
2411 Nuclear Simulation Symposium
Ottawa, Ontario, Canada, Oct. 14-16, 2012

The Development of Model Generators for Specific Reactors

CW-123300-CONF-005
UNRESTRICTED

J.C. Chow
Chalk River Nuclear Laboratories, Atomic Energy of Canada, Limited

Abstract

Authoring reactor models is a routine task for practitioners in nuclear engineering for reactor design,
safety analysis, and code validation. The conventional approach is to use a text-editor to either
manually manipulate an existing model or to assemble a new model by copying and pasting or direct
typing. This approach is error-prone and substantial effort is required for verification. Alternatively,
models can be generated programmatically for a specific system via a centralized data source and
with rigid algorithms to generate models consistently and efficiently. This approach is demonstrated
here for model generators for MCNP and KENO for the ZED-2 reactor.

1. Introduction

The advent of computing technology in the last few decades has allowed for the simulation of reactor
systems with unprecedented fidelity and outcome that increase the predictive capability of simulations
of reactor properties considerably. Reactor models for many computer simulation codes, such as
MCNP [1] and SCALE [2], are often realized as plain text files containing hundreds or thousands of
lines of data that represent the key characteristics such as material compositions and geometry of the
reactor. Authoring reactor models is a routine task for practitioners in nuclear engineering for reactor
design, safety analysis, and code validation. Conventional methods include writing the model from
scratch using a generic text editor via direct typing, or copying/pasting from other text files and
spreadsheets; modifying an existing model for a different configuration; or using extensive Excel®
macros to generate the models. It has been the author's observation that the first two methods are rather
tedious, models generated by these methods are often error-prone, and extensive effort on verification
is required to warrant the fidelity and validity of the models. The method using Excel macros is
probably more preferable among the three, but this method is often tailored for personalized use and
with cryptic documentations, if any, which renders it difficult to share among workers. Other methods
have also been implemented with scripting languages but the solutions are often in a piecemeal fashion
and difficult to use. In an attempt to address these issues, the author has developed a suite of Windows®
applications capable of generating full-core MCNP5 and KENO-V.a models of the ZED-2 reactor (zero
Energy Deuterium) [3]1, and the CANDU-6 reactor.

The two model generators for MCNP and KENO for the ZED-2 reactor are used in this article to
demonstrate the approach the author advocates as an alternative to the conventional approach of
authoring large reactor models with text editors and/or spreadsheets. Inconsistencies among models are
avoided by generating the models through a common data source. Graphical user interfaces, with data
validation capability, are provided to facilitate entry of all data required for generating a model.
Efficiency is enhanced by automatically generating data cards, consistency with the syntactical

1 A research reactor located at the Chalk River Laboratories, ON, dedicated predominately to the study of CANDU®-type
nuclear fuels.

24th Nuclear Simulation Symposium CW-123300-CONF-005

Ottawa, Ontario, Canada, Oct. 14-16, 2012 UNRESTRICTED
The Development of Model Generators for Specific Reactors

J.C. Chow

Chalk River Nuclear Laboratories, Atomic Energy of Canada, Limited

Abstract

Authoring reactor models is a routine task for practitioners in nuclear engineering for reactor design,

safety analysis, and code validation. The conventional approach is to use a text-editor to either

manually manipulate an existing model or to assemble a new model by copying and pasting or direct

typing. This approach is error-prone and substantial effort is required for verification. Alternatively,

models can be generated programmatically for a specific system via a centralized data source and

with rigid algorithms to generate models consistently and efficiently. This approach is demonstrated

here for model generators for MCNP and KENO for the ZED-2 reactor.

1. Introduction

The advent of computing technology in the last few decades has allowed for the simulation of reactor

systems with unprecedented fidelity and outcome that increase the predictive capability of simulations

of reactor properties considerably. Reactor models for many computer simulation codes, such as

MCNP [1] and SCALE [2], are often realized as plain text files containing hundreds or thousands of

lines of data that represent the key characteristics such as material compositions and geometry of the

reactor. Authoring reactor models is a routine task for practitioners in nuclear engineering for reactor

design, safety analysis, and code validation. Conventional methods include writing the model from

scratch using a generic text editor via direct typing, or copying/pasting from other text files and

spreadsheets; modifying an existing model for a different configuration; or using extensive Excel
®

macros to generate the models. It has been the author’s observation that the first two methods are rather

tedious, models generated by these methods are often error-prone, and extensive effort on verification

is required to warrant the fidelity and validity of the models. The method using Excel macros is

probably more preferable among the three, but this method is often tailored for personalized use and

with cryptic documentations, if any, which renders it difficult to share among workers. Other methods

have also been implemented with scripting languages but the solutions are often in a piecemeal fashion

and difficult to use. In an attempt to address these issues, the author has developed a suite of Windows
®

applications capable of generating full-core MCNP5 and KENO-V.a models of the ZED-2 reactor (Zero

Energy Deuterium) [3]
1
, and the CANDU-6 reactor.

The two model generators for MCNP and KENO for the ZED-2 reactor are used in this article to

demonstrate the approach the author advocates as an alternative to the conventional approach of

authoring large reactor models with text editors and/or spreadsheets. Inconsistencies among models are

avoided by generating the models through a common data source. Graphical user interfaces, with data

validation capability, are provided to facilitate entry of all data required for generating a model.

Efficiency is enhanced by automatically generating data cards, consistency with the syntactical

1
 A research reactor located at the Chalk River Laboratories, ON, dedicated predominately to the study of CANDU

®
-type

nuclear fuels.

2411 Nuclear Simulation Symposium CW-123300-CONF-005
Ottawa, Ontario, Canada, Oct. 14-16, 2012 UNRESTRICTED

requirement of the codes, based on data entered by the user and other specific data files provided along
with the applications.

Other applications are available that facilitate authoring of models of generic nuclear systems for
MCNP and KENO, such as VISED [4] for MCNP input data entry and geometry visualization, and
Geewiz, which is included in the SCALE [2] package serving similar purposes as VISED. However,
it should be noted that applications such as VISED and Geewiz were designed to facilitate modeling
of generic systems of any complexity allowable by the simulation tools. On the contrary, the suite of
applications developed by the author has been designed to target specific systems such as ZED-2 and
CANDU-6. In this respect, the usefulness of the applications targeting specific systems might seem to
be limited compared to the generic applications. However, the process of defining a problem domain
that addresses generic problems automatically excludes any specific problems relevant to specific
systems. Incidentally, it is exactly the lack of functionalities in the generic tools that address the
specific problems that has motivated the author to develop the specific applications. Furthermore, since
the problem domains that the specific applications address are well-defined, the applications are highly
customized and developed in-house, the codes so developed are much more manageable than any tools
acquired through external vendors. In fact, since the set of codes for the specific applications have been
developed with a fully object-oriented programming (OOP) approach with emphases on maintainability
and extensibility, they can be updated frequently according to changing requirements, and highly
extensible to solve other problems of a similar nature within the organization. In this respect, the short
term investment for specific projects to develop such applications might seem high, but the benefits
from the investment will prove to be worthy to the organization in the long term.

2. Software Development

The development of the two model generators for MCNP and KENO for the ZED-2 reactor follows the
"Iterative and Incremental"2 approach which is more suitable for this kind of applications than the
"Waterfall"3 approach, since the requirements are expected to evolve in time. The model generators are
implemented with the modern programming language C# 3.0 [5] along with the . NET Framework

Library version 3.5 (SP1) to take advantage of the rich graphical user interface (GUI) features
provided by the library. The integrated development environment (IDE) Microsoft Visual

Studio 2008 was employed for coding the applications. The software development process is
elaborated in the following subsections.

2.1 Modelling Requirements

Initial requirements for the model generators were compiled by the author based on his experience in
authoring the models manually, with additional requirements collected through literature research and
discussions with colleagues. The requirements are dictated by the physical configuration of ZED-2, a
research reactor dedicated to the study of CANDU-type fuel bundles and related reactor physics
phenomena. A schematic of ZED-2 is shown in Figure 1. The periphery of the reactor consists of a
graphite wall enclosing an aluminum calandria tank of —3.4 meters both in diameter and height.

