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Abstract 

The requirements for extensive computing time and large computer memory have been 
recognized as major deficiencies of the collision probability method. This paper presents two 
methods for speeding up the calculations in the above two areas. One method is concerned with 
the calculation of collision probabilities, while the other allows a faster solution of resulting 
systems of linear algebraic equations. In two-dimensional geometry, the collision probabilities 
are expressed as linear combinations of Bickley functions, Ki3(x), the evaluation of which is the 
main time consumer for small and medium size problems. The new method presented here 
applies a numerical integration of the polar angle instead of Bickley function calculation. As a 
result, the algorithm is more robust and twice as fast. The solution of the collision probability 
equation is usually obtained by direct methods of matrix decomposition. The computing time is 
proportional to the third degree of the number of unknowns and increases rapidly with the 
increase of the problem size. To speed-up the calculation, the within-group matrix is subdivided 
into a number of blocks. The solution is obtained iteratively by block-matrix iteration using the 
traditional Gauss-Seidel method. Test results show a decrease in computing time by more than 
one order of magnitude. 

1. Introduction 

Owing to both geometric flexibility and efficiency in treating strong absorbers, integral transport 
methods have been used since the early era of reactor physics code development. The collision 
probability method was the main engine for solution of the neutron transport equation in a series 
of computer codes developed in 1960's. The spectrum code THERMOS [1] is credited with 
conceiving the use of the collision probability method as an efficient transport solver, while the 
code WIMS [2] is the first code that encompassed the full functionality of reactor lattice 
calculation by collision probability method. A few collocation methods based on Gaussian 
quadrature formulae have been also developed [3], [4] for one-dimensional geometry. However, 
the collision probability method prevailed because of the simplicity of mathematical apparatus 
that allows an easy extension to two-dimensional geometry. 

The size and the density of collision probability matrices were recognized as major deficiencies 
requiring extensive computing time and large computer memory. Over time, the progress in 
computer capabilities diminished the importance of these deficiencies, so that in 1990's a new 
generation of codes emerged, which extended the use of collision probability method from the 
lattice cell level to the fuel assembly level. Typical representatives are: DRAGON [5] with 
selected three-dimensional capabilities, GTRAN2 [6] with anisotropic scattering and parallel 
processing, and HELIOS [7] that combines the current coupling and collision probability 
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techniques. With today's computer power it is to be expected that the area of application of 
integral transport methods can be significantly extended. 

WIMS-AECL is a two-dimensional multi-group collision probability code routinely used for 
lattice calculations of CANDU®-type reactors. The code evolved from the UK code WIMS, a 
copy of which was distributed to Chalk River Laboratories, AECL, in 1971. Over the years the 
code has undergone extensive modifications, and today, it is recognized as an independent 
version of the original UK code. The code capabilities were significantly extended with the 
development of the version WIMS-AECL 3.1 [8]. 

In order to speed up calculations, new methods for both collision probability integration and 
solution of large systems of equations have been developed and presented in this paper. The new 
methods were implemented in a developmental version of WIMS-AECL, which, for the sake of 
simplicity will be further referred to as "WIMS". Section 2 reviews the basic mathematical 
apparatus of the collision probability method and describes the new algorithm for numerical 
integration. Section 3 presents the new method for solution of large systems of linear algebraic 
equations generated by the collision probability method. Section 4 describes several test 
problems and presents the numerical results. 

2. Collision probability method 

Assuming isotropic neutron scattering, the within-group integral transport equation can be cast in 
either of the following two equivalent forms: 

(r) 41n. fv d3r, expir[—t(rr,,I2e)] [ (r,) 
(
r,) 

S(r')] (1) 

(r) = dfl "
r 

Cods exp[—T(e, r)] [ Es V) VW) + SW)] , = r — sil (2) 
47r 

in which, the boundary term is omitted for the sake of simplicity, assuming that the spatial 
domain V is either infinite or bounded by a boundary of convex shape surrounded by vacuum. 
The group index is also omitted for the sake of clarity, while the quantities have the following 
meanings: 

r, — Position vectors specified by spatial coordinates (x, y, z) and (x', y', z') 

n = r —r1
— Neutron path direction specified by azimuth and polar angles (0, 9) 

it—r'

S = — r — Distance along the neutron path 

d3e = s2ds dfl — Elementary volume 

(p (r) — Scalar neutron flux 

S(r) — Neutron source (fission and neutron scattering from other groups) 

ES (r) — Macroscopic scattering cross section 

Et (r) — Total macroscopic cross section 
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Et (r - s )ds - Optical distance between points r and r' 
Ir-r'I 

Eqs. (1) and (2) represent a Fredholm-type integral equation of the second kind [9]. The kernel 
is continuous, square-integrable and symmetric. It is worth mentioning that the denominator in 
the kernel of Eq. (1) might be misleading. In the past, a number of authors considered the 
transport equation as a singular integral equation. However, Eq. (2) shows that the kernel is 
continuous and cannot have infinite values. 

According to the kernel properties, the integral transport equation has a non-trivial solution for 
any square-integrable function S that represents the neutron source. The solution belongs to the 
class of square-integrable functions. In contrast, the solution of the integro-differential transport 
equation belongs to the class of continuous and differentiable functions. Thus, the main benefit 
of using the integral equation is that the approximate solution is sought in a much less restrictive 
class of functions than the class of functions to which the solution of the original problem 
belongs. Another benefit is that the number of degrees of freedom of the solution (independent 
variables) is reduced by two degrees, i.e. the angular variables (0, 9) are eliminated by angular 
integration over the unit sphere. In simple terms, the approximate solution of the integral 
equation is equivalent to Pn spherical harmonics or Sn discrete ordinates solutions when n tends 
to infinity. 

