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Abstract 

Authoring reactor models is a routine task for practitioners in nuclear engineering for reactor design, 
safety analysis, and code validation. The conventional approach is to use a text-editor to either 
manually manipulate an existing model or to assemble a new model by copying and pasting or direct 
typing. This approach is error-prone and substantial effort is required for verification. Alternatively, 
models can be generated programmatically for a specific system via a centralized data source and 
with rigid algorithms to generate models consistently and efficiently. This approach is demonstrated 
here for model generators for MCNP and KENO for the ZED-2 reactor. 

1. Introduction 

The advent of computing technology in the last few decades has allowed for the simulation of reactor 
systems with unprecedented fidelity and outcome that increase the predictive capability of simulations 
of reactor properties considerably. Reactor models for many computer simulation codes, such as 
MCNP [1] and SCALE [2], are often realized as plain text files containing hundreds or thousands of 
lines of data that represent the key characteristics such as material compositions and geometry of the 
reactor. Authoring reactor models is a routine task for practitioners in nuclear engineering for reactor 
design, safety analysis, and code validation. Conventional methods include writing the model from 
scratch using a generic text editor via direct typing, or copying/pasting from other text files and 
spreadsheets; modifying an existing model for a different configuration; or using extensive Excel®
macros to generate the models. It has been the author's observation that the first two methods are rather 
tedious, models generated by these methods are often error-prone, and extensive effort on verification 
is required to warrant the fidelity and validity of the models. The method using Excel macros is 
probably more preferable among the three, but this method is often tailored for personalized use and 
with cryptic documentations, if any, which renders it difficult to share among workers. Other methods 
have also been implemented with scripting languages but the solutions are often in a piecemeal fashion 
and difficult to use. In an attempt to address these issues, the author has developed a suite of Windows®
applications capable of generating full-core MCNP5 and KENO-V.a models of the ZED-2 reactor (zero 
Energy Deuterium) [3]1, and the CANDU-6 reactor. 

The two model generators for MCNP and KENO for the ZED-2 reactor are used in this article to 
demonstrate the approach the author advocates as an alternative to the conventional approach of 
authoring large reactor models with text editors and/or spreadsheets. Inconsistencies among models are 
avoided by generating the models through a common data source. Graphical user interfaces, with data 
validation capability, are provided to facilitate entry of all data required for generating a model. 
Efficiency is enhanced by automatically generating data cards, consistency with the syntactical 

1 A research reactor located at the Chalk River Laboratories, ON, dedicated predominately to the study of CANDU®-type 
nuclear fuels. 
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requirement of the codes, based on data entered by the user and other specific data files provided along 
with the applications. 

Other applications are available that facilitate authoring of models of generic nuclear systems for 
MCNP and KENO, such as VISED [4] for MCNP input data entry and geometry visualization, and 
Geewiz, which is included in the SCALE [2] package serving similar purposes as VISED. However, 
it should be noted that applications such as VISED and Geewiz were designed to facilitate modeling 
of generic systems of any complexity allowable by the simulation tools. On the contrary, the suite of 
applications developed by the author has been designed to target specific systems such as ZED-2 and 
CANDU-6. In this respect, the usefulness of the applications targeting specific systems might seem to 
be limited compared to the generic applications. However, the process of defining a problem domain 
that addresses generic problems automatically excludes any specific problems relevant to specific 
systems. Incidentally, it is exactly the lack of functionalities in the generic tools that address the 
specific problems that has motivated the author to develop the specific applications. Furthermore, since 
the problem domains that the specific applications address are well-defined, the applications are highly 
customized and developed in-house, the codes so developed are much more manageable than any tools 
acquired through external vendors. In fact, since the set of codes for the specific applications have been 
developed with a fully object-oriented programming (OOP) approach with emphases on maintainability 
and extensibility, they can be updated frequently according to changing requirements, and highly 
extensible to solve other problems of a similar nature within the organization. In this respect, the short 
term investment for specific projects to develop such applications might seem high, but the benefits 
from the investment will prove to be worthy to the organization in the long term. 