2 In the "Iterative and Incremental" approach, systems are developed through repeated cycles (iterative) and in small
manageable portions (incremental), allowing software developers to take advantage of experience learned during
development of earlier components of the system, and to expand on functionalities as requirements evolve.
3 In the "Waterfall" model, the development process is divided into phases that are executed sequentially. Requirements are
captured up-front and revisiting or revising of prior phase is strongly discouraged.

24th Nuclear Simulation Symposium CW-123300-CONF-005

Ottawa, Ontario, Canada, Oct. 14-16, 2012 UNRESTRICTED
requirement of the codes, based on data entered by the user and other specific data files provided along

with the applications.

Other applications are available that facilitate authoring of models of generic nuclear systems for

MCNP and KENO, such as VISED [4] for MCNP input data entry and geometry visualization, and

Geewiz, which is included in the SCALE [2] package serving similar purposes as VISED. However,

it should be noted that applications such as VISED and Geewiz were designed to facilitate modeling

of generic systems of any complexity allowable by the simulation tools. On the contrary, the suite of

applications developed by the author has been designed to target specific systems such as ZED-2 and

CANDU-6. In this respect, the usefulness of the applications targeting specific systems might seem to

be limited compared to the generic applications. However, the process of defining a problem domain

that addresses generic problems automatically excludes any specific problems relevant to specific

systems. Incidentally, it is exactly the lack of functionalities in the generic tools that address the

specific problems that has motivated the author to develop the specific applications. Furthermore, since

the problem domains that the specific applications address are well-defined, the applications are highly

customized and developed in-house, the codes so developed are much more manageable than any tools

acquired through external vendors. In fact, since the set of codes for the specific applications have been

developed with a fully object-oriented programming (OOP) approach with emphases on maintainability

and extensibility, they can be updated frequently according to changing requirements, and highly

extensible to solve other problems of a similar nature within the organization. In this respect, the short

term investment for specific projects to develop such applications might seem high, but the benefits

from the investment will prove to be worthy to the organization in the long term.

2. Software Development

The development of the two model generators for MCNP and KENO for the ZED-2 reactor follows the

“Iterative and Incremental”
2
 approach which is more suitable for this kind of applications than the

“Waterfall”
3
 approach, since the requirements are expected to evolve in time. The model generators are

implemented with the modern programming language C# 3.0 [5] along with the .NET Framework

Library version 3.5 (SP1) to take advantage of the rich graphical user interface (GUI) features

provided by the library. The integrated development environment (IDE) Microsoft Visual

Studio 2008 was employed for coding the applications. The software development process is

elaborated in the following subsections.

2.1 Modelling Requirements

Initial requirements for the model generators were compiled by the author based on his experience in

authoring the models manually, with additional requirements collected through literature research and

discussions with colleagues. The requirements are dictated by the physical configuration of ZED-2, a

research reactor dedicated to the study of CANDU-type fuel bundles and related reactor physics

phenomena. A schematic of ZED-2 is shown in Figure 1. The periphery of the reactor consists of a

graphite wall enclosing an aluminum calandria tank of ~3.4 meters both in diameter and height.

2
 In the “Iterative and Incremental” approach, systems are developed through repeated cycles (iterative) and in small

manageable portions (incremental), allowing software developers to take advantage of experience learned during

development of earlier components of the system, and to expand on functionalities as requirements evolve.
3
 In the “Waterfall” model, the development process is divided into phases that are executed sequentially. Requirements are

captured up-front and revisiting or revising of prior phase is strongly discouraged.

Mil Nuclear Simulation Symposium CW-123300-CONF-005
Ottawa, Ontario, Canada, Oct 14-16, 2012 UNRESTRICTED

Neutron shielding materials at the top of the reactor also constitute part of the periphery. Fuel lattices
are formed by suspending fuel channels, which contain up to five CANDU-type fuel bundles, from
steel beams located at the top of the reactor. ZED-2 is categorized as a thermal reactor which utilizes
heavy water as a moderator to slow down the neutrons to optimize fission of the fuel. Heavy water is
pumped into the calandria tank through dump lines at the bottom. Criticality is achieved by controlling
the volume of heavy water in the calandria tank. Elaborated details of the ZED-2 reactor can be found
in [6].

I
,f .., ../..• e• e• e• , , , , , / ./ / / / / / .../././

Header Room

Dumpline
(1 of 3)

I 1 I

777
1 1 1 1 1 1 I I

I I
I 1 I [I I I

3.43 m

Graphite
Reflector

Moderator

0 0 0
0 0 0 0 0 0

O 0 0 0 0 0 0
O 0 0 • • 0 0 0

 ▪ 0 0 • • • 0 0
O 0 0 • • 0 0 0

O 0 0 0 0 0 0
0 0 0 0 0 0

0 0 0

•

1-1- 1141.44
•

o Driver Fuel • Test Fuel

Figure 1 Schematic of the ZED-2 Reactor.

a

The model of a physical system is defined with two aspects: geometry and material, which are often
handled separately and subsequently cross-referenced in the input data of a model. In essence, a
physical system is simply a distribution of materials in space. Geometrically, each experiment in ZED-2
is defined by a specific fuel lattice, such as the one shown in Figure 1, which contains different types of
fuel channels, which in turn, might contain different types of fuel bundles. The cross-section of a
typical CANDU-type fuel bundle contained in a fuel channel, consisting of a pressure tube and a
calandria tube, is shown in Figure 2. The fuel lattice is either square or triangular, and varies in pitch
between —2O to --40 cm.

According to the above description, a general requirement is that the generator must be able to handle
the geometry and material compositions of different types of fuel bundles, fuel channels, and lattice
shapes. Specifically, ZED-2 is dedicated to the study of CANDU-type fuel bundles, which usually
contain a center fuel pin and up to three concentric rings of pins as depicted in Figure 2. In fact, only
this type of bundle geometry, which covers all the fuel bundles used in ZED-2 to date, was targeted in
the initial development of the model generators.

24th Nuclear Simulation Symposium CW-123300-CONF-005

Ottawa, Ontario, Canada, Oct. 14-16, 2012 UNRESTRICTED
Neutron shielding materials at the top of the reactor also constitute part of the periphery. Fuel lattices

are formed by suspending fuel channels, which contain up to five CANDU-type fuel bundles, from

steel beams located at the top of the reactor. ZED-2 is categorized as a thermal reactor which utilizes

heavy water as a moderator to slow down the neutrons to optimize fission of the fuel. Heavy water is

pumped into the calandria tank through dump lines at the bottom. Criticality is achieved by controlling

the volume of heavy water in the calandria tank. Elaborated details of the ZED-2 reactor can be found

in [6].

Figure 1 Schematic of the ZED-2 Reactor.

The model of a physical system is defined with two aspects: geometry and material, which are often

handled separately and subsequently cross-referenced in the input data of a model. In essence, a

physical system is simply a distribution of materials in space. Geometrically, each experiment in ZED-2

is defined by a specific fuel lattice, such as the one shown in Figure 1, which contains different types of

fuel channels, which in turn, might contain different types of fuel bundles. The cross-section of a

typical CANDU-type fuel bundle contained in a fuel channel, consisting of a pressure tube and a

calandria tube, is shown in Figure 2. The fuel lattice is either square or triangular, and varies in pitch

between ~20 to ~40 cm.

According to the above description, a general requirement is that the generator must be able to handle

the geometry and material compositions of different types of fuel bundles, fuel channels, and lattice

shapes. Specifically, ZED-2 is dedicated to the study of CANDU-type fuel bundles, which usually

contain a center fuel pin and up to three concentric rings of pins as depicted in Figure 2. In fact, only

this type of bundle geometry, which covers all the fuel bundles used in ZED-2 to date, was targeted in

the initial development of the model generators.

24th Nuclear Simulation Symposium
Ottawa, Ontario, Canada, Oct. 14-16, 2012

Calandria Tube
OR 6.7 CM

Fuel pins
OR 0.65 CM

Pressure Tube
OR 5.6 CM

00
0 o0 0

0 00,0
00

Coolant

Air

CW-123300-CONF-005
UNRESTRICTED

Figure 2 Cross-section of a CANDU-type Fuel Bundle inside a Fuel Channel.

