (¢, )
s=r'—r — Distance along the neutron path

d3r' = s?ds dQ — Elementary volume

o(1r) — Scalar neutron flux

S(r) — Neutron source (fission and neutron scattering from other groups)
2(1r) — Macroscopic scattering cross section

2(r) — Total macroscopic cross section
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——n,)ds — Optical distance between points r and r'
Egs. (1) and (2) represent a Fredholm-type integral equation of the second kind [9]. The kernel
is continuous, square-integrable and symmetric. It is worth mentioning that the denominator in
the kernel of Eqg. (1) might be misleading. In the past, a number of authors considered the
transport equation as a singular integral equation. However, Eqg. (2) shows that the kernel is
continuous and cannot have infinite values.

According to the kernel properties, the integral transport equation has a non-trivial solution for
any square-integrable function S that represents the neutron source. The solution belongs to the
class of square-integrable functions. In contrast, the solution of the integro-differential transport
equation belongs to the class of continuous and differentiable functions. Thus, the main benefit
of using the integral equation is that the approximate solution is sought in a much less restrictive
class of functions than the class of functions to which the solution of the original problem
belongs. Another benefit is that the number of degrees of freedom of the solution (independent
variables) is reduced by two degrees, i.e. the angular variables (¢, 8) are eliminated by angular
integration over the unit sphere. In simple terms, the approximate solution of the integral
equation is equivalent to B, spherical harmonics or S,, discrete ordinates solutions when n tends
to infinity.

2.1 Collision probability equations

The class of square-integrable functions allows a large degree of freedom in the choice of trial
functions as approximate solution of the transport equation. The simplest form is the step
function. Suppose the spatial domain V is subdivided into n subdomains V;. Regardless the
geometric shape, a step function w; () can be associated to each subdomain, i.e.

1, r € Vi
w®={y ey 3

The collision probability method was originally formulated by means of physics arguments.
From the mathematical point of view, however, it is an application of the Galerkin method of
moments. The functions representing the neutron flux ¢(r) and neutron source S(r) can be
expanded over the basis of step functions w;(r) as follows:

p@) =) ), SE) =) Swi(r) @

where the expansion coefficients @; and S; represent region-averaged value of neutron flux and
neutron source, respectively, i.e.
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Multiplying Eq. (1) or (2) by each basis function w;(7) and integrating over the spatial domain
V, one gets a system of linear algebraic equations that determines the approximate solution ;.
Multiplying each equation by the volume and the total cross section of the corresponding
subdomain, the system of equations can be expressed in the classical form of collision
probability equations:

ZMV@{ = Z Vij—n'(Zs,j(pj + .5_‘]) ) i = 1,2, . n (6)
j=1
2.2 Collision probability expression

A matrix coefficient P;_,; represents the probability that a neutron born in region j will suffer its
next collision in region i. Its explicit form is:

P ZHJ‘dS de cexp[—t(r,1)]

lr — 7|2

rev, rey; (7)

Xz 5

=4 f d3r | d*Q f ds exp[—t(r,1")]
4 V] %4 41 5;—As;

where s; denotes the distance from the point  in region V; to the exit point of direction Q from

the region V;, while As; is the track length size of direction € through the region V;.

Owing to axial invariability (two-dimensional geometry), the integral over the volume V; reduces
to a double integral over the horizontal cross section of V;. Also, the geometric distance s = r —
r’ and the optical distance 7(r,r") can be expressed by their projections x and t onto the
horizontal plane:

oo x—x' o t(r,r" (®)

sing ’ sin @

Assuming that that the x-y Cartesian coordinate system rotates with the azimuth angle ¢ so that
the x-axis is parallel to the projection of Q onto the horizontal plane, the collision probability
takes the form of the following five-fold integral:

Ymax -
._>- fd(l) f dy f dx f dxljdee—t(x,x/)/sing (9)
Ymin xi—Ax; -—Ax 0
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The integration along direction Q is carried out over parallel trajectories that intersect both
regions V; and V;. The limits of y-integration y,,;;, = min(Y;1,Y;1) and ype, = max(¥2,Y;,)
are illustrated in Figure 1. Because of complicated geometric shapes that usually occur,
integration with respect to azimuth angle ¢ and Cartesian coordinate y cannot be carried out
analytically. Instead, it is evaluated numerically, i.e

21 Ymax K L
[ao | dyr@ =) wey weF@ur (10)
0 Ymin k=1 =1

Figure 1. Limits of y-integration in collision Figure 2. An illustration of analytical
probability calculation. integration along neutron trajectory.