2.1 Collision probability equations 

The class of square-integrable functions allows a large degree of freedom in the choice of trial 
functions as approximate solution of the transport equation. The simplest form is the step 
function. Suppose the spatial domain V is subdivided into n subdomains V1. Regardless the 
geometric shape, a step function a (r) can be associated to each subdomain, i.e. 

(1, r 0 Vi
wi(7-) = 10, r 0 V1 (3) 

The collision probability method was originally formulated by means of physics arguments. 
From the mathematical point of view, however, it is an application of the Galerkin method of 
moments. The functions representing the neutron flux v(r) and neutron source S(r) can be 
expanded over the basis of step functions wi(r) as follows: 

n 

V (r) = 1 ( P i coi(r) , 
i=1 

n 

S(r) = 1 Si co i(r) 
i=i 

(4) 

where the expansion coefficients (pi and Si represent region-averaged value of neutron flux and 
neutron source, respectively, i.e. 
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tPi = 1 (p(r)d3r, , Si = 1 — S(r)d3r 
Vi vi V- vi

(5) 

Multiplying Eq. (1) or (2) by each basis function coi(r) and integrating over the spatial domain 
V, one gets a system of linear algebraic equations that determines the approximate solution (pi. 
Multiplying each equation by the volume and the total cross section of the corresponding 
subdomain, the system of equations can be expressed in the classical form of collision 
probability equations: 

n 

Et,iViOi = + Si) , i = 1,2, ... n (6) 
j=i 

2.2 Collision probability expression 

A matrix coefficient /31_,i represents the probability that a neutron born in region j will suffer its 
next collision in region i. Its explicit form is: 

Et,i , exp[—T (r, r')] 
Pi_,i = 1 d3r f d-r .

Ir — r'12111rVi vi v J • 
i

= 1  d3r 1  d2 11 ds exp [— t(r, r')] 
41r tVi v 47, i 

si 

s.- • i 1 ASJ 

rEV1, E Vj (7) 

where si denotes the distance from the point r in region Vi to the exit point of direction fi from 
the region V1, while As./ is the track length size of direction Li through the region 

Owing to axial invariability (two-dimensional geometry), the integral over the volume Vi; reduces 
to a double integral over the horizontal cross section of Vi. Also, the geometric distance s = r —
r' and the optical distance 1-(r, e) can be expressed by their projections x and t onto the 
horizontal plane: 

x — 
s= 

sin 

t(r,r') 
T =  

sin 
(8) 

Assuming that that the x-y Cartesian coordinate system rotates with the azimuth angle so that 
the x-axis is parallel to the projection of fi onto the horizontal plane, the collision probability 
takes the form of the following five-fold integral: 

2ir Ymax xi 

Et,ti
= — f (/) f dy f dx f dx' d6 e—t(x,x1)Isin0 

4rcV-
0 x;—Ax; 0 

(9) 
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 (9) 
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The integration along direction LI is carried out over parallel trajectories that intersect both 
regions vi and V. The limits of y-integration y„,,„ = min (1141, Yi,i) and y,„ar = maxot2, rho 
are illustrated in Figure 1. Because of complicated geometric shapes that usually occur, 
integration with respect to azimuth angle cb and Cartesian coordinate y cannot be carried out 
analytically. Instead, it is evaluated numerically, i e 

211 Y111.= K L 

dC/3 J  dy ?WU) XwkXwt F(OksYr) 
o Ymkt k =1 1=1 

(x.y) 

V 

•c. 

(10) 

Figure 1. limits of y-integration in collision Figure 2. An illustration of analytical 
probability calculation. integration along neutron trajectory. 

The result of integration over the polar angle B is expressed as the Bickky function of the first 
order Kii(t) [10]. 

roz 

J dO 6-4x-T0151" = Kii(t(x,x0) 
0 

Thus, by analytical integration of Cartesian coordinates x and x', the collision probability 
expression takes the following form: 

L 
1 

P- =  FJ,E(Oici Ye bilti Vi XwkX WI

-t•1 
(12) 

where wk and we represent integration weights of the quadrature formulae applied, while the 
function FL! represents a linear combination of Bickley functions of third order: 
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Figure 1.  Limits of y-integration in collision 
probability calculation. 

 

Figure 2.  An illustration of analytical 
integration along neutron trajectory.

 

The result of integration over the polar angle  is expressed as the Bickley function of the first 
order  [10]. 

 (11) 

Thus, by analytical integration of Cartesian coordinates  and , the collision probability 
expression takes the following form: 

 (12) 

where  and  represent integration weights of the quadrature formulae applied, while the 
function  represents a linear combination of Bickley functions of third order: 
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F. _ fEt,illi — [Ki3(0) — Ki3(ti)] , i = j 
-hi — Ki3(tij) — Ki3(tij + tj) — Ki3(tij + ti) + Ki3(tij + ti + tj) , i # j 

(13) 

For a given neutron trajectory, the quantities ti = EtAxi and tj = EtiAxj denote the optical 
thickness of regions i and j, while tii is the minimum optical distance between these two regions 
(Figure 2). 

tij = 1 tn , i < j or tij = 1 tn , i > j (14) 

n=i+1 n=j+1 

Thus, the contribution to collision probability of a given neutron path trajectory is expressed as 
two-term (i = j) or four-term (ti # j) linear combinations of Bickley functions. Its evaluation is 
usually the most time consuming part of the collision probability integration algorithm. 

2.3 Evaluation of Bickley functions 

The Bickley function Kin (t) is a special function defined [10] as n-times repeated integral of the 
modified Bessel function of the second kind, Ko (x), i.e. 

CO
Kin(x) = 1 Kin_1(t)dt, n = 1,2,3, ... and Kio(x) = K0(x) (15) 

x 

A general approach to numerical evaluation of special functions is to subdivide the argument 
range in the following three parts: 

• Range of small arguments, in which a convergent series is used. The upper bound of the 
range is chosen according to the radius of convergence. 

• Range of regular (medium size) arguments, in which integral formulae are applied, often 
coupled with recurrence relations in order to get functions of various order n. 