2.2 Application Design and Implementation

From the object-oriented programming (OOP) perspective, it is common practice to describe the
structure of an application with the aid of a class diagram using the Universal Modelling Language
(UML) [8], which consists of symbols and connectors (arrows) that represent the structure of a software
system and the relations among its components. A class in OOP is a construct with two distinct aspects:
properties (data) and methods (functions); and methods are implemented around the properties to solve
the problem. This is different from the procedural programming approach in which data and methods
are often treated separately. In the present context, the basic data that represent the variable parameters
of the physical system are to be supplied by the user, and the methods are implemented, often taking the
data structure into consideration, according to the objective of the application. By design, the process
for the model generator(s) to generate a full-core model can be described as follows:

i) Data that represent the static component of the system, i.e., the periphery, are pre-compiled in a
static data file, which might also reference other static data files.

ii) The physical system is broken down into components. For each component, the user utilizes a
graphical user interface specifically designed to capture the variable parameters of the
component and saves the data to persistent storage with a predefined format. Other parameters
such as the properties of coolant(s) and moderator are captured similarly.

iii) The entire set of data file names pertaining to a specific reactor configuration are compiled into
a single full-core configuration file and the user specifies this file when invoking the method to
generate the full-core model.

The philosophy behind the above design is that data that represent the entire physical system are
decomposed into small and manageable parts, the data pertaining to each part are provided by the user
with the aid of GUIs, and the parts can be reused and shared among similar configurations.

24th Nuclear Simulation Symposium CW-123300-CONF-005

Ottawa, Ontario, Canada, Oct. 14-16, 2012 UNRESTRICTED

Figure 2 Cross-section of a CANDU-type Fuel Bundle inside a Fuel Channel.

2.2 Application Design and Implementation

From the object-oriented programming (OOP) perspective, it is common practice to describe the

structure of an application with the aid of a class diagram using the Universal Modelling Language

(UML) [8], which consists of symbols and connectors (arrows) that represent the structure of a software

system and the relations among its components. A class in OOP is a construct with two distinct aspects:

properties (data) and methods (functions); and methods are implemented around the properties to solve

the problem. This is different from the procedural programming approach in which data and methods

are often treated separately. In the present context, the basic data that represent the variable parameters

of the physical system are to be supplied by the user, and the methods are implemented, often taking the

data structure into consideration, according to the objective of the application. By design, the process

for the model generator(s) to generate a full-core model can be described as follows:

i) Data that represent the static component of the system, i.e., the periphery, are pre-compiled in a

static data file, which might also reference other static data files.

ii) The physical system is broken down into components. For each component, the user utilizes a

graphical user interface specifically designed to capture the variable parameters of the

component and saves the data to persistent storage with a predefined format. Other parameters

such as the properties of coolant(s) and moderator are captured similarly.

iii) The entire set of data file names pertaining to a specific reactor configuration are compiled into

a single full-core configuration file and the user specifies this file when invoking the method to

generate the full-core model.

The philosophy behind the above design is that data that represent the entire physical system are

decomposed into small and manageable parts, the data pertaining to each part are provided by the user

with the aid of GUIs, and the parts can be reused and shared among similar configurations.

24th Nuclear
Ottawa,

Simulation Symposium
Ontario, Canada, Oct. 14-16, 2012

CW-123300-CONF-005
UNRESTRICTED

(
('ChannelLattice FuelBundleDialog sI Liso fUelBundleDlg ModelGenerator '±j fuelLattice

Class Class

- Methods

Class >

fuelChannelDlg
FuelChannelDialog
Class '# GenerateFullCore fuelChannelCollection V

fuelLatticeDlg
V

FuelLatticeDialog FuelChannel
Class

:t!' periphery

Class

coolantDlg CoolantDialog
Class V

ZED2Periphery fuelBundleCollection V

coreParaDlg
Class V

CoreParaDialog FuelBundle
Class Class

FullCoreConfigDialog fullCoreConfigDlg

Class

Figure 3 LTML Class Diagram of a Model Generator.

A class diagram of the model generator(s) is shown in Figure 3, which will be referenced frequently in
the following discussions. In Figure 3, the ModelGenerator class implements the main window of
the application from which the user can invoke other functions through visual objects, such as buttons
and pull-down menu items familiar to Windows users, or shortcut keys. The other classes listed in
Figure 3 can be divided into two categories:

a) Classes that represent physical components of the system:
i) FuelBundle, FuelChannel, FuelLattice, and iv) ZED2Periphery;

b) Classes that implement graphical user interfaces for data entry by the user:
i) CoreParaDialog, FuelBundleDialog, FuelchannelDialog,

iv) CoolantDialog, FuelLatticeDialog, and vi) FullCoreConfigDialog.

Each of the four classes in the first category represents a physical component of the system, which is a
natural design that connects the physical system with the software. Those in the second category are
graphical user interface (GUIs) classes that implement visual objects, such as textboxes and data tables,
which allow the user to enter data through the keyboard or mouse. The Prerequisites pull-down
menu in the main window is shown in Figure 4; each of the menu items in the pull-down menu is
mapped to one of the six GUI classes. The functions of the two categories of classes will be elaborated
in the following subsections.

31 ZED-2 MCNP (v1.0 - Sept 2011)

File Prerequisites

Full Core

Make Full Core Tools Settings Help

Core Parameters

Fuel Bundles

Fuel Channels

Coolants

Fuel Lattice

Figure 4 The Main Window of the Model Generator showing a Pull-down Menu

24th Nuclear Simulation Symposium CW-123300-CONF-005

Ottawa, Ontario, Canada, Oct. 14-16, 2012 UNRESTRICTED

Figure 3 UML Class Diagram of a Model Generator.

A class diagram of the model generator(s) is shown in Figure 3, which will be referenced frequently in

the following discussions. In Figure 3, the ModelGenerator class implements the main window of

the application from which the user can invoke other functions through visual objects, such as buttons

and pull-down menu items familiar to Windows users, or shortcut keys. The other classes listed in

Figure 3 can be divided into two categories:

a) Classes that represent physical components of the system:

i) FuelBundle, ii) FuelChannel, iii) FuelLattice, and iv) ZED2Periphery;

b) Classes that implement graphical user interfaces for data entry by the user:

i) CoreParaDialog, ii) FuelBundleDialog, iii) FuelchannelDialog,

iv) CoolantDialog, v) FuelLatticeDialog, and vi) FullCoreConfigDialog.

Each of the four classes in the first category represents a physical component of the system, which is a

natural design that connects the physical system with the software. Those in the second category are

graphical user interface (GUIs) classes that implement visual objects, such as textboxes and data tables,

which allow the user to enter data through the keyboard or mouse. The Prerequisites pull-down

menu in the main window is shown in Figure 4; each of the menu items in the pull-down menu is

mapped to one of the six GUI classes. The functions of the two categories of classes will be elaborated

in the following subsections.

Figure 4 The Main Window of the Model Generator showing a Pull-down Menu

2411 Nuclear Simulation Symposium
Ottawa, Ontario, Canada, Oct. 14-16, 2012

2.2.1 The Fuel Lattice and Periphery

CW-123300-CONF-005
UNRESTRICTED

The hierarchical structure of a fuel lattice in the ZED-2 reactor coincides ideally with a pattern in OOP
in which an object contains a collection of another type of object; in parallel with a fuel lattice
containing a collection of fuel channels, which in turn, contain a collection of fuel bundles.
Accordingly, three generic classes4, viz., FuelBundle, FuelChannel, and FuelLattice, have
been identified for development, as depicted in the right hand column of Figure 3 whereby a double-
headed-arrow line represents an object containing a collection of the objects it points to. Thus, the
problem of modelling a fuel lattice is decomposed into three hierarchical components, each of which is
associated with a physical component of the system. The advantage of taking this approach is that a
large problem is broken down into smaller ones and each is tackled separately and relatively
independently; which makes code development more focused, less error-prone, and easier to debug and
maintain.

As mentioned previously, a class contains two aspects: properties and methods. In fact, each of the
three classes in the right hand column of Figure 3 defines a set of geometric and material properties that
specify the dimensions of the object and the materials that comprise it, and methods are implemented
according to these properties to generate text outputs in accordance with the syntactical structure of the
specific type of model. By design, the specific properties of the object are read from a data file in XML
(Extended Markup Language) format [7] when each object is instantiated. The methods to create and
maintain these data files are discussed in the Section 2.2.2.