The result of integration over the polar angle 8 is expressed as the Bickley function of the first
order Ki, (t) [10].

/2

j d e~txAN/SING = K, (t(x, x')) (11)
0

Thus, by analytical integration of Cartesian coordinates x and x', the collision probability
expression takes the following form:

K L
1
Pi=5—— Z Wy Z wy Fj i (r, Ve) (12)

2nk; i V;
L= =1

where w;, and w, represent integration weights of the quadrature formulae applied, while the
function F;; represents a linear combination of Bickley functions of third order:
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2V — [Kiz(0) — Kiz(t)], | =]
i = { ) — Kis(ty + ¢ ) (13)

Ki3(tij) - Ki3(tij + tj) - Ki3(tij + ti) + Ki3(tij + ti + tj) ) i ?‘:]

For a given neutron trajectory, the quantities t; = X;;Ax; and t; = X; jAx; denote the optical
thickness of regions i and j, while t;; is the minimum optical distance between these two regions
(Figure 2).

tij= tn,i<j or tij= tn,i>j (14)

Thus, the contribution to collision probability of a given neutron path trajectory is expressed as
two-term (i = j) or four-term (i # j) linear combinations of Bickley functions. Its evaluation is
usually the most time consuming part of the collision probability integration algorithm.

2.3  Evaluation of Bickley functions

The Bickley function Ki, (t) is a special function defined [10] as n-times repeated integral of the
modified Bessel function of the second kind, K, (x), i.e.

Ki,(x) = f Ki,(©)dt, n=123,.. and Kio(x) = Ko(x) (15)
X

A general approach to numerical evaluation of special functions is to subdivide the argument
range in the following three parts:

e Range of small arguments, in which a convergent series is used. The upper bound of the
range is chosen according to the radius of convergence.

e Range of regular (medium size) arguments, in which integral formulae are applied, often
coupled with recurrence relations in order to get functions of various order n.

e Range of large arguments, in which calculations are carried out using an asymptotic
expansion. This range, however, is out of interest here, because, for such arguments the
contribution to collision probabilities is negligible.

In order to speed up collision probability codes, the calculation of Bickley functions is usually
carried out by polynomial or rational approximations [11]. The lattice code WIMS-AECL uses
look-up tables of piecewise polynomials. The code version 2-5d applies a table of quadratic
polynomials specified over a set of 2,500 equidistant intervals that cover the range from x=0 to
x=15, while the code version 3.1 uses linear polynomials over a set of 15,000 equal width
intervals of length size 0.001.

2.4 Numerical integration instead of Bickley functions calculation

To explain the new method of collision probability calculation, it is useful to present the
accuracy of the Gauss quadrature formula [12] applied to Bickley function calculation. Figure 3
presents the absolute value of the relative error in Ki;(x) evaluation over the range x € [0,15].
It is calculated varying the number of quadrature nodes from 3 to 8. Due to logarithmic scale,
sharp minimum values denote argument values at which the sign of the relative error changes.
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Figure 3. Accuracy of Bickley function calculation using Gauss quadrature formula

The Gauss quadrature formula can be applied directly into Eq. (9) instead of the analytical
integration of the polar angle. In this case, the collision probability can be expressed as follows:

K L

M
= Wi ) W ) SN0 Gy (i Ve, O) (16)
m

T =1 £=1

P =—
It 27TZ't]

where 6,, and w,,, are abscisas and ordinates of the Gauss quadrature formula, and the function
G; ; is obtained by analytical integration along the trajectory specified by the polar angle 6,

Zeibx; — [1—exp(—17)], i=j
i = { y (17)

[1—exp(=7)]- exp(—7;)) - [L —exp(-7))],  i#]

One would expect that using numerical integration instead of analytical one, the computing time
will increase. As shown in Section 4, however, the effect is opposite for low order quadrature
formulae. This is mainly due to the simplicity of Eq. (17). Owing to the properties of the
exponential function, the attenuation factor (the trajectory contribution to the transmission
probability) between regions i and j can be expressed as a product of attenuation factors of
individual regions, i.e.