• Range of large arguments, in which calculations are carried out using an asymptotic 
expansion. This range, however, is out of interest here, because, for such arguments the 
contribution to collision probabilities is negligible. 

In order to speed up collision probability codes, the calculation of Bickley functions is usually 
carried out by polynomial or rational approximations [11]. The lattice code WIMS-AECL uses 
look-up tables of piecewise polynomials. The code version 2-5d applies a table of quadratic 
polynomials specified over a set of 2,500 equidistant intervals that cover the range from x=0 to 
x=15, while the code version 3.1 uses linear polynomials over a set of 15,000 equal width 
intervals of length size 0.001. 

2.4 Numerical integration instead of Bickley functions calculation 

To explain the new method of collision probability calculation, it is useful to present the 
accuracy of the Gauss quadrature formula [12] applied to Bickley function calculation. Figure 3 
presents the absolute value of the relative error in Ki3(x) evaluation over the range x E [0,15]. 
It is calculated varying the number of quadrature nodes from 3 to 8. Due to logarithmic scale, 
sharp minimum values denote argument values at which the sign of the relative error changes. 
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Figure 3. Accuracy of Bickley function calculation using Gauss quadrature formula 

The Gauss quadrature formula can be applied directly into Eq. (9) instead of the analytical 
integration of the polar angle. In this case, the collision probability can be expressed as follows: 

10 11 12 

K L M 
1 wk wi Wm sing  GLI(4)Ici Ye' 9m)

P• = 2mEt,j1Ij k.1 l=1 m 

13 14 15 

(16) 

where 8m and Wm are abscisas and ordinates of the Gauss quadrature formula, and the function 
G1,i, is obtained by analytical integration along the trajectory specified by the polar angle 8, 

Et tAxi — [1 — exP(— ri.)] 
G. • = 
" — exl)(—Ti)1 • exP(-1-11) • [1 — exP(—T1)], 

i = 

j 
(17) 

One would expect that using numerical integration instead of analytical one, the computing time 
will increase. As shown in Section 4, however, the effect is opposite for low order quadrature 
formulae. This is mainly due to the simplicity of Eq. (17). Owing to the properties of the 
exponential function, the attenuation factor (the trajectory contribution to the transmission 
probability) between regions i and j can be expressed as a product of attenuation factors of 
individual regions, i.e. 

—1 

exp(-1-ii) = exp(—T,i) 
n=i+i 

(18) 

Increasing the index j, the new attenuation factor is obtained by a single multiplication. On the 
other hand, the analytical approach requires calculation of four Bickley functions. Using linear 
look-up tables, the calculation of each function implies two arithmetic operations (one 
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multiplication and one addition), plus three arithmetic operations to locate the subinterval in the 
look up table. 

For a large optical distance between regions i and j, the contribution to the collision probability 
becomes a very small quantity. Thus, the calculation of Eq. (13) is usually truncated when the 
argument of the Bickley function reaches a cut-off value. In WIMS, it is an input specified 
parameter limited to 15 neutron mean free paths — the maximum value for which the look-up 
table is calculated. Instead of Bickley functions, the new method uses exponential functions that 
are calculated by intrinsic computer procedure. Thus, the cut-off parameter in calculation of Eq. 
(17) is not limited. In this case, it is more convenient to specify the truncation by the magnitude 
of the transmission probability, Eq. (18), instead of the optical distance. 

Another advantage of the numerical integration is reduced round-off error. The exponential 
function is evaluated by intrinsic computer procedure, so that the contribution to the collision 
probability is calculated accurately and always positive. This is not necessarily the case for the 
analytical approach. The related expression in Eq. (13) represents a sum of two differences. 
Due to the limited accuracy of the look up tables, a loss of significant figures may occur for 
optically thin regions. As a result, the round off error accumulates in the sum of the trajectory 
contributions and impairs the accuracy of collision probability values. 

3. Block-iteration of collision probability equations 

The collision probability method approximates the neutron transport equation by a set of linear 
algebraic equations. The overall solution is obtained by a two-level iteration. The outer iteration 
is carried out by the power iteration method to get the eigenvalue (neutron multiplication factor) 
and the related fission source. The inner iteration is performed on the thermal groups to 
determine the thermal scattering source. 

3.1 Within-group solution 

Dividing each collision probability equation by EuVi, the neutron flux can be expressed by the 
so-called modified collision probabilities Pi*_,i, so that Eq. (6) takes the following form: 

n 

(Pi = 1 Pj*->i(Es,j(Pj + Sj) ) i = 1,2, ...n. (19) 
j=1 

Denote by tp and s the vectors of region averaged fluxes 0j and sources S1, respectively, P is the 
matrix of modified collision probabilities, Es is a diagonal matrix of scattering cross sections, 
and 1 is a unity matrix. The matrix of Eq. (19) is dense and the solution is obtained either by 
matrix decomposition or matrix inversion. To do this, Eq. (19) is rearranged as follows: 

Ay) = f, A = I— EsP, f = Ps (20) 

The matrix A can be decomposed as a product of lower L and upper U triangular matrices, so 
that the solution is obtained by forward elimination and backward substitution as follow: 
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multiplication and one addition), plus three arithmetic operations to locate the subinterval in the 
look up table. 

For a large optical distance between regions i and j, the contribution to the collision probability 
becomes a very small quantity.  Thus, the calculation of Eq. (13) is usually truncated when the 
argument of the Bickley function reaches a cut-off value.  In WIMS, it is an input specified 
parameter limited to 15 neutron mean free paths – the maximum value for which the look-up 
table is calculated.  Instead of Bickley functions, the new method uses exponential functions that 
are calculated by intrinsic computer procedure.  Thus, the cut-off parameter in calculation of Eq. 
(17) is not limited.  In this case, it is more convenient to specify the truncation by the magnitude 
of the transmission probability, Eq. (18), instead of the optical distance.   

