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Abstract 

In our prior work, we demonstrated that the Geant4 Monte Carlo toolkit can be used to simulate a 
quasi-stable, time-dependent neutron population by renormalizing the population at regular temporal 
intervals. However, this method was only demonstrated with simple uranium spheres of varying 
diameters. The CANDU 6 lattice cell was chosen as an appropriate benchmark for our stabilization 
method because of its prevalence in current nuclear research. To simulate the lattice cell, periodic 
boundary conditions were added to the stabilization method so that the calculations could be 
performed on an infinite lattice. The results of these calculations were evaluated against several 
established codes, including DRAGON. 

1. Introduction 

Reactor physics simulations can generally be divided into (largely) deterministic calculations and 
stochastic calculations. Up to this point, deterministic calculations have been the workhorses of the 
professional nuclear community because of their relatively quick and cheap calculations. In recent 
years, continued development in computer processing power has allowed stochastic calculations to 
become a viable option for nuclear reactor simulations. 

Monte Carlo simulations form an important subset of stochastic calculations. In a Monte Carlo 
particle physics simulation, individual particles are tracked as they move through different materials 
undergoing nuclear and electromagnetic interactions such as scattering, absorption, and fission. The 
average behaviour of many particles over time provides comparable results to analogous 
deterministic calculations. However, the inherent spatial-dependence of Monte Carlo simulations 
also allows these simulations to track time of flight, and therefore, model transient behaviour with 
few assumptions. 

Before modeling transient behaviour, additional simulation methods needed to be developed, 
implemented and validated in an appropriate Monte Carlo code. Geant4 (Geometry ANd Tracking 
4), a Monte Carlo toolkit provided by the Geant4 Collaboration, is suitable for this task since it was 
designed to be flexible, modular, open and transparent [1]. While Geant4 is more user-intensive by 
design than most other Monte Carlo codes because it requires C-HF code development for every 
simulation, it is extensible and adaptable to many different applications [2]. In a prior work, the 
Geant4 toolkit was used to develop a method of neutron population stabilization so that a time-
dependent neutron population could be tracked in any environment, even ones that were highly sub-
or supercritical (i.e. environments leading to rapid exponential population loss or gain, respectively) 
[3]. However, this method was only partially validated for a simple uranium sphere, and thus, the 
CANDU 6 lattice cell was chosen as a more practical benchmark [4]. Periodic boundary conditions 
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were developed in Geant4 and added to the stabilization method to allow the simulation of an 
infinite lattice of CANDU 6 cells. 

Section 2 of this paper will cover the basic fundamentals of Geant4 that are necessary to understand 
the following discussion. Section 3 will briefly describe the neutron population stabilization 
method, and Section 4 will describe the implementation of periodic boundary conditions alongside 
the stabilization method so that an infinite lattice of basic reactor cells may be sinmiloPil Finally, 
Sections 5 and 6 will discuss the implementation of a CANDU 6 lattice cell, and the validation of 
this benchmark against established nuclear physics codes. In particular, DRAGON was used as a 
benchmark for both the criticality and neutron spatial distribution of the CANDU 6 lattice cell. 

2. Basic Geant4 Simulations 

The Geant4 source code consists of libraries of classes and functions written in C f , and is 
accompanied by nuclear data formatted for use with the Geant4 functions. The user is responsible 
for adding key components, such as the initial source generator, the simulation geometry and the 
main driver file in the form of C f code, which are then compiled with the source libraries to create 
executable programs [1]. This design decision adds flexibility to Geant4 but it also requires more 
effort from the user than most nuclear simulation codes. 

While the user is required to generate the physical models and the steering code, the basic tracking 
algorithm is common to all Geant4 simulations (although this may be changed by modifying the 
source libraries). A simulation begins with A primary particles (primaries) and ends when all the 
particles have been lost either through absorption or by exiting the simulation world. This includes 
the primaries and any secondary particles that were created during the simulation by the primaries or 
their descendants. For efficiency purposes, or other concerns, the primaries may be divided into 
smaller groups of n particles. In general, the history of a group of n particles and their descendants, 
from creation to loss, is referred to as an event, whereas the combined history of all events is 
referred to as the not [1]. 