The periphery of the ZED-2 reactor, which consists of the calandria tank, the graphite wall, and neutron
shielding at the top of the reactor, is identical for all experiments, and therefore, it is modelled
independently of the fuel lattice. The class ZED2Periphery shown in the middle of Figure 3 has
been designed for this purpose. It has been implemented as a singleton class, i.e., only a single instance
of the class exists within the application. Otherwise, its implementation is very similar to that of the
other three classes that comprise the fuel lattice, except that it always reads the same XML file
(provided along with the applications) at instantiation.

2.2.2 Graphical User Interfaces and XML Files

The user must provide data to the model generator to specify the configuration of a fuel lattice.
Graphical user interfaces (GUIs), depicted as dialogs in the left hand column of Figure 3, have been
designed to facilitate data entry. In fact, each of the classes FuelBundle, FuelChannel, and
FuelLattice, is associated with a GUI class and a data structure appropriate for the physical object.
For example, the GUI for inputting the geometric data of a fuel bundle, implemented in the
FuelBundleDialog class, is shown in Figure 5. It has been demonstrated that the data fields shown
in Figure 5 are adequate for capturing geometric parameters of all the common fuel bundles used in
experiments in ZED-2. This dialog also implements a button [Materials], which invokes another
dialog for inputting the material data. Once data entry is complete, the [Save] button can be used to
save the data, which are captured from the GUI and formatted into XML5, to persistent storage with a

4 Strictly speaking within the OOP paradigm, a class is a construct that is used to create instances of itself, referred to as
objects, i.e., an object is an instance of a class.
5 The XML (Extended Markup Language) format, which is by itself text-based, is preferred against a plain text file. XML
has been advertised as both human- and machine-readable. A well-formed XML file is self-describing; and since it is a
standard, it also facilitates data communication across computer platforms.

24th Nuclear Simulation Symposium CW-123300-CONF-005

Ottawa, Ontario, Canada, Oct. 14-16, 2012 UNRESTRICTED
2.2.1 The Fuel Lattice and Periphery

The hierarchical structure of a fuel lattice in the ZED-2 reactor coincides ideally with a pattern in OOP

in which an object contains a collection of another type of object; in parallel with a fuel lattice

containing a collection of fuel channels, which in turn, contain a collection of fuel bundles.

Accordingly, three generic classes
4
, viz., FuelBundle, FuelChannel, and FuelLattice, have

been identified for development, as depicted in the right hand column of Figure 3 whereby a double-

headed-arrow line represents an object containing a collection of the objects it points to. Thus, the

problem of modelling a fuel lattice is decomposed into three hierarchical components, each of which is

associated with a physical component of the system. The advantage of taking this approach is that a

large problem is broken down into smaller ones and each is tackled separately and relatively

independently; which makes code development more focused, less error-prone, and easier to debug and

maintain.

As mentioned previously, a class contains two aspects: properties and methods. In fact, each of the

three classes in the right hand column of Figure 3 defines a set of geometric and material properties that

specify the dimensions of the object and the materials that comprise it, and methods are implemented

according to these properties to generate text outputs in accordance with the syntactical structure of the

specific type of model. By design, the specific properties of the object are read from a data file in XML

(Extended Markup Language) format [7] when each object is instantiated. The methods to create and

maintain these data files are discussed in the Section 2.2.2.

The periphery of the ZED-2 reactor, which consists of the calandria tank, the graphite wall, and neutron

shielding at the top of the reactor, is identical for all experiments, and therefore, it is modelled

independently of the fuel lattice. The class ZED2Periphery shown in the middle of Figure 3 has

been designed for this purpose. It has been implemented as a singleton class, i.e., only a single instance

of the class exists within the application. Otherwise, its implementation is very similar to that of the

other three classes that comprise the fuel lattice, except that it always reads the same XML file

(provided along with the applications) at instantiation.

2.2.2 Graphical User Interfaces and XML Files

The user must provide data to the model generator to specify the configuration of a fuel lattice.

Graphical user interfaces (GUIs), depicted as dialogs in the left hand column of Figure 3, have been

designed to facilitate data entry. In fact, each of the classes FuelBundle, FuelChannel, and

FuelLattice, is associated with a GUI class and a data structure appropriate for the physical object.

For example, the GUI for inputting the geometric data of a fuel bundle, implemented in the

FuelBundleDialog class, is shown in Figure 5. It has been demonstrated that the data fields shown

in Figure 5 are adequate for capturing geometric parameters of all the common fuel bundles used in

experiments in ZED-2. This dialog also implements a button [Materials], which invokes another

dialog for inputting the material data. Once data entry is complete, the [Save] button can be used to

save the data, which are captured from the GUI and formatted into XML
5
, to persistent storage with a

4
 Strictly speaking within the OOP paradigm, a class is a construct that is used to create instances of itself, referred to as

objects, i.e., an object is an instance of a class.
5
 The XML (Extended Markup Language) format, which is by itself text-based, is preferred against a plain text file. XML

has been advertised as both human- and machine-readable. A well-formed XML file is self-describing; and since it is a

standard, it also facilitates data communication across computer platforms.

24th Nuclear Simulation Symposium CW-123300-CONF-005
Ottawa, Ontario, Canada, Oct. 14-16, 2012 UNRESTRICTED

unique file name provided by the user. In principle, an XML data file can be authored manually, or an
existing XML data file can be modified, using a text editor without resort to using the GUIs. However,
using the GUIs has the added advantage of data validation. For example, methods have been
implemented in the GUI classes such that if a numeric value is mistyped with letters or if a numeric
value is outside of a predefined limit, a pop-up message will prompt the user to correct the error(s)
before the data can be saved.

iAJ
Bundle Name: nu-28 Length : 49.67

Center 1 2 3 Ring Ring Ring

Fuel Radius 0 02105 02105 02105

Fuel Stack Length 0 47.73 47.73 47.73

Clad IR 0 0.7155 02155 02155

Clad OR 0 02609 02609 02609

Top Plenum 0 0.2084 0.2084 0.2084

Bottom Plenum 0 0 0 0

Top Cap 0 0.1694 0.1694 0.1694

Bottom Cap 0 0.1952 0.1952 0.1952

Endplate Thickness 0 0A432 0A432 0A432

1-1.11 Cuulaiil Tiikkiic,, 0 0.2403 0.2403 0.2403

Pin Count 0 4 8 16

Encompassing Zone # 0 0 0 1

Pitch Center Radius 0 1.163 2.652 4.206

First Pin Elevation (deg) 0 45 22.5 11.25

Central Support Tube

IR : 0 OR : 0

N.B.: Dimensions in cm.

Materials

Save

Cancel

OK

Figure 5 GUI for Input of Fuel Bundle Parameters.

GUIs relevant to the other two physical component classes, FuelChannelDialog and
FuelLatticeDialog, have been implemented in a similar manner, except for the different GUIs
designed for capturing the relevant data.

As mentioned previously, the reactor periphery is handled separately from the other three physical
component classes. Since the periphery is static, user input via GUI is not necessary. An XML file
provided along with the applications and with a schema understood and read by the z E D2 Periphery

class at instantiation, is used to specify the geometric and material properties of the periphery
components.

Two other GUI classes listed in Figure 3 are relevant to capturing of crucial data to completely specify
the configuration of a ZED-2 experiment Inside a fuel channel in ZED-2, the fuel bundles are passively
cooled by a coolant inside the channel through convection. The properties of the coolant (type, density,
and temperature, etc), usually heavy water or air, are captured by invoking an instance of the
CoolantDialog class, and the data are saved as an XML file, similar to the other GUI classes, for
subsequent reference by a fuel channel object. As mentioned previously, ZED-2 is a thermal reactor
that utilizes heavy water as moderator to slow down the neutrons. The properties of the moderator
(purity, temperature, and density) are captured by invoking an instance of the CoreParaDialog

class. Other parameters such as the height of the moderator, the concentration of poisons6 in the
moderator, and the size of the lattice pitch, are also captured through this GUI, and the data are again
saved in an XML file, for subsequent use to generate a full-core model.