Jj-1

exp(—T1;;) = 1_[ exp(—1,) (18)

n=i+1

Increasing the index j, the new attenuation factor is obtained by a single multiplication. On the
other hand, the analytical approach requires calculation of four Bickley functions. Using linear
look-up tables, the calculation of each function implies two arithmetic operations (one
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multiplication and one addition), plus three arithmetic operations to locate the subinterval in the
look up table.

For a large optical distance between regions i and j, the contribution to the collision probability
becomes a very small quantity. Thus, the calculation of Eq. (13) is usually truncated when the
argument of the Bickley function reaches a cut-off value. In WIMS, it is an input specified
parameter limited to 15 neutron mean free paths — the maximum value for which the look-up
table is calculated. Instead of Bickley functions, the new method uses exponential functions that
are calculated by intrinsic computer procedure. Thus, the cut-off parameter in calculation of Eq.
(17) is not limited. In this case, it is more convenient to specify the truncation by the magnitude
of the transmission probability, Eq. (18), instead of the optical distance.

Another advantage of the numerical integration is reduced round-off error. The exponential
function is evaluated by intrinsic computer procedure, so that the contribution to the collision
probability is calculated accurately and always positive. This is not necessarily the case for the
analytical approach. The related expression in Eqg. (13) represents a sum of two differences.
Due to the limited accuracy of the look up tables, a loss of significant figures may occur for
optically thin regions. As a result, the round off error accumulates in the sum of the trajectory
contributions and impairs the accuracy of collision probability values.

3. Block-iteration of collision probability equations

The collision probability method approximates the neutron transport equation by a set of linear
algebraic equations. The overall solution is obtained by a two-level iteration. The outer iteration
is carried out by the power iteration method to get the eigenvalue (neutron multiplication factor)
and the related fission source. The inner iteration is performed on the thermal groups to
determine the thermal scattering source.

3.1  Within-group solution

Dividing each collision probability equation by X, ;V;, the neutron flux can be expressed by the
so-called modified collision probabilities P;_,;, so that Eg. (6) takes the following form:

n
;= Z PLi(Zs;@;+5),  i=12,.n (19)
j=1

Denote by ¢ and s the vectors of region averaged fluxes ¢; and sources §] respectively, P is the

matrix of modified collision probabilities, X is a diagonal matrix of scattering cross sections,
and I is a unity matrix. The matrix of Eq. (19) is dense and the solution is obtained either by
matrix decomposition or matrix inversion. To do this, Eq. (19) is rearranged as follows:

Ap=f  A=I-XP, f=Ps (20)

The matrix A can be decomposed as a product of lower L and upper U triangular matrices, so
that the solution is obtained by forward elimination and backward substitution as follow:
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A=LU, §&=Lf, ¢=U¢ (21)

where £ is an auxiliary vector. This procedure is usually used to calculate the within-group flux
in fast energy groups. In thermal groups, however, it is necessary to calculate the flux by direct
matrix inversion, i.e.

p=A"1f, B=LI, A1=UB (22)

The number of arithmetic operations of the solution procedures (21) and (22) is proportional to
the third degree of the number of unknowns per energy group. Evidently, the computing time
increases rapidly with the increase of the number of unknowns.

The total computing time of the collision probability method consists of three components: (1)
calculation of collision probabilities, (2) matrix decomposition/inversion, and (3) thermal flux
iteration. For small and medium-size problems (below one thousand equations per group), the
major consumer of computing time is the calculation of collision probabilities. A new method
was presented in Section 2 that, as shown in Section 4, speeds up the calculation by a factor of 2.
Increasing the problems size above one thousand equations per group, the dominant time
consumer is the matrix inversion. The computing time is proportional to the third degree (n3) of
the number of unknowns n, so that the method becomes inefficient for models that are
represented by several thousand equations. This section presents a new solution method for this
type of problems, which speeds up the calculation of large cases by at least an order of
magnitude.