Similar to most Monte Carlo codes, tracking in Geant4 is divided into a series of discrete steps, each 
of which ends in an instantaneous interaction. These interactions are controlled by physics 
processes, and include hadronic interactions such as elastic and inelastic collisions, radiative capture 
and fission. Crossing a geometric boundary is also an interaction and is controlled by the 
transportation process [1]. Additionally, the user may also define new processes and add them to 
the simulation. 

To choose which process occurs at the end of a given step, the process manager requests a proposed 
step length from each process and picks the process that proposes the smallest step length. For the 
transportation process, the step length is always the distance to the next geometric boundary in the 
direction of travel of the neutron. For the hadronic processes, the proposed step length is 

(1) 

where r, is the macroscopic cross section of process I and i; is the number of interaction lengths 
left for that process; in other words, the number of steps of length -1 [5]. When a primary neutron 
is created, or when a hadronic interaction occurs, the value of i; is reset using an exponential 
deviate 
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where  is the macroscopic cross section of process  and  is the number of interaction lengths 
left for that process; in other words, the number of steps of length  [5].  When a primary neutron 
is created, or when a hadronic interaction occurs, the value of  is reset using an exponential 
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= — log(r) (2) 

where , is a uniformly distributed random number between 0 and 1 [1]. However, if the step does 
not end in a physical interaction (e.g. transportation process), then is decremented using [5] 

actual step length 
712 = ET' 

(3) 

This preserves the continuity of the particle's history by keeping processes with arbitrary step limits 
from affecting the physics of the simulation. 

The tracking algorithms used in Geant4 differ from other Monte Carlo codes such as MCNP 
because of the various step limiting processes. In particular, Geant4 allows charged particles to be 
tracked in a magnetic field, where the path of the particle is made up of short chords approximating 
the actual curved path of the particle due to the electromagnetic interactions [1]. If Geant4 did not 
use the tracking algorithm described previously, then the approximation of a curve as a series of 
chords would again affect the outcome of the simulation. Codes that do not model electromagnetic 
interactions and do not have step limiters, such as MCNP, can simply calculate the step size as 

dsts, = —Er 1 log(r) (4) 

where 1' is the total macroscopic cross section of the particle and r is a uniformly distributed 
random number between 0 and 1 [2]. 

3. Stabilized Real-Time Simulations 

In prior work, it has been shown that Geant4 can sinmiloP time-dependent neutron populations, even 
in highly super- or sulccritical mediums, by renormalizing the neutron population at regular 
intervals. The major components of this stabilization and how they interact with the basic Geant4 
simulation will be described in this section. A more complete discussion of the stabilization process 
may be found in the referenced paper, this section has been included for the sake of completeness 
and clarity [3]. 

The first step is to divide the simulation into discrete time intervals. In Geant4 parlance, the 
simulation becomes a series of runs that occur sequentially in time. To stop the neutrons precisely 
at the end of a run, an additional process was created that limited step size to the maximum distance 
the neutron could travel until the end of the run. That is 

= ((t0 + — tt-11v(t,-1) (5) 

where t  is the time at the 'beginning of the rim, T is the (temporal) length of the nm, t _ 1 is the 
current time at the start of the step t, — T is the time at the end of the run, and (t _1) is the 
velocity of the neutron at t _ 1 [3]. Therefore, this step limiting process always occurs when a 
neutron reaches the time limit of the run. The neutron is then killed so that the run can end. 

For a single run, four important quantities are calculated. First is the run multiplication constant, 
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where  is the time at the beginning of the run,  is the (temporal) length of the run,  is the 
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kno, — 
N (to) 

which simply calculates the absolute population change over the course of the run. Second is the 
average neutron lifetime, which is calculated by averaging the lifetimes of all the neutrons that were 
killed in the current run. The neutron lifetime, is defined as the time from the birth of the neutron 
until it is killed either by escaping the simulation geometry or by absorption. Third is the true 
multiplication constant, keff, which is defined as [6] 

N(to +T)

rate of production X T total produced 
rate of loss X T total lost 

(6) 

(7) 

Note that the two multiplication constants will only be equal if the run duration is equal to the 
average neutron lifetime. Finally, the Shannon entropy is calculated to determine whether the 
spatial source distribution of neutrons has converged. The Shannon entropy is defined as 

S = — >P(i) log,(P( )) (8) 

where T denotes an element of a three-dimensional fresh spanning the simulation geometry, and 
P(7 ) is the probability of a fission occurring in element during the run [2]. In practice, the 
Shannon entropy is calculated by recording the location of each fission during the run and then 
applying Equation 9. If the spatial source distribution converges, so will the Shannon entropy. 