2. Software Development 

The development of the two model generators for MCNP and KENO for the ZED-2 reactor follows the 
"Iterative and Incremental"2 approach which is more suitable for this kind of applications than the 
"Waterfall"3 approach, since the requirements are expected to evolve in time. The model generators are 
implemented with the modern programming language C# 3.0 [5] along with the . NET Framework 

Library version 3.5 (SP1) to take advantage of the rich graphical user interface (GUI) features 
provided by the library. The integrated development environment (IDE) Microsoft Visual 

Studio 2008 was employed for coding the applications. The software development process is 
elaborated in the following subsections. 

2.1 Modelling Requirements 

Initial requirements for the model generators were compiled by the author based on his experience in 
authoring the models manually, with additional requirements collected through literature research and 
discussions with colleagues. The requirements are dictated by the physical configuration of ZED-2, a 
research reactor dedicated to the study of CANDU-type fuel bundles and related reactor physics 
phenomena. A schematic of ZED-2 is shown in Figure 1. The periphery of the reactor consists of a 
graphite wall enclosing an aluminum calandria tank of —3.4 meters both in diameter and height. 

2 In the "Iterative and Incremental" approach, systems are developed through repeated cycles (iterative) and in small 
manageable portions (incremental), allowing software developers to take advantage of experience learned during 
development of earlier components of the system, and to expand on functionalities as requirements evolve. 
3 In the "Waterfall" model, the development process is divided into phases that are executed sequentially. Requirements are 
captured up-front and revisiting or revising of prior phase is strongly discouraged. 
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3
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Neutron shielding materials at the top of the reactor also constitute part of the periphery. Fuel lattices 
are formed by suspending fuel channels, which contain up to five CANDU-type fuel bundles, from 
steel beams located at the top of the reactor. ZED-2 is categorized as a thermal reactor which utilizes 
heavy water as a moderator to slow down the neutrons to optimize fission of the fuel. Heavy water is 
pumped into the calandria tank through dump lines at the bottom. Criticality is achieved by controlling 
the volume of heavy water in the calandria tank. Elaborated details of the ZED-2 reactor can be found 
in [6]. 
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Figure 1 Schematic of the ZED-2 Reactor. 

a 

The model of a physical system is defined with two aspects: geometry and material, which are often 
handled separately and subsequently cross-referenced in the input data of a model. In essence, a 
physical system is simply a distribution of materials in space. Geometrically, each experiment in ZED-2 
is defined by a specific fuel lattice, such as the one shown in Figure 1, which contains different types of 
fuel channels, which in turn, might contain different types of fuel bundles. The cross-section of a 
typical CANDU-type fuel bundle contained in a fuel channel, consisting of a pressure tube and a 
calandria tube, is shown in Figure 2. The fuel lattice is either square or triangular, and varies in pitch 
between —2O to --40 cm. 

According to the above description, a general requirement is that the generator must be able to handle 
the geometry and material compositions of different types of fuel bundles, fuel channels, and lattice 
shapes. Specifically, ZED-2 is dedicated to the study of CANDU-type fuel bundles, which usually 
contain a center fuel pin and up to three concentric rings of pins as depicted in Figure 2. In fact, only 
this type of bundle geometry, which covers all the fuel bundles used in ZED-2 to date, was targeted in 
the initial development of the model generators. 
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Figure 2 Cross-section of a CANDU-type Fuel Bundle inside a Fuel Channel. 

2.2 Application Design and Implementation 

From the object-oriented programming (OOP) perspective, it is common practice to describe the 
structure of an application with the aid of a class diagram using the Universal Modelling Language 
(UML) [8], which consists of symbols and connectors (arrows) that represent the structure of a software 
system and the relations among its components. A class in OOP is a construct with two distinct aspects: 
properties (data) and methods (functions); and methods are implemented around the properties to solve 
the problem. This is different from the procedural programming approach in which data and methods 
are often treated separately. In the present context, the basic data that represent the variable parameters 
of the physical system are to be supplied by the user, and the methods are implemented, often taking the 
data structure into consideration, according to the objective of the application. By design, the process 
for the model generator(s) to generate a full-core model can be described as follows: 

i) Data that represent the static component of the system, i.e., the periphery, are pre-compiled in a 
static data file, which might also reference other static data files. 

ii) The physical system is broken down into components. For each component, the user utilizes a 
graphical user interface specifically designed to capture the variable parameters of the 
component and saves the data to persistent storage with a predefined format. Other parameters 
such as the properties of coolant(s) and moderator are captured similarly. 

iii) The entire set of data file names pertaining to a specific reactor configuration are compiled into 
a single full-core configuration file and the user specifies this file when invoking the method to 
generate the full-core model. 