3.2 Block-iteration method

The vectors of unknown flux ¢ and source values s and, accordingly, the matrix P of modified
collision probabilities, can be subdivided into a number m of blocks as follows:

P1 S Py, Py, - Py
S
(p = (p:z , S = :2 ) P = P:21 P22 . sz (23)
Pm Sm Pml Pm2 Pmm

Suppose that each block has n; elements so that n = >;7%; n;. Eq. (19) can be rewritten now in
matrix form as follows:

m
@; = Zpij(zs,j‘Pj +s),  i=12.m (24)
j=1

One may apply block iteration in order to solve Eq. (24). Using the Gauss-Seidel method, the
iteration scheme can be cast as follows where £ denotes the iteration index:

[ m
(4 (1 (4 .
(pf 1) = zPU(ZSJ(pE 1 + Sj) + Z PU(ZSJ(pE ) + Sj) , L= 1,2, W M. (25)
Jj=1 j=i+1

(£+1)
i

It can be rearranged as follows in order to express the unknown block ¢
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i-1 m
£+1 £+1 t+1 ¢
j=1 j=i+1

Inverting the matrix on the left hand side of Eq. (26), the iteration scheme takes the following
form:

(“1) ZA‘lP sj<p§€+1) + SJ Z AP ijplw + sj) (27)

j=i+1
where

AP =(-Pyx,;) (28)

Instead of inverting the full matrix A of dimensions n X n, the above scheme requires inversion
of m matrices A;; of much lower dimensionality. Another advantage is the significant reduction
in memory requirements. Matrix blocks can be stored in a temporary file and retrieved in the
memory one-by-one as necessary.

4. Numerical results
4.1  Test problems
In order to study the properties of the new methods, the following three sets of problems are
considered:
A. CANDU-6 lattice cell with fresh fuel.
1. Regular lattice cell at normal operating condition (Figure 4).
2. Lattice cell with destroyed bundle in a crept pressure tube (Figure 5).
B. Defueled channel in a periodically repeating lattice region.
1. Periodically repeating lattice region of 2x2 cells (Figure 6).
2. Periodically repeating lattice region of 3x3 cells.
3. Periodically repeating lattice region of 4x4 cells.
4. Periodically repeating lattice region of 5x5 cells.
C. Core-reflector interface.
1. Model of 3+2 cells (3 fuel cells + 2 reflector cells) (Figure 7).
2. Model of 4+2 cells.
3. Model of 5+2 cells.
4. Model of 6+2 cells.

Figure 4 shows the geometric model of the regular lattice cell along with the mesh subdivision
that is used for collision probability calculations. Because of the symmetry, the number of

10
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unknowns per group reduces to the number of meshes in one quadrant of the lattice cell, which is
in this case equal to 142 unknowns per group.

Figure 5 presents the geometric model of the lattice cell with destroyed fuel bundle in a sagged
pressure tube, as used usually in safety analysis. In this case, there is no symmetry in the model.
Moreover, due to the asymmetry of the pressure tube and fuel pins, additional mesh refinement
should be applied to the pressure tube interior. As a result, the problem is represented by 825
unknowns per group.

Figure 4. Geometric model and mesh Figure 5. Lattice cell with destroyed fuel
subdivision of the regular lattice cell. bundle in a sagged pressure tube..

Figure 6 shows the geometric model of the defueled channel problem in 2x2 cells environment,
while Figure 7 represents the geometric model of a core-reflector interface problem with three
fueled cells and two reflector cells (3+2 cells). In related models, only the number of regular
lattice cells is greater; there is again one defueled cell or two reflector cells.