The neutrons that reach the end of a run, and are killed by the step limiting process, are the survivors 
of the run. To transition from one run to the next, these survivors become the primaries in the next 
run. Therefore, before these neutrons are killed in the current run, their transport parameters must 
be recorded so that they can be recreated in the next run. This includes the lifetime, position and 
momentum of the neutron, as well as the values for the four hadronic processes. As mentioned 
in Section 2, processes that arbitrarily limit the step size should not affect the physics of the 
simulation, so it is crucial that the values are preserved and are not reset when the neutron is 
recreated in the next run [3]. 

The neutron population also needs to be stabilized through renormalizadon. This is done by either 
duplicating or deleting survivors to reach the original number of primary neutrons. Whether 
neutrons are duplicated or deleted depends on whether the medium is sub- or supercritical 
respectively. The deletions and duplications occur randomly across all the survivors uniformly so 
that the renormalized population is not biased. Although the neutron population is renormalized at 
the beginning of each run, the total population change at the end of any run can by calculated by 

m 

N (mT ) = No 

11 

knodiT) 
i=i 

(9) 

where in is a positive integer and niT is the time at the end of the run of interest and S c is the initial 
number of primaries [3]. 

24th Nuclear Simulation Symposium  Paper 021 
Ottawa, Ontario, Canada, Oct. 14-16, 2012 
 

 

(6) 

which simply calculates the absolute population change over the course of the run.  Second is the 
average neutron lifetime, which is calculated by averaging the lifetimes of all the neutrons that were 
killed in the current run.  The neutron lifetime, , is defined as the time from the birth of the neutron 
until it is killed either by escaping the simulation geometry or by absorption.  Third is the true 
multiplication constant, , which is defined as [6] 

 
 

(7) 

Note that the two multiplication constants will only be equal if the run duration is equal to the 
average neutron lifetime.  Finally, the Shannon entropy is calculated to determine whether the 
spatial source distribution of neutrons has converged.  The Shannon entropy is defined as 

 

 

(8) 

where  denotes an element of a three-dimensional mesh spanning the simulation geometry, and 
 is the probability of a fission occurring in element  during the run [2].  In practice, the 

Shannon entropy is calculated by recording the location of each fission during the run and then 
applying Equation 9.  If the spatial source distribution converges, so will the Shannon entropy. 

The neutrons that reach the end of a run, and are killed by the step limiting process, are the survivors 
of the run.  To transition from one run to the next, these survivors become the primaries in the next 
run.  Therefore, before these neutrons are killed in the current run, their transport parameters must 
be recorded so that they can be recreated in the next run.  This includes the lifetime, position and 
momentum of the neutron, as well as the  values for the four hadronic processes.  As mentioned 
in Section 2, processes that arbitrarily limit the step size should not affect the physics of the 
simulation, so it is crucial that the  values are preserved and are not reset when the neutron is 
recreated in the next run [3]. 

The neutron population also needs to be stabilized through renormalization.  This is done by either 
duplicating or deleting survivors to reach the original number of primary neutrons.  Whether 
neutrons are duplicated or deleted depends on whether the medium is sub- or supercritical 
respectively.  The deletions and duplications occur randomly across all the survivors uniformly so 
that the renormalized population is not biased.  Although the neutron population is renormalized at 
the beginning of each run, the total population change at the end of any run can by calculated by 

 

 

(9) 

where  is a positive integer and  is the time at the end of the run of interest and  is the initial 
number of primaries [3]. 