The philosophy behind the above design is that data that represent the entire physical system are 
decomposed into small and manageable parts, the data pertaining to each part are provided by the user 
with the aid of GUIs, and the parts can be reused and shared among similar configurations. 
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Figure 3 LTML Class Diagram of a Model Generator. 

A class diagram of the model generator(s) is shown in Figure 3, which will be referenced frequently in 
the following discussions. In Figure 3, the ModelGenerator class implements the main window of 
the application from which the user can invoke other functions through visual objects, such as buttons 
and pull-down menu items familiar to Windows users, or shortcut keys. The other classes listed in 
Figure 3 can be divided into two categories: 

a) Classes that represent physical components of the system: 
i) FuelBundle, FuelChannel, FuelLattice, and iv) ZED2Periphery; 

b) Classes that implement graphical user interfaces for data entry by the user: 
i) CoreParaDialog, FuelBundleDialog, FuelchannelDialog, 

iv) CoolantDialog, FuelLatticeDialog, and vi) FullCoreConfigDialog. 

Each of the four classes in the first category represents a physical component of the system, which is a 
natural design that connects the physical system with the software. Those in the second category are 
graphical user interface (GUIs) classes that implement visual objects, such as textboxes and data tables, 
which allow the user to enter data through the keyboard or mouse. The Prerequisites pull-down 
menu in the main window is shown in Figure 4; each of the menu items in the pull-down menu is 
mapped to one of the six GUI classes. The functions of the two categories of classes will be elaborated 
in the following subsections. 
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Figure 4 The Main Window of the Model Generator showing a Pull-down Menu 
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The hierarchical structure of a fuel lattice in the ZED-2 reactor coincides ideally with a pattern in OOP 
in which an object contains a collection of another type of object; in parallel with a fuel lattice 
containing a collection of fuel channels, which in turn, contain a collection of fuel bundles. 
Accordingly, three generic classes4, viz., FuelBundle, FuelChannel, and FuelLattice, have 
been identified for development, as depicted in the right hand column of Figure 3 whereby a double-
headed-arrow line represents an object containing a collection of the objects it points to. Thus, the 
problem of modelling a fuel lattice is decomposed into three hierarchical components, each of which is 
associated with a physical component of the system. The advantage of taking this approach is that a 
large problem is broken down into smaller ones and each is tackled separately and relatively 
independently; which makes code development more focused, less error-prone, and easier to debug and 
maintain. 

As mentioned previously, a class contains two aspects: properties and methods. In fact, each of the 
three classes in the right hand column of Figure 3 defines a set of geometric and material properties that 
specify the dimensions of the object and the materials that comprise it, and methods are implemented 
according to these properties to generate text outputs in accordance with the syntactical structure of the 
specific type of model. By design, the specific properties of the object are read from a data file in XML 
(Extended Markup Language) format [7] when each object is instantiated. The methods to create and 
maintain these data files are discussed in the Section 2.2.2. 

The periphery of the ZED-2 reactor, which consists of the calandria tank, the graphite wall, and neutron 
shielding at the top of the reactor, is identical for all experiments, and therefore, it is modelled 
independently of the fuel lattice. The class ZED2Periphery shown in the middle of Figure 3 has 
been designed for this purpose. It has been implemented as a singleton class, i.e., only a single instance 
of the class exists within the application. Otherwise, its implementation is very similar to that of the 
other three classes that comprise the fuel lattice, except that it always reads the same XML file 
(provided along with the applications) at instantiation. 