Another advantage of the numerical integration is reduced round-off error.  The exponential 
function is evaluated by intrinsic computer procedure, so that the contribution to the collision 
probability is calculated accurately and always positive.  This is not necessarily the case for the 
analytical approach.  The related expression in Eq. (13) represents a sum of two differences.  
Due to the limited accuracy of the look up tables, a loss of significant figures may occur for 
optically thin regions.  As a result, the round off error accumulates in the sum of the trajectory 
contributions and impairs the accuracy of collision probability values. 

3. Block-iteration of collision probability equations 

The collision probability method approximates the neutron transport equation by a set of linear 
algebraic equations.  The overall solution is obtained by a two-level iteration.  The outer iteration 
is carried out by the power iteration method to get the eigenvalue (neutron multiplication factor) 
and the related fission source.  The inner iteration is performed on the thermal groups to 
determine the thermal scattering source. 

3.1 Within-group solution 

Dividing each collision probability equation by , the neutron flux can be expressed by the 
so-called modified collision probabilities , so that Eq. (6) takes the following form: 

 (19) 

Denote by  and  the vectors of region averaged fluxes  and sources , respectively,  is the 
matrix of modified collision probabilities,  is a diagonal matrix of scattering cross sections, 
and  is a unity matrix. The matrix of Eq. (19) is dense and the solution is obtained either by 
matrix decomposition or matrix inversion.  To do this, Eq. (19) is rearranged as follows: 

 (20) 

The matrix  can be decomposed as a product of lower  and upper  triangular matrices, so 
that the solution is obtained by forward elimination and backward substitution as follow: 
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(21) 

where f is an auxiliary vector. This procedure is usually used to calculate the within-group flux 
in fast energy groups. In thermal groups, however, it is necessary to calculate the flux by direct 
matrix inversion, i.e. 

(I) = A-1 f, B = LI, A-1 = UB (22) 

The number of arithmetic operations of the solution procedures (21) and (22) is proportional to 
the third degree of the number of unknowns per energy group. Evidently, the computing time 
increases rapidly with the increase of the number of unknowns. 

The total computing time of the collision probability method consists of three components: (1) 
calculation of collision probabilities, (2) matrix decomposition/inversion, and (3) thermal flux 
iteration. For small and medium-size problems (below one thousand equations per group), the 
major consumer of computing time is the calculation of collision probabilities. A new method 
was presented in Section 2 that, as shown in Section 4, speeds up the calculation by a factor of 2. 
Increasing the problems size above one thousand equations per group, the dominant time 
consumer is the matrix inversion. The computing time is proportional to the third degree (n3) of 
the number of unknowns n, so that the method becomes inefficient for models that are 
represented by several thousand equations. This section presents a new solution method for this 
type of problems, which speeds up the calculation of large cases by at least an order of 
magnitude. 

3.2 Block-iteration method 

The vectors of unknown flux (p and source values s and, accordingly, the matrix P of modified 
collision probabilities, can be subdivided into a number m of blocks as follows: 

(Pi Si P11 P12 1m 

(P= 
(P2 

) s= 
S2 

P= P21 P22 

• 

P2m (23) 

(Pm S m Pmt Pmt Pmm 

Suppose that each block has ni elements so that n = El% ni. Eq. (19) can be rewritten now in 
matrix form as follows: 

m 

(pi =II:I ii(Es,i(pi + si) , i = 1,2, ... m. (24) 
j=i 

One may apply block iteration in order to solve Eq. (24). Using the Gauss-Seidel method, the 
iteration scheme can be cast as follows where -1' denotes the iteration index: 

i m 

(1' +1) _ „ ( ( e +1) \ (1) (P i
—IrqEsj(Pi + s j)+ 1 Pii(Esiv i + s i) , i= 1,2, ...m. (25) 

1=1 j=i+1 

It can be rearranged as follows in order to express the unknown block q4e+1)
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 (21) 

where  is an auxiliary vector.  This procedure is usually used to calculate the within-group flux 
in fast energy groups.  In thermal groups, however, it is necessary to calculate the flux by direct 
matrix inversion, i.e. 

 (22) 

The number of arithmetic operations of the solution procedures (21) and (22) is proportional to 
the third degree of the number of unknowns per energy group.  Evidently, the computing time 
increases rapidly with the increase of the number of unknowns. 

The total computing time of the collision probability method consists of three components: (1) 
calculation of collision probabilities, (2) matrix decomposition/inversion, and (3) thermal flux 
iteration.  For small and medium-size problems (below one thousand equations per group), the 
major consumer of computing time is the calculation of collision probabilities.  A new method 
was presented in Section 2 that, as shown in Section 4, speeds up the calculation by a factor of 2.  
Increasing the problems size above one thousand equations per group, the dominant time 
consumer is the matrix inversion.  The computing time is proportional to the third degree ( ) of 
the number of unknowns , so that the method becomes inefficient for models that are 
represented by several thousand equations.  This section presents a new solution method for this 
type of problems, which speeds up the calculation of large cases by at least an order of 
magnitude. 

3.2 Block-iteration method 

The vectors of unknown flux  and source values  and, accordingly, the matrix  of modified 
collision probabilities, can be subdivided into a number  of blocks as follows: 

 (23) 

Suppose that each block has  elements so that .  Eq. (19) can be rewritten now in 
matrix form as follows: 

 (24) 

One may apply block iteration in order to solve Eq. (24). Using the Gauss-Seidel method, the 
iteration scheme can be cast as follows where  denotes the iteration index: 

 (25) 

It can be rearranged as follows in order to express the unknown block  
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i-i m 
ce+1) „ „ (e+1) v+1) \ CO 1 (Pi

— riizs,i(Pi =1Pii(E siv i + s i ) + 1 Pii(Esivi + si) (26) 
j= 1 j= i + 1 

Inverting the matrix on the left hand side of Eq. (26), the iteration scheme takes the following 
form: 

where 

1-1 m 
(1)+1) 1 -1 (pi = Aii Pii(Esivr +1) + si)+ 1 Ali l-1P  + s j) 

j=1 j=L+1 

Aii1 = (I — PiiEs,i) 1

(27) 

(28) 

Instead of inverting the full matrix A of dimensions n x n, the above scheme requires inversion 
of m matrices A.L of much lower dimensionality. Another advantage is the significant reduction 
in memory requirements. Matrix blocks can be stored in a temporary file and retrieved in the 
memory one-by-one as necessary. 