6 In reactor physics, a poison is a substance with a large neutron absorption cross-section.

24th Nuclear Simulation Symposium CW-123300-CONF-005

Ottawa, Ontario, Canada, Oct. 14-16, 2012 UNRESTRICTED
unique file name provided by the user. In principle, an XML data file can be authored manually, or an

existing XML data file can be modified, using a text editor without resort to using the GUIs. However,

using the GUIs has the added advantage of data validation. For example, methods have been

implemented in the GUI classes such that if a numeric value is mistyped with letters or if a numeric

value is outside of a predefined limit, a pop-up message will prompt the user to correct the error(s)

before the data can be saved.

Figure 5 GUI for Input of Fuel Bundle Parameters.

GUIs relevant to the other two physical component classes, FuelChannelDialog and

FuelLatticeDialog, have been implemented in a similar manner, except for the different GUIs

designed for capturing the relevant data.

As mentioned previously, the reactor periphery is handled separately from the other three physical

component classes. Since the periphery is static, user input via GUI is not necessary. An XML file

provided along with the applications and with a schema understood and read by the ZED2Periphery

class at instantiation, is used to specify the geometric and material properties of the periphery

components.

Two other GUI classes listed in Figure 3 are relevant to capturing of crucial data to completely specify

the configuration of a ZED-2 experiment. Inside a fuel channel in ZED-2, the fuel bundles are passively

cooled by a coolant inside the channel through convection. The properties of the coolant (type, density,

and temperature, etc), usually heavy water or air, are captured by invoking an instance of the

CoolantDialog class, and the data are saved as an XML file, similar to the other GUI classes, for

subsequent reference by a fuel channel object. As mentioned previously, ZED-2 is a thermal reactor

that utilizes heavy water as moderator to slow down the neutrons. The properties of the moderator

(purity, temperature, and density) are captured by invoking an instance of the CoreParaDialog

class. Other parameters such as the height of the moderator, the concentration of poisons
6
 in the

moderator, and the size of the lattice pitch, are also captured through this GUI, and the data are again

saved in an XML file, for subsequent use to generate a full-core model.

6
 In reactor physics, a poison is a substance with a large neutron absorption cross-section.

246 Nuclear Simulation Symposium
Ottawa, Onbu-lo, Canada, Oct. 14-16, 2012

2.2.3 Generate Full-core Model

CW-123300-CONF-005
UNRESTRICTED

The hierarchical structure of the application, mirrored by the physical structure of a fuel lattice, dictates
that components at the bottom of the hierarchy must first be specified before those higher in the
hierarchy can be assembled. Logically, one or more fuel bundles must have been defined before a fuel
channel can be assembled. Similarly, at least one fuel channel must have been defined before a fuel
lattice can be assembled. Once a set of fuel bundle or channel data files have been generated, they can
be verified by another independent analyst. The verified fuel bundle and channel data files can then be
used in production mode to assemble fuel lattices appropriate to the specific configurations of the
experiments.

Besides the three types of data associated with the physical component classes, two other sets of data
must be provided: the coolant properties and core/moderator parameters. Understandingly, XML data
files associated with each of the abovementioned five types of data must have been created, either by
the user using the GUIs as discussed in the last section or from other sources, before a full-core model
can be generated.

Once all the data files relevant to a specific experimental configuration have been generated, a full-core
configuration can be assembled via the GUI implemented by the FullCoreConfigDialog class.
An example of a full-core configuration is shown in Figure 6. To assemble a full-core configuration,
the user chooses the relevant configuration files through the pull-down menus that show the available
configurations. Once all the required configuration files have been specified, the user can point to the
[Generate Model] button shown in Figure 6 to generate the full-core model, manifest as text which
will be displayed in the main window of the application.

ZED-2 Full Core Configuration [13ed2Configuration.xml] C

Available Configurations:

Cole Parameters:

1_Zed2Configuration

1_nu-37-Zed2Settings

Fuel Channel:

nu-28_al

nu-37

Generate Model

Fuel Lattice:

[layout_nu_37

Coolant:

1_Coolant_NU_28

1_Coolant_nu_37_25C

Save Cancel

vl

OK

Figure 6 GUI for Assembling Data to Generate a Full-Core Model

2.2.4 Brief Discussion on Polymorphism

The discussions so far have not specified the type of model the applications generate. In fact, the non-
necessity of specifying a type is considered a useful feature known as polymorphism in OOP, which
allows values of different data types to be handled using a uniform interface. The present applications
target two types of models: MCNP and KENO-V.a, which require different syntactic structures. All the
features of the applications not specific to any type of model (the raw geometric and material data and
the GUIs that facilitate data entry) are handled by the classes described in Figure 3. In order to generate
text data appropriate to the specific type of model, specialized classes, known as derived classes or
subclasses in OOP, are constructed from their respective base classes. Figure 7 shows the UML class

24th Nuclear Simulation Symposium CW-123300-CONF-005

Ottawa, Ontario, Canada, Oct. 14-16, 2012 UNRESTRICTED
2.2.3 Generate Full-core Model

The hierarchical structure of the application, mirrored by the physical structure of a fuel lattice, dictates

that components at the bottom of the hierarchy must first be specified before those higher in the

hierarchy can be assembled. Logically, one or more fuel bundles must have been defined before a fuel

channel can be assembled. Similarly, at least one fuel channel must have been defined before a fuel

lattice can be assembled. Once a set of fuel bundle or channel data files have been generated, they can

be verified by another independent analyst. The verified fuel bundle and channel data files can then be

used in production mode to assemble fuel lattices appropriate to the specific configurations of the

experiments.

Besides the three types of data associated with the physical component classes, two other sets of data

must be provided: the coolant properties and core/moderator parameters. Understandingly, XML data

files associated with each of the abovementioned five types of data must have been created, either by

the user using the GUIs as discussed in the last section or from other sources, before a full-core model

can be generated.

Once all the data files relevant to a specific experimental configuration have been generated, a full-core

configuration can be assembled via the GUI implemented by the FullCoreConfigDialog class.

An example of a full-core configuration is shown in Figure 6. To assemble a full-core configuration,

the user chooses the relevant configuration files through the pull-down menus that show the available

configurations. Once all the required configuration files have been specified, the user can point to the

[Generate Model] button shown in Figure 6 to generate the full-core model, manifest as text which

will be displayed in the main window of the application.

Figure 6 GUI for Assembling Data to Generate a Full-Core Model

2.2.4 Brief Discussion on Polymorphism

The discussions so far have not specified the type of model the applications generate. In fact, the non-

necessity of specifying a type is considered a useful feature known as polymorphism in OOP, which

allows values of different data types to be handled using a uniform interface. The present applications

target two types of models: MCNP and KENO-V.a, which require different syntactic structures. All the

features of the applications not specific to any type of model (the raw geometric and material data and

the GUIs that facilitate data entry) are handled by the classes described in Figure 3. In order to generate

text data appropriate to the specific type of model, specialized classes, known as derived classes or

subclasses in OOP, are constructed from their respective base classes. Figure 7 shows the UML class

24th Nuclear Simulation Symposium CW-123300-CONF-005
Ottawa, Ontario, Canada, Oct. 14-16, 2012 UNRESTRICTED

diagram of the derived classes for the FuelBundle class. In essence, the derived classes inherit all
the public and protected properties and methods of the base class. In a derived class, an
inherited method can be overridden (more commonly known as function overloading in OOP), i.e., a
method with the same signature (name, and arguments, if any) but different codes compared to that in
the base class, or new methods can be added to expand the functionality of the derived class. In the
present context, all the properties and data access methods of a FuelBundle are inherited and shared
between the derived classes MCNPFuelBundle and KEN0FuelBundle, and the only difference
between the two is in the method implemented to generate the text in accordance with the syntactic
structures of the specific model, MCNP or KENO. Specialized classes for the FuelChannel,

FuelLattice, and Zed2 Periphery classes are derived and implemented similarly. In fact, two
model generators, Zed2MCNP and ZED2KENO, have been developed in parallel to target the two types
of model. These two applications share all the common classes listed in Figure 3, and derived classes
such as MCNPFuelBundle and KEN0FuelBundle are implemented to suit the different syntactical
structures of the models.