4.2  Collision probability calculation

As presented in Section 2, there are two free parameters in the new method for collision
probability calculation. They are: the number of quadrature nodes for polar angle integration and
the truncation (cut-off) criterion in the calculation of the trajectory contribution to collision
probability. Calculations of test problems A.1 and A.2 were carried out varying these parameters
as follows: the number of quadrature nodes varies from 2 to 8, while truncation parameter varies
over the following set of values: 10, 10®° 10°, 107, and 10®. Reference calculations were
performed using 32 quadrature nodes and truncation parameter of 10™%. Table 1 and Table 2
present the results of calculations obtained for both coolant states (cooled and voided) of the test
problems A.1 and A.2, respectively. For each parameter value (the number of nodes and the cut-
off parameter), the following results are given: the infinite neutron multiplication factor (k-inf),

11
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Table 1
Results of calculation of the regular lattice cell
Number | Cut Cooled Voided
of Off . Ak-inf | RMS | CPU . Ak-inf [ RMS | CPU
Nodes | Value | kNt | 'oom) | @) | 9 | ™ | em) | @) | (9

1.E-4 | 1.11467 19 0.79 4.7 |1.13585 33 |38 4.7

1.E-5 | 1.11465 17 0.32 5.3 | 1.13575 23 | 0.60 5.3

2 1.E-6 | 1.11465 17 0.33 5.9 |1.13574 22 |0.35 5.9
1.E-7 | 1.11465 17 0.33 6.5 | 1.13574 22 |0.36 6.5

1.E-8 | 1.11465 17 0.33 7.0 | 1.13573 21 0.36 7.1

1.E-4 | 1.11450 2 0.77 6.1 | 1.13559 7 |39 6.1

1.E-5 | 1.11448 0 0.061 7.0 | 1.13550 -2 0.55 7.1

3 1.E-6 | 1.11447 1 0.043 7.9 | 1.13550 -2 10.076 7.9
1.E-7 | 1.11448 0 0.043 8.7 | 1.13550 -2 1 0.050 8.8

1.E-8 |1.11448 0 0.043 9.7 |1.13550 -2 10.05 9.6

1.E-4 | 1.11451 3 0.77 7.7 |1.13562 10 |39 7.5

1.E-5 | 1.11449 1 0.046 8.8 |1.13552 0 |055 8.8

4 1.E-6 | 1.11449 1 0.011 9.9 | 1.13552 1 |0.059 9.9
1.E-7 | 1.11449 1 0.010 10.9 | 1.13552 0 0.012 11.1

1.E-8 | 1.11450 2 0.010 11.9 | 1.13551 -1 ]0.012 12.1

1.E-4 | 1.11451 3 0.76 9.0 | 1.13562 10 |39 8.9

1.E-5 | 1.11448 0 0.044 10.6 | 1.13552 0 0.55 10.5

5 1.E-6 | 1.11448 0 0.005 11.9 | 1.13551 -1 | 0.058 12.0
1.E-7 | 1.11449 1 0.004 13.2 | 1.13551 -1 0.006 134

1.E-8 | 1.11449 1 0.004 14.4 | 1.13551 -1 ]0.003 14.6

1.E-4 |1.11451 3 0.77 10.5 |1.13562 10 3.89 10.5

1.E-5 | 1.11448 0 0.044 12.2 | 1.13553 1 |0.55 12.3

6 1.E-6 | 1.11449 1 0.004 13.9 | 1.13552 0 |0.058 14.0
1.E-7 | 1.11449 1 0.002 154 |1.13551 -1 0.005 15.6

1.E-8 | 1.11448 0 0.002 16.9 | 1.13552 0 |0.002 17.1

1.E-4 | 1.11450 2 0.76 12.0 |1.13563 11 3.9 11.9

1.E-5 | 1.11449 1 0.044 14.0 | 1.13552 0 |0.55 14.0

7 1.E-6 |1.11448 0 0.003 16.1 | 1.13552 0 |0.058 16.1
1.E-7 | 1.11449 1 0.001 17.7 |1.13551 -1 0.005 17.9