4. Numerical results 

4.1 Test problems 

In order to study the properties of the new methods, the following three sets of problems are 
considered: 

A. CANDU-6 lattice cell with fresh fuel. 

1. Regular lattice cell at normal operating condition (Figure 4). 

2. Lattice cell with destroyed bundle in a crept pressure tube (Figure 5). 

B. Defueled channel in a periodically repeating lattice region. 

1. Periodically repeating lattice region of 2x2 cells (Figure 6). 

2. Periodically repeating lattice region of 3x3 cells. 

3. Periodically repeating lattice region of 4x4 cells. 

4. Periodically repeating lattice region of 5x5 cells. 

C. Core-reflector interface. 

1. Model of 3+2 cells (3 fuel cells + 2 reflector cells) (Figure 7). 

2. Model of 4+2 cells. 

3. Model of 5+2 cells. 

4. Model of 6+2 cells. 

Figure 4 shows the geometric model of the regular lattice cell along with the mesh subdivision 
that is used for collision probability calculations. Because of the symmetry, the number of 
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 (26) 

Inverting the matrix on the left hand side of Eq. (26), the iteration scheme takes the following 
form: 

 (27) 

where 

 (28) 

Instead of inverting the full matrix  of dimensions , the above scheme requires inversion 
of  matrices  of much lower dimensionality.  Another advantage is the significant reduction 
in memory requirements.  Matrix blocks can be stored in a temporary file and retrieved in the 
memory one-by-one as necessary. 

4. Numerical results 

4.1 Test problems 

In order to study the properties of the new methods, the following three sets of problems are 
considered: 

A. CANDU-6 lattice cell with fresh fuel. 
1. Regular lattice cell at normal operating condition (Figure 4). 
2. Lattice cell with destroyed bundle in a crept pressure tube (Figure 5). 

B. Defueled channel in a periodically repeating lattice region. 
1. Periodically repeating lattice region of 2x2 cells (Figure 6). 
2. Periodically repeating lattice region of 3x3 cells. 
3. Periodically repeating lattice region of 4x4 cells. 
4. Periodically repeating lattice region of 5x5 cells. 

C. Core-reflector interface. 
1. Model of 3+2 cells (3 fuel cells + 2 reflector cells) (Figure 7). 
2. Model of 4+2 cells. 
3. Model of 5+2 cells. 
4. Model of 6+2 cells. 

Figure 4 shows the geometric model of the regular lattice cell along with the mesh subdivision 
that is used for collision probability calculations.  Because of the symmetry, the number of 
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unknowns per group reduces to the number of meshes in one quadrant of the lattice cell, which is 
in this case equal to 142 unknowns per group. 

Figure 5 presents the geometric model of the lattice cell with destroyed fuel bundle in a sagged 
pressure tube, as used usually in safety analysis. In this case, there is no symmetry in the model. 
Moreover, due to the asymmetry of the pressure tube and fuel pins, additional mesh refinement 
should be applied to the pressure tube interior. As a result, the problem is represented by 825 
unknowns per group. 
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Figure 4. Geometric model and mesh Figure 5. Lattice cell with destroyed fuel 
subdivision of the regular lattice cell. bundle in a sagged pressure tube.. 

Figure 6 shows the geometric model of the defueled channel problem in 2x 2 cells environment, 
while Figure 7 represents the geometric model of a core-reflector interface problem with three 
fueled cells and two reflector cells (3+2 cells). In related models, only the number of regular 
lattice cells is greater; there is again one dcfucled cell or two reflector cells. 

4.2 Collision probability calculation 

As presented in Section 2, there are two free parameters in the new method for collision 
probability calculation. They are: the number of quadrature nodes for polar angle integration and 
the truncation (cut-off) criterion in the calculation of the trajectory contribution to collision 
probability. Calculations of test problems A.1 and A.2 were carried out varying these parameters 
as follows: the number of quadrature nodes varies from 2 to 8, while truncation parameter varies 
over the following set of values: 10-4, 10-5, 10-6, 10-7, and 10-8. Reference calculations were 
performed using 32 quadrature nodes and truncation parameter of 1048. Table 1 and Table 2 
present the results of calculations obtained for both coolant states (cooled and voided) of the test 
problems A.1 and A.2, respectively. For each parameter value (the number of nodes and the cut-
off parameter), the following results are given: the infinite neutron multiplication factor (k-inf), 
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unknowns per group reduces to the number of meshes in one quadrant of the lattice cell, which is 
in this case equal to 142 unknowns per group. 

Figure 5 presents the geometric model of the lattice cell with destroyed fuel bundle in a sagged 
pressure tube, as used usually in safety analysis.  In this case, there is no symmetry in the model. 
Moreover, due to the asymmetry of the pressure tube and fuel pins, additional mesh refinement 
should be applied to the pressure tube interior.  As a result, the problem is represented by 825 
unknowns per group. 

 

Figure 4.  Geometric model and mesh 
subdivision of the regular lattice cell. 

 

Figure 5.  Lattice cell with destroyed fuel 
bundle in a sagged pressure tube..

 

Figure 6 shows the geometric model of the defueled channel problem in 2×2 cells environment, 
while Figure 7 represents the geometric model of a core-reflector interface problem with three 
fueled cells and two reflector cells (3+2 cells).  In related models, only the number of regular 
lattice cells is greater; there is again one defueled cell or two reflector cells. 