2.2.2 Graphical User Interfaces and XML Files 

The user must provide data to the model generator to specify the configuration of a fuel lattice. 
Graphical user interfaces (GUIs), depicted as dialogs in the left hand column of Figure 3, have been 
designed to facilitate data entry. In fact, each of the classes FuelBundle, FuelChannel, and 
FuelLattice, is associated with a GUI class and a data structure appropriate for the physical object. 
For example, the GUI for inputting the geometric data of a fuel bundle, implemented in the 
FuelBundleDialog class, is shown in Figure 5. It has been demonstrated that the data fields shown 
in Figure 5 are adequate for capturing geometric parameters of all the common fuel bundles used in 
experiments in ZED-2. This dialog also implements a button [Materials], which invokes another 
dialog for inputting the material data. Once data entry is complete, the [Save] button can be used to 
save the data, which are captured from the GUI and formatted into XML5, to persistent storage with a 

4 Strictly speaking within the OOP paradigm, a class is a construct that is used to create instances of itself, referred to as 
objects, i.e., an object is an instance of a class. 
5 The XML (Extended Markup Language) format, which is by itself text-based, is preferred against a plain text file. XML 
has been advertised as both human- and machine-readable. A well-formed XML file is self-describing; and since it is a 
standard, it also facilitates data communication across computer platforms. 
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independently of the fuel lattice. The class ZED2Periphery shown in the middle of Figure 3 has 

been designed for this purpose. It has been implemented as a singleton class, i.e., only a single instance 

of the class exists within the application. Otherwise, its implementation is very similar to that of the 

other three classes that comprise the fuel lattice, except that it always reads the same XML file 

(provided along with the applications) at instantiation.  

2.2.2 Graphical User Interfaces and XML Files 

The user must provide data to the model generator to specify the configuration of a fuel lattice. 

Graphical user interfaces (GUIs), depicted as dialogs in the left hand column of Figure 3, have been 

designed to facilitate data entry. In fact, each of the classes FuelBundle, FuelChannel, and 

FuelLattice, is associated with a GUI class and a data structure appropriate for the physical object. 

For example, the GUI for inputting the geometric data of a fuel bundle, implemented in the 

FuelBundleDialog class, is shown in Figure 5. It has been demonstrated that the data fields shown 

in Figure 5 are adequate for capturing geometric parameters of all the common fuel bundles used in 

experiments in ZED-2. This dialog also implements a button [Materials], which invokes another 

dialog for inputting the material data. Once data entry is complete, the [Save] button can be used to 

save the data, which are captured from the GUI and formatted into XML
5
, to persistent storage with a 

                                                 
4
 Strictly speaking within the OOP paradigm, a class is a construct that is used to create instances of itself, referred to as 

objects, i.e., an object is an instance of a class.     
5
 The XML (Extended Markup Language) format, which is by itself text-based, is preferred against a plain text file. XML 

has been advertised as both human- and machine-readable. A well-formed XML file is self-describing; and since it is a 

standard, it also facilitates data communication across computer platforms.  
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unique file name provided by the user. In principle, an XML data file can be authored manually, or an 
existing XML data file can be modified, using a text editor without resort to using the GUIs. However, 
using the GUIs has the added advantage of data validation. For example, methods have been 
implemented in the GUI classes such that if a numeric value is mistyped with letters or if a numeric 
value is outside of a predefined limit, a pop-up message will prompt the user to correct the error(s) 
before the data can be saved. 

iAJ 
Bundle Name: nu-28 Length : 49.67 

Center 1 2 3 Ring Ring Ring 

Fuel Radius 0 02105 02105 02105 

Fuel Stack Length 0 47.73 47.73 47.73 

Clad IR 0 0.7155 02155 02155 

Clad OR 0 02609 02609 02609 

Top Plenum 0 0.2084 0.2084 0.2084 

Bottom Plenum 0 0 0 0 

Top Cap 0 0.1694 0.1694 0.1694 

Bottom Cap 0 0.1952 0.1952 0.1952 

Endplate Thickness 0 0A432 0A432 0A432 

1-1.11 Cuulaiil Tiikkiic,, 0 0.2403 0.2403 0.2403 

Pin Count 0 4 8 16 

Encompassing Zone # 0 0 0 1 

Pitch Center Radius 0 1.163 2.652 4.206 

First Pin Elevation (deg) 0 45 22.5 11.25 

Central Support Tube 

IR : 0 OR : 0 

N.B.: Dimensions in cm. 

Materials 

Save 

Cancel 

OK 

Figure 5 GUI for Input of Fuel Bundle Parameters. 

GUIs relevant to the other two physical component classes, FuelChannelDialog and 
FuelLatticeDialog, have been implemented in a similar manner, except for the different GUIs 
designed for capturing the relevant data. 