1.E-8 | 1.11448 0 0.001 19.4 | 1.13552 0 |0.001 19.7

1.E-4 | 1.11449 1 0.77 135 |1.13562 10 3.9 134

1.E-5 | 1.11448 -0 0.04 15.7 | 1.13552 0 |0.55 15.8

8 1.E-6 | 1.11449 1 0.003 17.9 |1.13551 -1 0.058 18.1
1.E-7 | 1.11448 0 0.001 19.9 | 1.13551 -1 | 0.005 20.2

1.E-8 |1.11448 0 0.001 21.8 | 1.13552 0 |0.001 22.9

32 1.E-18 | 1.11448 Reference 122.3 | 1.13552 Reference 124.0
Bickley func. 1.11448 0 | 0001 | 195 |1.13541 -11 | 0.003 | 20.1
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Table 2
Results of calculation of the lattice cell with destroyed fuel bundle
Number | Cut Cooled Voided
of Oft . Ak-inf | RMS | CPU [ Ak-inf | RMS | CPU
Nodes | Value | kinf | oom) | 06) | 9 | *"™ | oem) | 6) | )
1.E-4 | 1.11835 17 0.44 7.2 | 1.13708 31 |144 7.0
1.E-5 | 1.11837 19 0.31 8.0 | 1.13699 22 3.81 7.9
2 1.E-6 | 1.11838 20 0.32 8.8 | 1.13698 21 0.62 8.8
1.E-7 | 1.11837 19 0.32 9.5 | 1.13699 22 0.32 9.6
1.E-8 | 1.11837 19 0.32 10.2 | 1.13697 20 0.32 10.3
1.E-4 | 1.11816 -2 0.38 9.1 | 1.13685 8 |14.6 8.9
1.E-5 | 1.11817 -1 0.05 10.3 1.13676 -1 3.87 10.2
3 1.E-6 | 1.11816 -2 0.04 11.3 | 1.13676 -1 0.57 11.4
1.E-7 |1.11818 0 0.04 12.4 1.13675 -2 0.07 12.5
1.E-8 |1.11817 -1 0.04 13.3 1.13675 -2 0.04 135
1.E-4 | 1.11818 0 0.38 11.0 | 1.13687 10 | 14.6 10.9
1.E-5 | 1.11818 0 0.03 126 | 1.13679 2 3.85 125
4 1.E-6 | 1.11817 -1 0.01 14.0 | 1.13678 1 0.57 14.1
1.E-7 |1.11819 1 0.01 15.3 1.13678 1 0.06 15.4
1.E-8 | 1.11818 0 0.01 16.5 | 1.13678 1 0.01 16.8
1.E-4 | 1.11818 0 0.38 13.0 | 1.13688 11 | 14.6 12.8
1.E-5 |1.11818 0 0.03 14.7 1.13678 1 3.87 14.8
5 1.E-6 | 1.11818 0 0.01 16.6 | 1.13678 1 0.57 16.7
1.E-7 |1.11817 -1 0.01 18.2 1.13678 1 0.06 18.4
1.E-8 | 1.11818 0 0.01 19.9 | 1.13678 1 0.01 | 20.1
1.E-4 |1.11816 -2 0.38 14.9 1.13688 11 14.6 14.6
1.E-5 | 1.11818 0 0.03 17.1 | 1.13679 2 3.86 17.0
6 1.E-6 | 1.11816 -2 0.00 19.3 | 1.13678 1 0.57 19.3
1.E-7 |1.11817 -1 0.00 21.1 1.13678 1 0.06 21.4
1.E-8 | 1.11816 -2 0.00 23.1 | 1.13678 1 0.01 | 23.3
1.E-4 | 1.11815 -3 0.38 16.9 | 1.13687 10 | 14.6 16.5
1.E-5 | 1.11818 0 0.03 19.4 | 1.13679 2 3.86 19.3
7 1.E-6 |1.11818 0 0.00 21.7 1.13677 0 0.57 21.9
1.E-7 |1.11817 -1 0.00 24.1 1.13678 1 0.06 24.3
1.E-8 | 1.11817 -1 0.00 26.2 | 1.13678 1 0.01 | 265
1.E-4 |1.11815 -3 0.38 18.7 1.13687 10 14.6 18.4
1.E-5 | 1.11818 0 0.03 21.7 | 1.13678 1 3.86 | 216
8 1.E-6 |1.11817 -1 0.00 24.4 1.13678 1 0.56 24.7
1.E-7 | 1.11818 0 0.00 27.0 | 1.13678 1 0.06 | 27.2
1.E-8 | 1.11818 0 0.00 29.5 | 1.13677 0 0.01 | 29.7
32 1.E-18 | 1.11818 Reference 1575 | 1.13677 Reference 159.5
Bickley function | 1.11815 -3 | 0.00 25.4 | 1.13668 -11 | 0.08 26.2
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4.3  Solution of large systems of collision probability equations