4.2 Collision probability calculation 

As presented in Section 2, there are two free parameters in the new method for collision 
probability calculation.  They are: the number of quadrature nodes for polar angle integration and 
the truncation (cut-off) criterion in the calculation of the trajectory contribution to collision 
probability.  Calculations of test problems A.1 and A.2 were carried out varying these parameters 
as follows: the number of quadrature nodes varies from 2 to 8, while truncation parameter varies 
over the following set of values: 10-4, 10-5, 10-6, 10-7, and 10-8.  Reference calculations were 
performed using 32 quadrature nodes and truncation parameter of 10-18.  Table 1 and Table 2 
present the results of calculations obtained for both coolant states (cooled and voided) of the test 
problems A.1 and A.2, respectively.  For each parameter value (the number of nodes and the cut-
off parameter), the following results are given: the infinite neutron multiplication factor (k-inf), 
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the absolute error ∆k-inf expressed in pcm = 0.01 mk, the root mean square (RMS) error (%) in 
neutron flux distribution, and the computing time for calculation of collision probabilities.  
Calculations were carried out on a Hewlett Packard PC with Intel Core2, a 32-bit processor, at 3 
GHz clock.  The results show that for the cooled lattice state even the very coarse approximation 
(2 nodes and cut-off value of 10

-4
) produces rather low errors (20 pcm = 0.2 mk in k-infinity and 

less than 1% in flux distribution). However, for the voided coolant state the flux error of the low 
order approximation rises to about 15%. Thus, 3 quadrature nodes and a cut-off value of 10

-6
 

seem to be a reasonable choice for routine calculations. The error in neutron multiplication factor 
is within ±2 pcm, the RMS error in flux distribution is below half a percent, while the computing 
time is decreased by more than a factor of 2 

 
Figure 6.  Geometric model of defueled channel problem represented by 2x2 lattice cells. 

 
Figure 7.  Geometric model of core-reflector interface problem represented by three fuel cells 

and two reflector cells 
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Table 1 
Results of calculation of the regular lattice cell 

Number 
of 

Nodes 

Cut 
Off 

Value 

Cooled Voided 

k-inf 
Ak-inf 
(pcm) 

RMS 
(%) 

CPU 
(s) 

k-inf 
Ak-inf 
(pcm) 

RNIS 
(%) 

CPU 
(s) 

2 

1.E-4 1.11467 19 0.79 4.7 1.13585 33 3.8 4.7 
1.E-5 1.11465 17 0.32 5.3 1.13575 23 0.60 5.3 
1.E-6 1.11465 17 0.33 5.9 1.13574 22 0.35 5.9 
1.E-7 1.11465 17 0.33 6.5 1.13574 22 0.36 6.5 
1.E-8 1.11465 17 0.33 7.0 1.13573 21 0.36 7.1 

3 

1.E-4 1.11450 2 0.77 6.1 1.13559 7 3.9 6.1 
1.E-5 1.11448 0 0.061 7.0 1.13550 -2 0.55 7.1 
1.E-6 1.11447 1 0.043 7.9 1.13550 -2 0.076 7.9 
1.E-7 1.11448 0 0.043 8.7 1.13550 -2 0.050 8.8 
1.E-8 1.11448 0 0.043 9.7 1.13550 -2 0.05 9.6 

4 

1.E-4 1.11451 3 0.77 7.7 1.13562 10 3.9 7.5 
1.E-5 1.11449 1 0.046 8.8 1.13552 0 0.55 8.8 
1.E-6 1.11449 1 0.011 9.9 1.13552 1 0.059 9.9 
1.E-7 1.11449 1 0.010 10.9 1.13552 0 0.012 11.1 
1.E-8 1.11450 2 0.010 11.9 1.13551 -1 0.012 12.1 

5 

1.E-4 1.11451 3 0.76 9.0 1.13562 10 3.9 8.9 
1.E-5 1.11448 0 0.044 10.6 1.13552 0 0.55 10.5 
1.E-6 1.11448 0 0.005 11.9 1.13551 -1 0.058 12.0 
1.E-7 1.11449 1 0.004 13.2 1.13551 -1 0.006 13.4 
1.E-8 1.11449 1 0.004 14.4 1.13551 -1 0.003 14.6 

6 

1.E-4 1.11451 3 0.77 10.5 1.13562 10 3.89 10.5 
1.E-5 1.11448 0 0.044 12.2 1.13553 1 0.55 12.3 
1.E-6 1.11449 1 0.004 13.9 1.13552 0 0.058 14.0 
1.E-7 1.11449 1 0.002 15.4 1.13551 -1 0.005 15.6 
1.E-8 1.11448 0 0.002 16.9 1.13552 0 0.002 17.1 

7 

1.E-4 1.11450 2 0.76 12.0 1.13563 11 3.9 11.9 
1.E-5 1.11449 1 0.044 14.0 1.13552 0 0.55 14.0 
1.E-6 1.11448 0 0.003 16.1 1.13552 0 0.058 16.1 
1.E-7 1.11449 1 0.001 17.7 1.13551 -1 0.005 17.9 
1.E-8 1.11448 0 0.001 19.4 1.13552 0 0.001 19.7 

8 

1.E-4 1.11449 1 0.77 13.5 1.13562 10 3.9 13.4 
1.E-5 1.11448 -0 0.04 15.7 1.13552 0 0.55 15.8 
1.E-6 1.11449 1 0.003 17.9 1.13551 -1 0.058 18.1 
1.E-7 1.11448 0 0.001 19.9 1.13551 -1 0.005 20.2 
1.E-8 1.11448 0 0.001 21.8 1.13552 0 0.001 22.9 