FuelBundle
Class

(
MCNPFuelBundle
Class

FuelBundle

KENOFuelBundle
Class

FuelBundle

Figure 7 UML Class Diagram — Derived Classes of the FuelBundle Class

2.2.5 Advantages of the Approach

From the perspective of authoring a complex reactor model, the advantages of using the above
approach over using plain text editors and/or spreadsheets should now be obvious. The task of
manipulating a large amount of data, dominated by complex and strict syntactic structures, has been
converted to acting on small sets of data through the use of GUIs with data validation capability, which
makes data entry straightforward and less error-prone. The user is only required to provide the
parametric values (dimensions and material compositions) that specify the physical system, which is
decomposed into manageable components that can be handled, and the syntactic structures of the
models are handled completely by the code. Inconsistencies among models are avoided since they are
generated from the same data source, i.e., the set of predefined XML data files created with the aid of
the GUIs or otherwise. By taking advantage of polymorphism, two very similar problems are solved
simultaneously with exactly the same pattern and interfaces, except for the specialized part that
generates the text for the specific model, which must be handled separately.

Another benefit of the approach is that it promotes a standard algorithm to model ZED-2 experiments.
As a result of issues such as discrepancies between design and as-built values and availability of as-
built data, and more so on the tolerance (uncertainties) inherent in the specifications of any physical
system, any model of a relatively complex system such as ZED-2 is at best a good approximation of

7 In the C# implementation of OOP, "public" and "protected" are keywords that allow derived classes to access
members (properties and methods) of the base class while "private" members are not accessible to derived classes.

24th Nuclear Simulation Symposium CW-123300-CONF-005

Ottawa, Ontario, Canada, Oct. 14-16, 2012 UNRESTRICTED
diagram of the derived classes for the FuelBundle class. In essence, the derived classes inherit all

the public and protected
7
 properties and methods of the base class. In a derived class, an

inherited method can be overridden (more commonly known as function overloading in OOP), i.e., a

method with the same signature (name, and arguments, if any) but different codes compared to that in

the base class, or new methods can be added to expand the functionality of the derived class. In the

present context, all the properties and data access methods of a FuelBundle are inherited and shared

between the derived classes MCNPFuelBundle and KENOFuelBundle, and the only difference

between the two is in the method implemented to generate the text in accordance with the syntactic

structures of the specific model, MCNP or KENO. Specialized classes for the FuelChannel,

FuelLattice, and Zed2Periphery classes are derived and implemented similarly. In fact, two

model generators, Zed2MCNP and ZED2KENO, have been developed in parallel to target the two types

of model. These two applications share all the common classes listed in Figure 3, and derived classes

such as MCNPFuelBundle and KENOFuelBundle are implemented to suit the different syntactical

structures of the models.

Figure 7 UML Class Diagram − Derived Classes of the FuelBundle Class

2.2.5 Advantages of the Approach

From the perspective of authoring a complex reactor model, the advantages of using the above

approach over using plain text editors and/or spreadsheets should now be obvious. The task of

manipulating a large amount of data, dominated by complex and strict syntactic structures, has been

converted to acting on small sets of data through the use of GUIs with data validation capability, which

makes data entry straightforward and less error-prone. The user is only required to provide the

parametric values (dimensions and material compositions) that specify the physical system, which is

decomposed into manageable components that can be handled, and the syntactic structures of the

models are handled completely by the code. Inconsistencies among models are avoided since they are

generated from the same data source, i.e., the set of predefined XML data files created with the aid of

the GUIs or otherwise. By taking advantage of polymorphism, two very similar problems are solved

simultaneously with exactly the same pattern and interfaces, except for the specialized part that

generates the text for the specific model, which must be handled separately.

Another benefit of the approach is that it promotes a standard algorithm to model ZED-2 experiments.

As a result of issues such as discrepancies between design and as-built values and availability of as-

built data, and more so on the tolerance (uncertainties) inherent in the specifications of any physical

system, any model of a relatively complex system such as ZED-2 is at best a good approximation of

7
 In the C# implementation of OOP, “public” and “protected” are keywords that allow derived classes to access

members (properties and methods) of the base class while “private” members are not accessible to derived classes.

24th Nuclear Simulation Symposium CW-123300-CONF-005
Ottawa, Ontario, Canada, Oct. 14-16, 2012 UNRESTRICTED

reality. Furthermore, models of the same system authored by different analysts might be rather different
depending on the personal experience, preference, and engineering judgement of the individual analyst
while interpreting the raw physical data. Since the applications enforce the use of a single data source
(the set of XML data files that specifies the system), the models generated are guaranteed to be
consistent. It also promotes collaboration since the standard algorithm should be defined collectively
with inputs from all relevant workers.

Another capability of the generator, only relevant to MCNP models, is the automation of the process of
generating the so-called "pseudo-materials" [9] for a particular temperature at which data are not
available in the nuclear data library. The pseudo-materials are obtained by interpolating between two
temperature nodes available in the data library. This is a very tedious task if done manually but the
process has been automated in Zed2MCNP and it is completely transparent to the user. Note that since
this capability is not available in Zed2KENO, one should take the temperature effect into consideration
when results from the two types of models are compared, although the impact is expected to be small.

3. Examples on Using the Model Generators

RU

LEU

 Graphite Wall

Calandria Tank

•
•

•
•

•
•

•
• 0 •

•
•
•
•

•
•
•
•

•
0
•
•

•
•
•
•

•
•
•
•

•
•
•
•

•
•
•
•

•
•
•
•

• 0 • • •
•

•
• • •

.0••••••••0.
••‘ •••••

•••••••••
••• •**Oft.•0.

4•• •••
•••••• • •

••••••••••••
:'••• O• • • AIK '••••

0•••••••••••_••••••••
/000 ,• • • • ,• :.•••41,
o••••••••••••••••••••1
,••• • • AI, 41: •••k 0••• -•• -•••••••••••• -••••
*SOW AO • •'• •'• •40. •••••1
0•••••••••••••••••••••

71•••
*SO • • .rn sci1/410•••,

••••••••Np• •••(
10.•• • APD•rDer.... ••• •••••••••••_•••••••••

0000' • • • Alor ••••

\1c•
110

••••••••••••••••
IPIP•1•• • 1•••••1
1••••••••••••••"

••••••••••••V
'.••••••••0°

Moderator

(a) 24.5 cm Square Lattice (b) 31 cm Triangular Lattice

Figure 8 Experiments with LEU/RU Fuel and NU Fuel in ZED-2

NU

Two examples are provided here to demonstrate the practical capability of the model generators. The
cross-sectional views of the configurations of two ZED-2 experiments are shown in Figure 8. The core
lattice in Figure 8(a) consists of Light Enriched Uranium (LEU) and Recovered Uranium (RU) fuel
bundles arranged in a square lattice at a pitch of 24.5 cm. The objective of the experiment was actually
a study of the effect of gadolinium in the moderator [10]. In the present demonstration, comparisons are
made on the results of keff values of the reference case (without gadolinium) computed for the models
generated by Zed2MCNP and Zed2KENO, targeting nuclear data libraries based on ENDF/B-VII.0
[11]. The procedure for obtaining the models with the generators is listed below:

i) Compile the physical data for the LEU/RU fuel bundles and the fuel channels: dimensions and
material types from design and/or as-built drawings; material compositions from standard
material data sheets, fuel fabrication reports, and mass spectroscopy reports.

ii) Compile experimental data of the reference case (moderator height, moderator and coolant
temperatures and purity, etc) from the experimental report.

24th Nuclear Simulation Symposium CW-123300-CONF-005

Ottawa, Ontario, Canada, Oct. 14-16, 2012 UNRESTRICTED
reality. Furthermore, models of the same system authored by different analysts might be rather different

depending on the personal experience, preference, and engineering judgement of the individual analyst

while interpreting the raw physical data. Since the applications enforce the use of a single data source

(the set of XML data files that specifies the system), the models generated are guaranteed to be

consistent. It also promotes collaboration since the standard algorithm should be defined collectively

with inputs from all relevant workers.

Another capability of the generator, only relevant to MCNP models, is the automation of the process of

generating the so-called “pseudo-materials” [9] for a particular temperature at which data are not

available in the nuclear data library. The pseudo-materials are obtained by interpolating between two

temperature nodes available in the data library. This is a very tedious task if done manually but the

process has been automated in Zed2MCNP and it is completely transparent to the user. Note that since

this capability is not available in Zed2KENO, one should take the temperature effect into consideration

when results from the two types of models are compared, although the impact is expected to be small.