31 Nuelar rrnhlbr Spur ISM Parir 

Own, 001,010, Comb. 0 tt.14-1L 2112 

4. Simulating an Infinite Lattice 

A relatively simple, but practical, reactor physics model is the lattice cell of a nuclear reactor. 
Simulating an entire reactor requires a very complicated geometrical description and significant 
computational resources for any computation; whereas, simulating a single lattice cell in an infinite 
lattice is simple by comparison. However, to model an infinite lattice in a Monte Carlo simulation, 
the lattice cell must have periodic boundary conditions at all six bounding surfaces of the lattice cell. 
In other words, particles that leave the cell must reappear immctlioPly on the opposite side of the 
cell. 

Periodic boundary conditions were implemented in Geant4 by creating a new process, the boundary 
step limiter process. This process proposes a step size of zero for any neutron leaving the lattice 
cell, and a step size of --1.030`mm in all other cases. To determine whether a neutron has left the 
lattice cell, the boundary step limiter process acts on neutrons when they take their first step outside 
the cell boundary. In addition, the neutron is leaving the lattice cell if 

li(x,y,z) • 73(x,y,z) > 0 (10) 

where ( ) is a point on the surface of the lattice cell and the current position of the neutron, ii is 
the outward normal of the lattice cell, and 0 is the momentum direction of the neutron. 

When the boundary step limiter actg on a neutron, it creates an identical neutron, as a secondary, on 
the opposite side of the lattice cell, and then kills the original neutron. Only the position changes, so 
the secondary neutron is now entering the lattice cell. A secondary neutron is created rather than 
"teleporting" the original neutron so that the original neutron does not undergo an arbitrarily large 
displacement after the step. As with the step limiter process that kills neutrons at the end of the run, 
the boundary step limiter process also needs to preserve the values for the four hadronic 
processes. 

5. CANDU 6 Lattice Cell Specification 

The CANDU 6 lattice cell is a common benchmark used in Canada This test case was selected to 
show the applicability of this Geant4 simulation method. Unlike the original test geometry (U235 
spheres), the CANDU 6 lattice cell includes multiple materials at different temperatures. 
Additionally, the lattice cell emphasizes thermal neutrons as opposed to the high percentage of fast 
neutrons found in the pure U235 spheres. 

The material composition and geometric specification for the lattice cell used in this work was 
copied from a DRAGON input file where the fuel is fresh, natural uranium oxide (UO2) [4]. Since 
Geant4 simulates particle interactions in three-dimensions, whereas the comparison code 
(DRAGON) used a two dimensional lattice cell, the lattice cell used in Geant4 was uniform in the z-
direction. Therefore, the model ignored features such as the fuel rod end caps, the bundle end plates 
and the spacing between bundles. Other smaller features, such as the fuel element spacers and the 
graphite lubrication used in the fuel elements (CANLLJB), were also ignored for simplicity and so 
that the Geant4 lattice cell matched the two-dimensional DRAGON model. 

Figure 1 shows the lattice cell used in this paper. The standard lattice pitch of 28.575 cm was used 
in the x- and y- axis, and the cell length in the z-axis is equal to the length of a standard CANDU 6 
bundle, 49.53 cm [4]. Note that the cell length is arbitrary and could have been chosen to be any 
reasonable length since the lattice cell is uniform in the z- direction. 
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Figure 1 The standard CANDU6 lattice cell. 

In Figure 1, the different materials and volumes are colour coded along the outer edge of each 
volume. The lattice cell is composed of a fuel channel surrounded by heavy water moderator (light 
blue in the figure above). The fuel channel consists of two concentric tubes, the calandria tube (dark 
blue) and the pressure tube (green), which are separated by an annulus filled with carbon dioxide 
(grey). The pressure tube contains the fresh, natural uranium oxide fuel (red) and the heavy water 
coolant (light blue). The fuel itself is sheathed in metal that is composed mostly of zirconium 
(orange). Note that the radial spokes seen on the cylindrical volumes are simply artefacts of the 
rendering process. 