32 1.E-18 1.11448 Reference 122.3 1.13552 Reference 124.0 
Bickley func. 1.11448 0 0.001 19.5 1.13541 -11 0.003 20.1 
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Table 1 
Results of calculation of the regular lattice cell 
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1.E-8 1.11448 0 0.001 19.4 1.13552 0 0.001 19.7 

8 

1.E-4 1.11449 1 0.77 13.5 1.13562 10 3.9 13.4 
1.E-5 1.11448 -0 0.04 15.7 1.13552 0 0.55 15.8 
1.E-6 1.11449 1 0.003 17.9 1.13551 -1 0.058 18.1 
1.E-7 1.11448 0 0.001 19.9 1.13551 -1 0.005 20.2 
1.E-8 1.11448 0 0.001 21.8 1.13552 0 0.001 22.9 

32 1.E-18 1.11448 Reference 122.3 1.13552 Reference 124.0 
Bickley func. 1.11448   0 0.001 19.5 1.13541 -11 0.003 20.1 
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Table 2 
Results of calculation of the lattice cell with destroyed fuel bundle 

Number 
of 

Nodes 

Cut 
Off 

Value 

Cooled Voided 

k-inf 
Ak-inf 
(pcm) 

RMS 
(%) 

CPU 
(s) 

k-inf 
Ak-inf 
(pcm) 

RMS 
(%) 

CPU 
(s) 

2 

1.E-4 1.11835 17 0.44 7.2 1.13708 31 14.4 7.0 
1.E-5 1.11837 19 0.31 8.0 1.13699 22 3.81 7.9 
1.E-6 1.11838 20 0.32 8.8 1.13698 21 0.62 8.8 
1.E-7 1.11837 19 0.32 9.5 1.13699 22 0.32 9.6 
1.E-8 1.11837 19 0.32 10.2 1.13697 20 0.32 10.3 

3 

1.E-4 1.11816 -2 0.38 9.1 1.13685 8 14.6 8.9 
1.E-5 1.11817 -1 0.05 10.3 1.13676 -1 3.87 10.2 
1.E-6 1.11816 -2 0.04 11.3 1.13676 -1 0.57 11.4 
1.E-7 1.11818 0 0.04 12.4 1.13675 -2 0.07 12.5 
1.E-8 1.11817 -1 0.04 13.3 1.13675 -2 0.04 13.5 

4 

1.E-4 1.11818 0 0.38 11.0 1.13687 10 14.6 10.9 
1.E-5 1.11818 0 0.03 12.6 1.13679 2 3.85 12.5 
1.E-6 1.11817 -1 0.01 14.0 1.13678 1 0.57 14.1 
1.E-7 1.11819 1 0.01 15.3 1.13678 1 0.06 15.4 
1.E-8 1.11818 0 0.01 16.5 1.13678 1 0.01 16.8 

5 

1.E-4 1.11818 0 0.38 13.0 1.13688 11 14.6 12.8 
1.E-5 1.11818 0 0.03 14.7 1.13678 1 3.87 14.8 
1.E-6 1.11818 0 0.01 16.6 1.13678 1 0.57 16.7 
1.E-7 1.11817 -1 0.01 18.2 1.13678 1 0.06 18.4 
1.E-8 1.11818 0 0.01 19.9 1.13678 1 0.01 20.1 

6 

1.E-4 1.11816 -2 0.38 14.9 1.13688 11 14.6 14.6 
1.E-5 1.11818 0 0.03 17.1 1.13679 2 3.86 17.0 
1.E-6 1.11816 -2 0.00 19.3 1.13678 1 0.57 19.3 
1.E-7 1.11817 -1 0.00 21.1 1.13678 1 0.06 21.4 
1.E-8 1.11816 -2 0.00 23.1 1.13678 1 0.01 23.3 

7 

1.E-4 1.11815 -3 0.38 16.9 1.13687 10 14.6 16.5 
1.E-5 1.11818 0 0.03 19.4 1.13679 2 3.86 19.3 
1.E-6 1.11818 0 0.00 21.7 1.13677 0 0.57 21.9 
1.E-7 1.11817 -1 0.00 24.1 1.13678 1 0.06 24.3 
1.E-8 1.11817 -1 0.00 26.2 1.13678 1 0.01 26.5 

8 

1.E-4 1.11815 -3 0.38 18.7 1.13687 10 14.6 18.4 
1.E-5 1.11818 0 0.03 21.7 1.13678 1 3.86 21.6 
1.E-6 1.11817 -1 0.00 24.4 1.13678 1 0.56 24.7 
1.E-7 1.11818 0 0.00 27.0 1.13678 1 0.06 27.2 
1.E-8 1.11818 0 0.00 29.5 1.13677 0 0.01 29.7 

32 1.E-18 1.11818 Reference 157.5 1.13677 Reference 159.5 
Bickley function 1.11815 -3 0.00 25.4 1.13668 -11 0.08 26.2 
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Table 2 
Results of calculation of the lattice cell with destroyed fuel bundle 

Number 
of 

Nodes 

Cut 
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Cooled Voided 
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CPU 
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(%) 

CPU 
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1.E-7 1.11818 0 0.04 12.4 1.13675 -2   0.07 12.5 
1.E-8 1.11817 -1 0.04 13.3 1.13675 -2   0.04 13.5 

4 

1.E-4 1.11818 0 0.38 11.0 1.13687 10 14.6 10.9 
1.E-5 1.11818 0 0.03 12.6 1.13679 2   3.85 12.5 
1.E-6 1.11817 -1 0.01 14.0 1.13678 1   0.57 14.1 
1.E-7 1.11819 1 0.01 15.3 1.13678 1   0.06 15.4 
1.E-8 1.11818 0 0.01 16.5 1.13678 1   0.01 16.8 

5 

1.E-4 1.11818 0 0.38 13.0 1.13688 11 14.6 12.8 
1.E-5 1.11818 0 0.03 14.7 1.13678 1   3.87 14.8 
1.E-6 1.11818 0 0.01 16.6 1.13678 1   0.57 16.7 
1.E-7 1.11817 -1 0.01 18.2 1.13678 1   0.06 18.4 
1.E-8 1.11818 0 0.01 19.9 1.13678 1   0.01 20.1 