3. Examples on Using the Model Generators

Figure 8 Experiments with LEU/RU Fuel and NU Fuel in ZED-2

Two examples are provided here to demonstrate the practical capability of the model generators. The

cross-sectional views of the configurations of two ZED-2 experiments are shown in Figure 8. The core

lattice in Figure 8(a) consists of Light Enriched Uranium (LEU) and Recovered Uranium (RU) fuel

bundles arranged in a square lattice at a pitch of 24.5 cm. The objective of the experiment was actually

a study of the effect of gadolinium in the moderator [10]. In the present demonstration, comparisons are

made on the results of keff values of the reference case (without gadolinium) computed for the models

generated by Zed2MCNP and Zed2KENO, targeting nuclear data libraries based on ENDF/B-VII.0

[11]. The procedure for obtaining the models with the generators is listed below:

i) Compile the physical data for the LEU/RU fuel bundles and the fuel channels: dimensions and

material types from design and/or as-built drawings; material compositions from standard

material data sheets, fuel fabrication reports, and mass spectroscopy reports.

ii) Compile experimental data of the reference case (moderator height, moderator and coolant

temperatures and purity, etc) from the experimental report.

2411 Nuclear Simulation Symposium CW-123300-CONF-005
Ottawa, Ontario, Canada, Oct. 14-16, 2012 UNRESTRICTED

iii) Use the GUIs described in Section 2.2.2 to input the above data, save the corresponding XML
data files, and compile them into a full-core configuration file.

iv) Run Zed2MCNP and Zed2KENO to generate the models based on the above full-core
configuration file.

The first three steps in the above procedure are not specific to the model type. Once all the physical
data have been collected (in the form of XML data files), the full-core MCNP and KENO models can
be obtained by running the respective generators. The keff values obtained with running the MCNP and
KENO simulation programs are listed in Table 1. Since the two models were based on exactly the same
set of physical data, the resulting keff values are expected to be very similar. Indeed, as shown in Table
1, the difference is only 0.76 mk, which can be attributable to minor differences between computational
algorithms, temperature treatments, and the nuclear data libraries used by the two codes.

Table 1 Results of keff values for the Square Lattice Experiment

MCNP Ice KENO keff Diff. [mk]

0.99782(3)* 0.99706(3)* 0.76(4)

* Statistical Uncertainty (±0.00003).

The core lattice in Figure 8(b) consists entirely of 28-element Natural Uranium (NU) fuel bundles
arranged in a triangular lattice at a pitch of 31 cm. This experiment has been evaluated and determined
to be acceptable as benchmark data describing a critical configuration [6]. The nuclear data library
based on ENDF/B-VI.8 [12] was used in the evaluation. Following a procedure similar to the square-
lattice experiment with the model generators, four MCNP models were generated for the benchmark
experiment targeting both the ENDF/B-VI.8 library and the more recent ENDF/B-VII.0 library, and
with heavy water and air as coolant. Two KENO models were also generated targeting the
ENDF/B-VII.0 library. The Ice values obtained with running the MCNP and KENO simulation
programs for the six cases are listed in Table 2, except for the first column, which has been quoted from
Reference [6]. A comparison of the key- values of the MCNP models targeting the ENDF/B-VI.8 library
(Columns 2 and 3 of Table 2) shows a difference of 1.55 mk between the D20 -cooled cases and
1.04 mk for the air-cooled cases. Noting that temperature interpolation was not used in the benchmark
evaluation but is implemented in Zed2MCNP, and minor differences also exist between some of the
material compositions, the differences in the key- values are expected. Incidentally, the key- values
obtained with Zed2MCNP are more consistent (wthin 0.3 mk) than those in the benchmark evaluation
[6] when compared with those listed in Ref. [13], which listed comparisons of keff results between the
ENDF/B-VI.8 and ENDF/B-VII libraries. Comparisons of key- values between KENO and MCNP
models obtained with the generators targeting the ENDF/B-VII.0 library (Columns 5 and 6 of Table 2)
show that the keff value of all the cases are within -0.2 mk of unity, consistent with the results in
Ref. [13].

Table 2 Results of key values for the Triangular Lattice (Benchmark) Experiment

Coolant
ENDF/B-VI.8
MCNP keff[6]*

1-ENDF/B-VI.8
MCNP ken,

Diff.
[mk]

1-ENDF/B-VII.0
MCNP ken,

ENDF/B-V11.0
KENO ken,

Diff.
[mk]

D20 0.99318(7) 0.99473(3) 1.55(8) 0.99989(3) 1.00006(3) 0.17(4)

Air 0.99361(8) 0.99465(3) 1.04(9) 0.99982(3) 1.00004(3) 0.22(4)

N.B.: Values in parentheses are statistical uncertainties in the last digit. *Results quoted from the benchmark evaluation [6].

1-These values have been obtained with 400M active neutron histories.

24th Nuclear Simulation Symposium CW-123300-CONF-005

Ottawa, Ontario, Canada, Oct. 14-16, 2012 UNRESTRICTED
iii) Use the GUIs described in Section 2.2.2 to input the above data, save the corresponding XML

data files, and compile them into a full-core configuration file.

iv) Run Zed2MCNP and Zed2KENO to generate the models based on the above full-core

configuration file.

The first three steps in the above procedure are not specific to the model type. Once all the physical

data have been collected (in the form of XML data files), the full-core MCNP and KENO models can

be obtained by running the respective generators. The keff values obtained with running the MCNP and

KENO simulation programs are listed in Table 1. Since the two models were based on exactly the same

set of physical data, the resulting keff values are expected to be very similar. Indeed, as shown in Table

1, the difference is only 0.76 mk, which can be attributable to minor differences between computational

algorithms, temperature treatments, and the nuclear data libraries used by the two codes.

Table 1 Results of keff values for the Square Lattice Experiment

MCNP keff KENO keff Diff. [mk]

0.99782(3)* 0.99706(3)* 0.76(4)

*
Statistical Uncertainty (±0.00003).

The core lattice in Figure 8(b) consists entirely of 28-element Natural Uranium (NU) fuel bundles

arranged in a triangular lattice at a pitch of 31 cm. This experiment has been evaluated and determined

to be acceptable as benchmark data describing a critical configuration [6]. The nuclear data library

based on ENDF/B-VI.8 [12] was used in the evaluation. Following a procedure similar to the square-

lattice experiment with the model generators, four MCNP models were generated for the benchmark

experiment targeting both the ENDF/B-VI.8 library and the more recent ENDF/B-VII.0 library, and

with heavy water and air as coolant. Two KENO models were also generated targeting the

ENDF/B-VII.0 library. The keff values obtained with running the MCNP and KENO simulation

programs for the six cases are listed in Table 2, except for the first column, which has been quoted from

Reference [6]. A comparison of the keff values of the MCNP models targeting the ENDF/B-VI.8 library

(Columns 2 and 3 of Table 2) shows a difference of 1.55 mk between the D2O-cooled cases and

1.04 mk for the air-cooled cases. Noting that temperature interpolation was not used in the benchmark

evaluation but is implemented in Zed2MCNP, and minor differences also exist between some of the

material compositions, the differences in the keff values are expected. Incidentally, the keff values

obtained with Zed2MCNP are more consistent (wthin 0.3 mk) than those in the benchmark evaluation

[6] when compared with those listed in Ref. [13], which listed comparisons of keff results between the

ENDF/B-VI.8 and ENDF/B-VII libraries. Comparisons of keff values between KENO and MCNP

models obtained with the generators targeting the ENDF/B-VII.0 library (Columns 5 and 6 of Table 2)

show that the keff value of all the cases are within ~0.2 mk of unity, consistent with the results in

Ref. [13].

Table 2 Results of keff values for the Triangular Lattice (Benchmark) Experiment

Coolant
ENDF/B-VI.8

MCNP keff [6]
*

†
ENDF/B-VI.8

MCNP keff

Diff.

[mk]

†
ENDF/B-VII.0

MCNP keff

ENDF/B-VII.0

KENO keff

Diff.