As mentioned previously, the reactor periphery is handled separately from the other three physical 
component classes. Since the periphery is static, user input via GUI is not necessary. An XML file 
provided along with the applications and with a schema understood and read by the z E D2 Periphery 

class at instantiation, is used to specify the geometric and material properties of the periphery 
components. 

Two other GUI classes listed in Figure 3 are relevant to capturing of crucial data to completely specify 
the configuration of a ZED-2 experiment Inside a fuel channel in ZED-2, the fuel bundles are passively 
cooled by a coolant inside the channel through convection. The properties of the coolant (type, density, 
and temperature, etc), usually heavy water or air, are captured by invoking an instance of the 
CoolantDialog class, and the data are saved as an XML file, similar to the other GUI classes, for 
subsequent reference by a fuel channel object. As mentioned previously, ZED-2 is a thermal reactor 
that utilizes heavy water as moderator to slow down the neutrons. The properties of the moderator 
(purity, temperature, and density) are captured by invoking an instance of the CoreParaDialog 

class. Other parameters such as the height of the moderator, the concentration of poisons6 in the 
moderator, and the size of the lattice pitch, are also captured through this GUI, and the data are again 
saved in an XML file, for subsequent use to generate a full-core model. 

6 In reactor physics, a poison is a substance with a large neutron absorption cross-section. 
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6
 In reactor physics, a poison is a substance with a large neutron absorption cross-section.  
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The hierarchical structure of the application, mirrored by the physical structure of a fuel lattice, dictates 
that components at the bottom of the hierarchy must first be specified before those higher in the 
hierarchy can be assembled. Logically, one or more fuel bundles must have been defined before a fuel 
channel can be assembled. Similarly, at least one fuel channel must have been defined before a fuel 
lattice can be assembled. Once a set of fuel bundle or channel data files have been generated, they can 
be verified by another independent analyst. The verified fuel bundle and channel data files can then be 
used in production mode to assemble fuel lattices appropriate to the specific configurations of the 
experiments. 

Besides the three types of data associated with the physical component classes, two other sets of data 
must be provided: the coolant properties and core/moderator parameters. Understandingly, XML data 
files associated with each of the abovementioned five types of data must have been created, either by 
the user using the GUIs as discussed in the last section or from other sources, before a full-core model 
can be generated. 

Once all the data files relevant to a specific experimental configuration have been generated, a full-core 
configuration can be assembled via the GUI implemented by the FullCoreConfigDialog class. 
An example of a full-core configuration is shown in Figure 6. To assemble a full-core configuration, 
the user chooses the relevant configuration files through the pull-down menus that show the available 
configurations. Once all the required configuration files have been specified, the user can point to the 
[Generate Model] button shown in Figure 6 to generate the full-core model, manifest as text which 
will be displayed in the main window of the application. 

ZED-2 Full Core Configuration [13ed2Configuration.xml] C 

Available Configurations: 

Cole Parameters: 

1_Zed2Configuration 

1_nu-37-Zed2Settings 

Fuel Channel: 

nu-28_al 

nu-37 

Generate Model 

Fuel Lattice: 

[layout_nu_37

Coolant: 

1_Coolant_NU_28 

1_Coolant_nu_37_25C 

Save Cancel 

vl 

OK 

Figure 6 GUI for Assembling Data to Generate a Full-Core Model 

2.2.4 Brief Discussion on Polymorphism 

The discussions so far have not specified the type of model the applications generate. In fact, the non-
necessity of specifying a type is considered a useful feature known as polymorphism in OOP, which 
allows values of different data types to be handled using a uniform interface. The present applications 
target two types of models: MCNP and KENO-V.a, which require different syntactic structures. All the 
features of the applications not specific to any type of model (the raw geometric and material data and 
the GUIs that facilitate data entry) are handled by the classes described in Figure 3. In order to generate 
text data appropriate to the specific type of model, specialized classes, known as derived classes or 
subclasses in OOP, are constructed from their respective base classes. Figure 7 shows the UML class 
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diagram of the derived classes for the FuelBundle class. In essence, the derived classes inherit all 
the public and protected properties and methods of the base class. In a derived class, an 
inherited method can be overridden (more commonly known as function overloading in OOP), i.e., a 
method with the same signature (name, and arguments, if any) but different codes compared to that in 
the base class, or new methods can be added to expand the functionality of the derived class. In the 
present context, all the properties and data access methods of a FuelBundle are inherited and shared 
between the derived classes MCNPFuelBundle and KEN0FuelBundle, and the only difference 
between the two is in the method implemented to generate the text in accordance with the syntactic 
structures of the specific model, MCNP or KENO. Specialized classes for the FuelChannel, 