6. Results 

The simulations that provided the results below used 100,000 primary neutrons starting from the 
centre of the central pin with energies sampled from a Gaussian distribution centred at 1 MeV. The 
simulations lasted for 300 runs of 100 ps and the first 100 runs were disregarded when calculating 
the average k, values. For simplicity, the delayed neutrons were born at the time of fission, but 
their lifetime was set to the time they would have been born after the fission. That is 

= tbtrth — t f Lasion (11) 

where 2 d is the delayed neutron lifetime, tri.i.„„ is the time of the fission that spawned the delayed 
neutron precursors which eventually produced the delayed neutron, and tb,. th is the (future) time at 
which the delayed neutron should have been born. Thus, the delayed neutrons were produced 
instantaneously but their characteristics were sampled from the delayed neutrons distributions for 
energy, momentum and lifetime. 
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6. Results 

The simulations that provided the results below used 100,000 primary neutrons starting from the 
centre of the central pin with energies sampled from a Gaussian distribution centred at 1 MeV.  The 
simulations lasted for 300 runs of 100 μs and the first 100 runs were disregarded when calculating 
the average  values.  For simplicity, the delayed neutrons were born at the time of fission, but 
their lifetime was set to the time they would have been born after the fission.  That is 

  (11) 

where  is the delayed neutron lifetime,  is the time of the fission that spawned the delayed 
neutron precursors which eventually produced the delayed neutron, and  is the (future) time at 
which the delayed neutron should have been born.  Thus, the delayed neutrons were produced 
instantaneously but their characteristics were sampled from the delayed neutrons distributions for 
energy, momentum and lifetime. 
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6.1 Comparison of lattice cell criticality 

The criticality of the standard CANDU 6 lattice cell was calculated using the simulations described 
above. These results were compared to published results from deterministic codes, as well as a 
criticality calculation in DRAGON. Table 1 below compares the results for k from the relevant 
simulations. 

Table 1 Infinite lattice criticality estimates from various nuclear code simulations 

Simulation Code k „ Notes 

GEANT4 1.128 

DRAGON 1.12418 

SCALE - NEWT 1.12856 

SCALE —KENO VI 1.13030 

3D Monte Carlo code with 
continuous energy 
2D Deterministic code with 
69 energy groups 
2D Deterministic code with 
238 energy groups [7] 
3D Monte Carlo code with 
continuous energy [7] 

The estimate for k calculated using Geant4 is between the values calculated by the other codes 
shown in Table 1, and thus, the criticality calculation in Geant4 is comparable to other more 
established codes for the standard CANDU 6 lattice cell. Some discrepancies should be expected 
since the nuclear data varies for each code. In addition, only the Geant4 and KENO results were 
calculated using continuous energy data libraries; the results calculated with DRAGON and NEWT 
used 69 and 23K energy groups respectively [4,7]. 

6.1.1 Two di/Tensional flux distribution 

In addition to the k estimate from each code, the neutron density along the horizontal centreline of 
the lattice cell was compared for the Geant4 and DRAGON simulations. In practice-, the centreline 
is represented by a 2 cm thick rectangular region that is bounded by x-z planes at y = ±1 cm. For the 
three-dimensional cell used in Geant4, the z-direction is ignored; that is, any discretization in x and 
y extends the full length of the cell in z. The neutron density from Geant4 represents a snapshot in 
time; that is, the density of simulopd neutrons in the lattice cell at a time t Similarly, DRAGON 
calculates the average flux values for each defined region in the lattice cell, where each region 
represents a discrete homogeneous section of the lattice cell created by the discretizalion of the 
lattice cell in DRAGON. 

To compare the flux from DRAGON to the instantaneous density from Geant4, the flux in 
DRAGON was calculated for each region and each energy group. Therefore-, for each region, 69 
average flux values were calculated. These values were converted to neutron densities using 

(12) 
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where n a is the density of energy group 9 neutrons in region 7 in square centimetres (two-
dimensional), 0, is the corresponding flux value, and z 2 is the average neutron velocity for the 
energy group [6]. This average velocity was derived using the following expression 

(E; + E;) 

Inn 

(13) 

where E; and E; are the upper and lower limits of the energy range spanned by group 2, and in, is 
the mass of a neutron. Thus, the neutron density of each region was calculated by summing the 
individual contributions from each energy group (n = s77: ). Since the magnitude of the neutron 
density is arbitrary, the DRAGON density values were all scaled by a constant factor to match the 
Geant4 data; the constant multiplicative factor was determined using a least-squares approximation. 