6 

1.E-4 1.11816 -2 0.38 14.9 1.13688 11 14.6 14.6 
1.E-5 1.11818 0 0.03 17.1 1.13679 2   3.86 17.0 
1.E-6 1.11816 -2 0.00 19.3 1.13678 1   0.57 19.3 
1.E-7 1.11817 -1 0.00 21.1 1.13678 1   0.06 21.4 
1.E-8 1.11816 -2 0.00 23.1 1.13678 1   0.01 23.3 

7 

1.E-4 1.11815 -3 0.38 16.9 1.13687 10 14.6 16.5 
1.E-5 1.11818 0 0.03 19.4 1.13679 2   3.86 19.3 
1.E-6 1.11818  0 0.00 21.7 1.13677 0   0.57 21.9 
1.E-7 1.11817 -1 0.00 24.1 1.13678 1   0.06 24.3 
1.E-8 1.11817 -1 0.00 26.2 1.13678 1   0.01 26.5 

8 

1.E-4 1.11815 -3 0.38 18.7 1.13687 10 14.6 18.4 
1.E-5 1.11818 0 0.03 21.7 1.13678 1   3.86 21.6 
1.E-6 1.11817 -1 0.00 24.4 1.13678 1   0.56 24.7 
1.E-7 1.11818 0 0.00 27.0 1.13678 1   0.06 27.2 
1.E-8 1.11818 0 0.00 29.5 1.13677 0   0.01 29.7 

32 1.E-18 1.11818 Reference 157.5 1.13677 Reference 159.5 
Bickley function 1.11815 -3 0.00 25.4 1.13668 -11 0.08 26.2 
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4.3 Solution of large systems of collision probability equations 

In order to study the efficiency of the block-iteration method presented in Section 3, calculations 
were carried out by varying the block size of matrix partition from 5, 10, 20, ... unknowns per 
block up to the full size matrix. Figure 8 presents the computing time of matrix inversion as a 
function of the block size. The right-most point of each curve represents the full matrix case. It 
is evident that as the block size increases, the computing time increases rapidly. The time ratio of 
the full matrix case versus small blocks of 5 to 20 unknowns ranges from 100 for the model A.2 
to 1000 for model C. 
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Figure 8. CPU time of matrix inversion as a function of block size 

Figure 9 presents the iteration computing time as a function of the block size. A slight increase 
of the CPU time with the decrease of the block size can be observed for the model A. However, 
for other models, the dependence on the block size is weak with a slight minimum in the block 
size range of 20 to 100 unknowns. 

Figure 10 presents the total computing time as a function of the block size. For each curve, a flat 
region can be observed in the block size range of 20 to 100 unknowns. Compared to the full 
matrix results, the related computing time is decreased by a factor 10 to 80, depending on the 
problem considered. 

According to the presented results, the block size of 20 unknowns seems to be a reasonable 
choice as the default value. 

Table 3 summarizes the calculation of large collision probability problems. As a check of the 
validity, results of MCNP calculations are included as well. The results of both full-matrix 
solution and block-matrix solution are given for models represented by up to 4000 unknowns. 
When the number of unknowns exceeds this value, the memory requirements of the full-matrix 
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method exceed the 2 GB indexing limit on a 32 bit computer so that such problems could not be 
solved. The new solution method speeds up the calculation significantly and allows solution of 
large problems the dimensions of which may go far above 4000 unknowns per group. On the 
other hand, the comparison with MCNP shows a very good agreement between the two codes. 
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Table 3 
Summary of large problem calculations. 

Model Code 
Number of 
unknowns 

Matrix k-infinity 
CPU 
(min) 

Speed-up 
factor 

A.2 
WIMS 825 

Full 1.11809 5.03 
Block 1.11813 0.45 11 

MCNP 1.11769 

B: 2x2 
WIMS 1547 

Full 1.09814 51.60 
Block 1.09815 1.63 32 

MCNP 1.09771 

B: 3x3 
WIMS 3942 

Full 1.10799 1029.20 
Block 1.10804 13.05 79 

MCNP 1.10801 

B: 4x4 
WIMS 7295 Block 1.11096 63.22 NA 
MCNP 1.11055 

B: 5x5 
WIMS 11606 Block 1.11217 259.33 NA 
MCNP 1.11191 

C: 3+2 
WIMS 2781 

Full 1.06366 356.83 
Block 1.06362 10.88 33 

MCNP 1.06387 

C: 4+2 
WIMS 3612 

Full 1.07933 845.45 
Block 1.07933 31.43 27 

MCNP 1.07985 

C: 5+2 
WIMS 4443 Block 1.08846 60.07 NA 
MCNP 1.08926 

C: 6+2 
WIMS 5274 Block 1.09431 155.63 NA 
MCNP 1.09508 

NA - Full-matrix method exceeds 2GB indexing limit of 32-bit machine. 

5. Conclusions 

A new method for collision probability calculation is presented that applies numerical integration 
of the polar angle instead of analytical integration of the Bickley functions. The algorithm is 
flexible concerning the accuracy and eliminates round-off error that may occur in standard 
collision probability calculations. Test results show that compared to the standard approach, the 
computing time can be reduced by a factor 2. 

For a direct method of solution of within-group collision probability equations, the number of 
unknowns is a limiting factor with respect to both, memory requirements and computing time. 
As presented in this paper, the block iteration method reduces significantly the memory 
requirements and speeds up the calculations by more than one order of magnitude. Another 
advantage is that the block-partition approach is suitable for parallel processing. Calculations of 
each diagonal block can be carried out on a separate processor. In that case, however, the Jacobi 
iteration should be used instead of Gauss-Seidel iteration. 
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