FuelLattice, and Zed2 Periphery classes are derived and implemented similarly. In fact, two 
model generators, Zed2MCNP and ZED2KENO, have been developed in parallel to target the two types 
of model. These two applications share all the common classes listed in Figure 3, and derived classes 
such as MCNPFuelBundle and KEN0FuelBundle are implemented to suit the different syntactical 
structures of the models. 

FuelBundle 
Class 

( 
MCNPFuelBundle 
Class 

FuelBundle 

KENOFuelBundle 
Class 

FuelBundle 

Figure 7 UML Class Diagram — Derived Classes of the FuelBundle Class 

2.2.5 Advantages of the Approach 

From the perspective of authoring a complex reactor model, the advantages of using the above 
approach over using plain text editors and/or spreadsheets should now be obvious. The task of 
manipulating a large amount of data, dominated by complex and strict syntactic structures, has been 
converted to acting on small sets of data through the use of GUIs with data validation capability, which 
makes data entry straightforward and less error-prone. The user is only required to provide the 
parametric values (dimensions and material compositions) that specify the physical system, which is 
decomposed into manageable components that can be handled, and the syntactic structures of the 
models are handled completely by the code. Inconsistencies among models are avoided since they are 
generated from the same data source, i.e., the set of predefined XML data files created with the aid of 
the GUIs or otherwise. By taking advantage of polymorphism, two very similar problems are solved 
simultaneously with exactly the same pattern and interfaces, except for the specialized part that 
generates the text for the specific model, which must be handled separately. 

Another benefit of the approach is that it promotes a standard algorithm to model ZED-2 experiments. 
As a result of issues such as discrepancies between design and as-built values and availability of as-
built data, and more so on the tolerance (uncertainties) inherent in the specifications of any physical 
system, any model of a relatively complex system such as ZED-2 is at best a good approximation of 

7 In the C# implementation of OOP, "public" and "protected" are keywords that allow derived classes to access 
members (properties and methods) of the base class while "private" members are not accessible to derived classes. 
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7
 In the C# implementation of OOP, “public” and “protected” are keywords that allow derived classes to access 

members (properties and methods) of the base class while “private” members are not accessible to derived classes.   
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reality. Furthermore, models of the same system authored by different analysts might be rather different 
depending on the personal experience, preference, and engineering judgement of the individual analyst 
while interpreting the raw physical data. Since the applications enforce the use of a single data source 
(the set of XML data files that specifies the system), the models generated are guaranteed to be 
consistent. It also promotes collaboration since the standard algorithm should be defined collectively 
with inputs from all relevant workers. 

Another capability of the generator, only relevant to MCNP models, is the automation of the process of 
generating the so-called "pseudo-materials" [9] for a particular temperature at which data are not 
available in the nuclear data library. The pseudo-materials are obtained by interpolating between two 
temperature nodes available in the data library. This is a very tedious task if done manually but the 
process has been automated in Zed2MCNP and it is completely transparent to the user. Note that since 
this capability is not available in Zed2KENO, one should take the temperature effect into consideration 
when results from the two types of models are compared, although the impact is expected to be small. 

3. Examples on Using the Model Generators 
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Figure 8 Experiments with LEU/RU Fuel and NU Fuel in ZED-2 

NU 

Two examples are provided here to demonstrate the practical capability of the model generators. The 
cross-sectional views of the configurations of two ZED-2 experiments are shown in Figure 8. The core 
lattice in Figure 8(a) consists of Light Enriched Uranium (LEU) and Recovered Uranium (RU) fuel 
bundles arranged in a square lattice at a pitch of 24.5 cm. The objective of the experiment was actually 
a study of the effect of gadolinium in the moderator [10]. In the present demonstration, comparisons are 
made on the results of keff values of the reference case (without gadolinium) computed for the models 
generated by Zed2MCNP and Zed2KENO, targeting nuclear data libraries based on ENDF/B-VII.0 
[11]. The procedure for obtaining the models with the generators is listed below: 

i) Compile the physical data for the LEU/RU fuel bundles and the fuel channels: dimensions and 
material types from design and/or as-built drawings; material compositions from standard 
material data sheets, fuel fabrication reports, and mass spectroscopy reports. 