In order to study the efficiency of the block-iteration method presented in Section 3, calculations
were carried out by varying the block size of matrix partition from 5, 10, 20, ... unknowns per
block up to the full size matrix. Figure 8 presents the computing time of matrix inversion as a
function of the block size. The right-most point of each curve represents the full matrix case. It
is evident that as the block size increases, the computing time increases rapidly. The time ratio of
the full matrix case versus small blocks of 5 to 20 unknowns ranges from 100 for the model A.2
to 1000 for model C.
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Matrix Block Size

Figure 8. CPU time of matrix inversion as a function of block size

Figure 9 presents the iteration computing time as a function of the block size. A slight increase
of the CPU time with the decrease of the block size can be observed for the model A. However,
for other models, the dependence on the block size is weak with a slight minimum in the block
size range of 20 to 100 unknowns.

Figure 10 presents the total computing time as a function of the block size. For each curve, a flat
region can be observed in the block size range of 20 to 100 unknowns. Compared to the full
matrix results, the related computing time is decreased by a factor 10 to 80, depending on the
problem considered.

According to the presented results, the block size of 20 unknowns seems to be a reasonable
choice as the default value.

Table 3 summarizes the calculation of large collision probability problems. As a check of the
validity, results of MCNP calculations are included as well. The results of both full-matrix
solution and block-matrix solution are given for models represented by up to 4000 unknowns.
When the number of unknowns exceeds this value, the memory requirements of the full-matrix
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method exceed the 2 GB indexing limit on a 32 bit computer so that such problems could not be
solved. The new solution method speeds up the calculation significantly and allows solution of
large problems the dimensions of which may go far above 4000 unknowns per group. On the
other hand, the comparison with MCNP shows a very good agreement between the two codes.
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Figure 9. Iteration CPU time as a function of block size.
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Figure 10. Total CPU time as a function of block size
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Table 3
Summary of large problem calculations.
Model Code | Numberof |\ irix | keinfinity | Coo | Speed-up
unknowns (min) factor
Full 1.11809 5.03
A2 WIMS 825 Block 1.11813 0.45 11
MCNP 1.11769
Full 1.09814 51.60
B: 2x2 WIMS 1547 Block 1.09815 1.63 32
MCNP 1.09771
Full 1.10799 1029.20
B: 3x3 WIMS 3942 Block | 1.10804 13.05 79
MCNP 1.10801
B 4x4 WIMS 7295 Block 1.11096 63.22 NA
' MCNP 1.11055
B: 5xG5 WIMS 11606 Block 1.11217 259.33 NA
' MCNP 1.11191
Full 1.06366 356.83
C: 342 WIMS 278l Block | 1.06362 10.88 33
MCNP 1.06387
Full 1.07933 845.45
C: 4+ WIMS 3612 Block | 1.07933 31.43 27
MCNP 1.07985
C: 542 WIMS 4443 Block 1.08846 60.07 NA
' MCNP 1.08926
C: 642 WIMS 5274 Block 1.09431 155.63 NA
' MCNP 1.09508

NA — Full-matrix method exceeds 2GB indexing limit of 32-bit machine.

5. Conclusions

A new method for collision probability calculation is presented that applies numerical integration
of the polar angle instead of analytical integration of the Bickley functions. The algorithm is
flexible concerning the accuracy and eliminates round-off error that may occur in standard
collision probability calculations. Test results show that compared to the standard approach, the
computing time can be reduced by a factor 2.

For a direct method of solution of within-group collision probability equations, the number of
unknowns is a limiting factor with respect to both, memory requirements and computing time.
As presented in this paper, the block iteration method reduces significantly the memory
requirements and speeds up the calculations by more than one order of magnitude. Another
advantage is that the block-partition approach is suitable for parallel processing. Calculations of
each diagonal block can be carried out on a separate processor. In that case, however, the Jacobi
iteration should be used instead of Gauss-Seidel iteration.
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