[mk]

D2O 0.99318(7) 0.99473(3) 1.55(8) 0.99989(3) 1.00006(3) 0.17(4)

Air 0.99361(8) 0.99465(3) 1.04(9) 0.99982(3) 1.00004(3) 0.22(4)

N.B.: Values in parentheses are statistical uncertainties in the last digit.
*
Results quoted from the benchmark evaluation [6].

†
These values have been obtained with 400M active neutron histories.

2411 Nuclear Simulation Symposium
Ottawa, Ontario, Canada, Oct. 14-16, 2012

4. Conclusion

CW-123300-CONF-005
UNRESTRICTED

This article introduces an approach in generating computer models for simulations of reactor systems in
which models are generated programmatically as compared to the conventional approach of using
text-editors and/or spreadsheets. The model generators have been implemented with a fully
object-oriented programming approach that promotes maintainability and extensibility. Graphical user
interfaces are provided with data validation capabilities which make data entry straightforward and less
error-prone. Since this approach enforces the use of a single data source, models generated are
guaranteed to be consistent. It also promotes collaboration since the standard algorithm to generate the
models should be defined collectively with inputs from all relevant workers. Two examples are
provided to demonstrate the capability of the model generators. The author is of the view that this kind
of approach can be applied to any simulations of any physical systems with any complexity using any
codes.

5. References

[1] X-5 Monte Carlo Team; "MCNP — A General Monte Carlo N-Particle Transport Code,
Version 5", LA-UR-03-1987, Los Alamos National Laboratory (2003).

[2] Oak Ridge National Laboratory, "SCALE: A Modular Code System for Performing Standardized
Computer Analyses for Licensing Evaluation", ORNL/TM-2005/39, Version 6, 2009.

[3] J.E. Atfield, ZED-2 User Facility Proposal Package, ZED2-123110-REPT-001, AECL Report,
http://www.aecl.ca/Programs/NuclearinnovationNetworksProgram.htm.

[4] A.L. Schwarz , R.A. Schwarz, and L.L. Carter, "MCNP/MCNPX Visual Editor Computer Code
Manual for Vised Version 22S", Visual Editor Consultants (2008).

[5] "C# Language Specification Version 3.0", Copyright ® Microsoft Corporation 1999-2007.

[6] J. E. Atfield, 28-Element Natural UO2 Fuel Assemblies in ZED-2 (ZED2-HWR-EXP-001), in
International Handbook of Evaluated Reactor Physics Benchmark Experiments (IRPhEP), OECD
— NEA/NSC/DOC(2006)1, CD ROM March 2011 Edition.

[7] Extensible Markup Language (XML) 1.0, 5 th Ed., The World Wide Web Consortium (W3C),
http://www.w3.org/TR/REC-xml/, (2008).

[8] M. Fowler, "UML Distilled", 3rd ed., Addison-Wesley, ISBN 0-321-19368-7.

[9] J.L. Conlin, W. Ji, J.C. Lee, and W.R. Martin, "Pseudo Material Construct for Coupled
Neutronic-Thermal-Hydraulic analysis of VHTGR", Trans. Am. Nucl. Soc., 92, 225-227 (2005).

[10] J.C. Chow, F.P. Adams, D. Roubstov, R.D. Singh, and M.B. Zeller, "Nuclear Data and the Effect
of Gadolinium in the Moderator", submitted to AECL Nuclear Review, Inaugural Edition, Atomic
Energy of Canada Ltd., (2012).

[11] M. B. Chadwick, et al., "ENDF/B-VII.O: Next Generation Evaluated Nuclear Data Library for
Nuclear Science and Technology", Nuclear Data Sheets, Vol. 107, pp. 2931-3060, (2006).

[12] R. C. Little and R. E. MacFarlane, "ENDF/B-VI Neutron Library for MCNP with Probability
Tables," LA-UR-98-5718, Los Alamos National Laboratory (1998).

[13] D. Altiparmakov, "ENDF/B-VII.O Versus ENDF/B-VI.8 in CANDU® Calculations", in
Proceedings of PHYSOR 2010 — Advances in Reactor Physics to Power the Nuclear Renaissance,
Pittsburgh, Pennsylvania, USA, May 9-14, 2010, on CD-ROM, American Nuclear Society,
LaGrange Park, IL (2010).

24th Nuclear Simulation Symposium CW-123300-CONF-005

Ottawa, Ontario, Canada, Oct. 14-16, 2012 UNRESTRICTED
4. Conclusion

This article introduces an approach in generating computer models for simulations of reactor systems in

which models are generated programmatically as compared to the conventional approach of using

text-editors and/or spreadsheets. The model generators have been implemented with a fully

object-oriented programming approach that promotes maintainability and extensibility. Graphical user

interfaces are provided with data validation capabilities which make data entry straightforward and less

error-prone. Since this approach enforces the use of a single data source, models generated are

guaranteed to be consistent. It also promotes collaboration since the standard algorithm to generate the

models should be defined collectively with inputs from all relevant workers. Two examples are

provided to demonstrate the capability of the model generators. The author is of the view that this kind

of approach can be applied to any simulations of any physical systems with any complexity using any

codes.

5. References

[1] X-5 Monte Carlo Team; “MCNP – A General Monte Carlo N-Particle Transport Code,

Version 5”, LA-UR-03-1987, Los Alamos National Laboratory (2003).

[2] Oak Ridge National Laboratory, “SCALE: A Modular Code System for Performing Standardized

Computer Analyses for Licensing Evaluation”, ORNL/TM-2005/39, Version 6, 2009.

[3] J.E. Atfield, ZED-2 User Facility Proposal Package, ZED2-123110-REPT-001, AECL Report,

http://www.aecl.ca/Programs/Nuclear_Innovation_Networks_Program.htm.

[4] A.L. Schwarz , R.A. Schwarz, and L.L. Carter, “MCNP/MCNPX Visual Editor Computer Code

Manual for Vised Version 22S”, Visual Editor Consultants (2008).

[5] “C# Language Specification Version 3.0”, Copyright ® Microsoft Corporation 1999-2007.

[6] J. E. Atfield, 28-Element Natural UO2 Fuel Assemblies in ZED-2 (ZED2-HWR-EXP-001), in

International Handbook of Evaluated Reactor Physics Benchmark Experiments (IRPhEP), OECD

– NEA/NSC/DOC(2006)1, CD ROM March 2011 Edition.

[7] Extensible Markup Language (XML) 1.0, 5
th

 Ed., The World Wide Web Consortium (W3C),

http://www.w3.org/TR/REC-xml/, (2008).

[8] M. Fowler, “UML Distilled”, 3rd ed., Addison-Wesley, ISBN 0-321-19368-7.

[9] J.L. Conlin, W. Ji, J.C. Lee, and W.R. Martin, “Pseudo Material Construct for Coupled

Neutronic-Thermal-Hydraulic analysis of VHTGR”, Trans. Am. Nucl. Soc., 92, 225-227 (2005).

[10] J.C. Chow, F.P. Adams, D. Roubstov, R.D. Singh, and M.B. Zeller, “Nuclear Data and the Effect

of Gadolinium in the Moderator”, submitted to AECL Nuclear Review, Inaugural Edition, Atomic

Energy of Canada Ltd., (2012).

[11] M. B. Chadwick, et al., “ENDF/B-VII.0: Next Generation Evaluated Nuclear Data Library for

Nuclear Science and Technology”, Nuclear Data Sheets, Vol. 107, pp. 2931-3060, (2006).

[12] R. C. Little and R. E. MacFarlane, “ENDF/B-VI Neutron Library for MCNP with Probability

Tables,” LA-UR-98-5718, Los Alamos National Laboratory (1998).

[13] D. Altiparmakov, “ENDF/B-VII.0 Versus ENDF/B-VI.8 in CANDU


 Calculations”, in

Proceedings of PHYSOR 2010 – Advances in Reactor Physics to Power the Nuclear Renaissance,

Pittsburgh, Pennsylvania, USA, May 9-14, 2010, on CD-ROM, American Nuclear Society,

LaGrange Park, IL (2010).

http://www.aecl.ca/Programs/Nuclear_Innovation_Networks_Program.htm
http://www.w3.org/TR/REC-xml/
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikipedia.org/wiki/Special:BookSources/0-321-19368-7