ii) Compile experimental data of the reference case (moderator height, moderator and coolant 
temperatures and purity, etc) from the experimental report. 
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iii) Use the GUIs described in Section 2.2.2 to input the above data, save the corresponding XML 
data files, and compile them into a full-core configuration file. 

iv) Run Zed2MCNP and Zed2KENO to generate the models based on the above full-core 
configuration file. 

The first three steps in the above procedure are not specific to the model type. Once all the physical 
data have been collected (in the form of XML data files), the full-core MCNP and KENO models can 
be obtained by running the respective generators. The keff values obtained with running the MCNP and 
KENO simulation programs are listed in Table 1. Since the two models were based on exactly the same 
set of physical data, the resulting keff values are expected to be very similar. Indeed, as shown in Table 
1, the difference is only 0.76 mk, which can be attributable to minor differences between computational 
algorithms, temperature treatments, and the nuclear data libraries used by the two codes. 

Table 1 Results of keff values for the Square Lattice Experiment 

MCNP Ice KENO keff Diff. [mk] 

0.99782(3)* 0.99706(3)* 0.76(4) 

* Statistical Uncertainty (±0.00003). 

The core lattice in Figure 8(b) consists entirely of 28-element Natural Uranium (NU) fuel bundles 
arranged in a triangular lattice at a pitch of 31 cm. This experiment has been evaluated and determined 
to be acceptable as benchmark data describing a critical configuration [6]. The nuclear data library 
based on ENDF/B-VI.8 [12] was used in the evaluation. Following a procedure similar to the square-
lattice experiment with the model generators, four MCNP models were generated for the benchmark 
experiment targeting both the ENDF/B-VI.8 library and the more recent ENDF/B-VII.0 library, and 
with heavy water and air as coolant. Two KENO models were also generated targeting the 
ENDF/B-VII.0 library. The Ice values obtained with running the MCNP and KENO simulation 
programs for the six cases are listed in Table 2, except for the first column, which has been quoted from 
Reference [6]. A comparison of the key- values of the MCNP models targeting the ENDF/B-VI.8 library 
(Columns 2 and 3 of Table 2) shows a difference of 1.55 mk between the D20 -cooled cases and 
1.04 mk for the air-cooled cases. Noting that temperature interpolation was not used in the benchmark 
evaluation but is implemented in Zed2MCNP, and minor differences also exist between some of the 
material compositions, the differences in the key- values are expected. Incidentally, the key- values 
obtained with Zed2MCNP are more consistent (wthin 0.3 mk) than those in the benchmark evaluation 
[6] when compared with those listed in Ref. [13], which listed comparisons of keff results between the 
ENDF/B-VI.8 and ENDF/B-VII libraries. Comparisons of key- values between KENO and MCNP 
models obtained with the generators targeting the ENDF/B-VII.0 library (Columns 5 and 6 of Table 2) 
show that the keff value of all the cases are within -0.2 mk of unity, consistent with the results in 
Ref. [13]. 

Table 2 Results of key values for the Triangular Lattice (Benchmark) Experiment 

Coolant 
ENDF/B-VI.8 
MCNP keff[6]*

1-ENDF/B-VI.8 
MCNP ken,

Diff. 
[mk] 

1-ENDF/B-VII.0 
MCNP ken,

ENDF/B-V11.0 
KENO ken,

Diff. 
[mk] 

D20 0.99318(7) 0.99473(3) 1.55(8) 0.99989(3) 1.00006(3) 0.17(4) 

Air 0.99361(8) 0.99465(3) 1.04(9) 0.99982(3) 1.00004(3) 0.22(4) 

N.B.: Values in parentheses are statistical uncertainties in the last digit. *Results quoted from the benchmark evaluation [6]. 

1-These values have been obtained with 400M active neutron histories. 
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data files, and compile them into a full-core configuration file. 

iv) Run Zed2MCNP and Zed2KENO to generate the models based on the above full-core 

configuration file.    