Figure 2 shows the comparison between the neutron densities in DRAGON and Geant4. The 
statistical error in Geant4 is shown through the error tars, while the error in DRAGON was small, 
and thus, was neglected in the figure (the maximum error in the flux values was less than 0.5%). 
Additionally, the relevant structures along the centreline of the lattice cell are delineated by the 
hatched areas in Figure 2. While the third ring of fuel elements is offset by 0.262 radians and does 
not intersect the horizontal centreline, it does influence the neutron flux in the surrounding coolant. 
Therefore, this third ring of elements is represented in Figure 2 by a sparsely hatched region where 
the hatching marks are 90° out of phase from the rest 
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Figure 2 Centreline neutron density of the CANDU 6 lattice cell for Geant4 and DRAGON. 
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Figure 2   Centreline neutron density of the CANDU 6 lattice cell for Geant4 and DRAGON. 
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In general, the DRAGON and Geant4 neutron densities match within error. To reduce the 
stochasticity of the Geant4 results, the neutron density values were derived from three different 
snapshots in time. The snapshots were taken at 25, 30 and 35 ms, which corresponds to 250, 300 
and 350 runs respectively. All of these snapshots occurred after the neutron population had 
converged to a stable spatial distritution so the difference in time is inconsequential. Some 
discrepancies are expected because the error only accounts for the statistical error in the Geant4 
simulation. Discrepancies in the nuclear data and the simulation methods will result in some finite 
error. 

6.2 Criticality of lattice cells with varied lattice pitches 

To further validate the applicability of the Geant4 model described above, the criticality of the 
lattice cell was calculated at five more lattice pitches. These results are shown in Figure 3 along 
with estimates from DRAGON using the same geometries. Other than having different lattice 
pitches, these simulations were identical to the simulation used to calculate the criticality of the 
standard CANDU 6 lattice. The final Geant4 k values were calculated from simulations of 250 
runs, where the first 50 runs were disregarded when calculating the average k, for each lattice 
pitch. 
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Figure 3 Estimates of for CANDU 6 lattice cells with varying lattice pitch. 

Again, the error tars show the statistical error in the criticality estimates, and the statistical error 
reported by DRAGON was too small to be relevant on the plot. The Geant4 values agree with the 
DRAGON estimates within 10 mk, which is used as an arbitrary limit to account for all possible 
errors. Moreover, both codes predict a maximum reactivity at a lattice pitch of approximately 38 
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Again, the error bars show the statistical error in the criticality estimates, and the statistical error 
reported by DRAGON was too small to be relevant on the plot.  The Geant4 values agree with the 
DRAGON estimates within 10 mk, which is used as an arbitrary limit to account for all possible 
errors.  Moreover, both codes predict a maximum reactivity at a lattice pitch of approximately 38 
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cm. The deviation observed at the minimum and maximum pitches could be a result of the differing 
importance of the moderator in the cell and the particular spatial discretization used in each 
DRAGON simulation. 

7. Conclusion 

In our prior work, we have shown that the Geant4 Monte Carlo toolkit can be used to develop a 
stochastic simulation that tracks neutron populations in time regardless of the medium. Our 
simulation method renormalizes the neutron population at regular intervals so that the population 
remains manageable even in strongly sub- or supercritical mediums. Prior to the work presented in 
this paper, the neutron tracking and stabilization method was only validated for very simple 
geometries. A more practical and well known benchmark is the CANDU 6 lattice cell. 

Before simulating the lattice cell, we developed a physics process for Geant4 to implement periodic 
boundary conditions. With this process in place, the CANDU lattice cell could be simulated with a 
time-dependent neutron population and analysed for important characteristics. Foremost among 
these characteristics were the infinite lattice multiplication constant, k „ , and the centreline neutron 
flux. The multiplication constant agreed within 10 mk of the other standard nuclear codes, and the 
centreline neutron density predicted by Geant4 and DRAGON generally agreed within the statistical 
error of the Geant4 values. Finally, to ensure that our simulation method was robust, a sensitivity 
analysis was performed on the lattice pitch of the CANDU 6 cell in both Geant4 and DRAGON. At 
all six lattice pitch values simulated, the Geant4 results agreed with DRAGON within 10 mk. 
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