The first three steps in the above procedure are not specific to the model type. Once all the physical 

data have been collected (in the form of XML data files), the full-core MCNP and KENO models can 

be obtained by running the respective generators. The keff values obtained with running the MCNP and 

KENO simulation programs are listed in Table 1. Since the two models were based on exactly the same 

set of physical data, the resulting keff values are expected to be very similar. Indeed, as shown in Table 

1, the difference is only 0.76 mk, which can be attributable to minor differences between computational 

algorithms, temperature treatments, and the nuclear data libraries used by the two codes.  

Table 1  Results of keff values for the Square Lattice Experiment 

MCNP keff KENO keff Diff. [mk] 

0.99782(3)* 0.99706(3)* 0.76(4) 

* 
Statistical Uncertainty (±0.00003). 

The core lattice in Figure 8(b) consists entirely of 28-element Natural Uranium (NU) fuel bundles 

arranged in a triangular lattice at a pitch of 31 cm. This experiment has been evaluated and determined 

to be acceptable as benchmark data describing a critical configuration [6]. The nuclear data library 

based on ENDF/B-VI.8 [12] was used in the evaluation. Following a procedure similar to the square-

lattice experiment with the model generators, four MCNP models were generated for the benchmark 

experiment targeting both the ENDF/B-VI.8 library and the more recent ENDF/B-VII.0 library, and 

with heavy water and air as coolant. Two KENO models were also generated targeting the 

ENDF/B-VII.0 library. The keff values obtained with running the MCNP and KENO simulation 

programs for the six cases are listed in Table 2, except for the first column, which has been quoted from 

Reference [6]. A comparison of the keff values of the MCNP models targeting the ENDF/B-VI.8 library 

(Columns 2 and 3 of Table 2) shows a difference of 1.55 mk between the D2O-cooled cases and 

1.04 mk for the air-cooled cases. Noting that temperature interpolation was not used in the benchmark 

evaluation but is implemented in Zed2MCNP, and minor differences also exist between some of the 

material compositions, the differences in the keff values are expected. Incidentally, the keff values 

obtained with Zed2MCNP are more consistent (wthin 0.3 mk) than those in the benchmark evaluation 

[6] when compared with those listed in Ref. [13], which listed comparisons of keff results between the 

ENDF/B-VI.8 and ENDF/B-VII libraries. Comparisons of keff values between KENO and MCNP 

models obtained with the generators targeting the ENDF/B-VII.0 library (Columns 5 and 6 of Table 2) 

show that the keff value of all the cases are within ~0.2 mk of unity, consistent with the results in 

Ref. [13]. 

Table 2  Results of keff values for the Triangular Lattice (Benchmark) Experiment 

Coolant 
ENDF/B-VI.8 

MCNP keff [6]
*
 

†
ENDF/B-VI.8 

MCNP keff 

Diff.  

[mk] 

†
ENDF/B-VII.0 

MCNP keff 

ENDF/B-VII.0 

KENO keff 

Diff.  

[mk] 

D2O 0.99318(7) 0.99473(3) 1.55(8) 0.99989(3) 1.00006(3) 0.17(4) 

Air 0.99361(8) 0.99465(3) 1.04(9) 0.99982(3) 1.00004(3) 0.22(4) 

N.B.: Values in parentheses are statistical uncertainties in the last digit. 
*
Results quoted from the benchmark evaluation [6]. 

 
†
These values have been obtained with 400M active neutron histories. 
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This article introduces an approach in generating computer models for simulations of reactor systems in 
which models are generated programmatically as compared to the conventional approach of using 
text-editors and/or spreadsheets. The model generators have been implemented with a fully 
object-oriented programming approach that promotes maintainability and extensibility. Graphical user 
interfaces are provided with data validation capabilities which make data entry straightforward and less 
error-prone. Since this approach enforces the use of a single data source, models generated are 
guaranteed to be consistent. It also promotes collaboration since the standard algorithm to generate the 
models should be defined collectively with inputs from all relevant workers. Two examples are 
provided to demonstrate the capability of the model generators. The author is of the view that this kind 
of approach can be applied to any simulations of any physical systems with any complexity using any 
codes. 
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