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Abstract 

This paper focuses on the numerical simulation of turbulence mixing phenomena in tight lattice 
geometries. The use of RANS for mixing phenomenon has been carried out. For large PID 
subchannels, the influence of anisotropic of turbulence is not significant, and mixing rate between 
subchannels is dominated by turbulence eddy diffusion. The comparison between numerical results 
and experimental results proves that acceptable accuracy can be achieved for the mixing coefficient 
by steady-state and transient calculation with RANS models. However, for smaller PID geometries, 
because of the strong anisotropy in the gap region, the contribution of macroscopic pulsation to 
mixing rate cannot be neglected any more, proved that the mixing rate is dramatically enhanced by 
the flow pulsation. Transient calculation with anisotropic turbulence model would be necessary. 

1. Introduction 

The prediction of the detailed temperature distribution of rod bundles, used especially as nuclear fuel 
elements, is required to ensure their safe and reliable operation. In nuclear reactors, the turbulent 
mixing is a significant physical phenomenon that strongly influences the velocity and temperature 
distribution inside rod-bundles [1]. The study of the phenomena that rule turbulent mixing has been 
motivating many works and experiments since the early days of nuclear power reactors [2]. 

As the core coolant flow rate per thermal power of the SCWRs is much smaller than that of LWRs, 
the fuel bundle geometry of the SCWRs is tight lattice where the pitch (P) to diameter (D) ratio PID 
is below 1.2 in order to keep high mass flux for heat removal. The conceptual design studies on the 
SCWRs at the Univ. Tokyo have shown that subchannel analyses are essential for thermal hydraulic 
design and safety analysis in order to avoid significant under-estimation of maximum cladding 
surface temperature (MCST) [3]. Importance of the turbulent mixing is higher in the SCWRs than 
the LWRs because the cross flow driven by pressure distribution is relatively weak in the SCWRs 
with narrow gap. In the subchannel analysis codes, the turbulent mixing between neighboring 
subchannels are calculated by using the turbulent mixing coefficient that is empirically given. As 
there are no experimental data of turbulent mixing coefficient under tight lattice and supercritical-
pressure condition, the data for subcritical-pressure single-phase condition in tight lattice is 
temporality applied [3, 4]. The recent sensitivity analysis implies that the MCST is very sensitive to 
the turbulent mixing coefficient [4]. Thus, among various R&D items on the SCWR thermal-
hydraulics, high priority should be given to determination of the turbulent mixing coefficient for 
improving the subchannel analysis code. Kyushu Univ. is planning to measure the turbulent mixing 
coefficient of supercritical-fluid for the first time under the research program "Research and 
development of Super Fast Reactor (phase-I1)" [5]. That experimental data will be very helpful for 
validating numerical simulations. As the first step of predicting the mixing coefficient in the SCWR 
conditions, this study aims at predicting it by CFD in tight lattice geometry under subcritical-
pressure single-phase condition. 
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Despite the achievement of turbulent modeling and numerical simulation, traditional CFD fails to 
accurately predict distributions of velocity, temperature and wall shear stresses when the PID is 
smaller than a threshold value (i.e., 1.1 for triangular lattices of cylindrical pins) as reported by 
Krauss and Meyer [6]. For the flow in tight lattice geometry like SCWRs, both experiments and 
Direct Numerical Simulation (DNS) have clearly revealed that flow conditions inside fuel bundles 
are very different from those of typical pipe flow due to strong anisotropy in the non-uniform 
channel geometry [7]. At a long time, the high mixing rate was attributed to the secondary flow [8] 
since the mixing rates measured by experiments were higher than those could be accounted for by 
turbulent diffusion along [9]. An important observation was reported in 1970 by van der Ros and 
Bogaardt [10] that there are very regular pulsation in amplitude and frequency in the gap. In 1972, 
the experimental results of Rowe et al. [11, 12] show that there exists an additional macroscopic flow 
process in the regions adjacent to the gaps, i.e. large scale turbulence moves through the gaps which 
can be considered as a periodic flow pulsation across the gap, which was considered as an additional 
important part for the high mixing rate. 

The accuracy of the turbulent mixing calculation is dominated by the anisotropy of turbulence flow 
in the narrow region. Early investigations tried to calculate turbulent mixing on the basis of isotropic 
turbulence, resulting in significant under-estimation of the mixing values compared to the 
experiments [2]. Also in the fully developed turbulent flows in a fuel pin subassembly without 
spacer effects, there are a couple of interesting phenomena that were hardly captured in the past by 
the Reynolds-Averaged Navier-Stokes (RANS) equations approach with isotropic k-e turbulence 
models but found theoretically or experimentally, as they are connected to the anisotropy of 
turbulence [13]. In order to develop a methodology capable of modeling flow inside tight lattice fuel 
bundles, preliminary comparisons and evaluations have already been done by the many researchers, 
both for isothermal cases and for heated rod bundles. A wide variety of models were investigated, to 
show their limitations and advantages. Ninokata[13] focuses on the numerical simulation of low 
Reynolds (Re) number turbulence flow phenomena in tightly packed fuel pin subassemblies and in 
channels of irregular shape by DNS, Large Eddy Simulation (LES) and RANS equations approach. 
They found that complicated turbulent flow structure in subchannels is due to strong anisotropy in 
the non-uniform channel geometry that is characterized by wide open channels connected by a 
narrow gap. The secondary flows in subchannels play an important role in transporting small eddies 
generated in the wider region toward the narrow gap. Periodic cross-flow oscillations are calculated 
to appear in the vicinity of the gap region, and the coherent structure is transported in the main flow 
direction. 

Among many approaches of CFD, DNS is the most preferred when we try to investigate the 
phenomena whose mechanisms are unknown or not clearly understood [14]. However, it is well 
understood that simulating a whole bundle by DNS is not possible, while it could be done by LES on 
high-end computers available. Thus the purpose of this work is to validate the current turbulent 
model(s) and numerical method(s) for the turbulent mixing calculation, and try to modify or develop 
some engineering applicable model(s) or method(s) that can accurately capture the turbulent flow 
phenomena in tight lattice geometry, and apply them to nuclear reactor thermo-hydraulic design and 
safety analysis. 

2. Subchannel calculations 

2.1 Model description 

The 5th Int. Sym. SCWR (ISSCWR-5)  P110 

Vancouver, British Columbia, Canada, March 13-16, 2011 
Despite the achievement of turbulent modeling and numerical simulation, traditional CFD fails to 

accurately predict distributions of velocity, temperature and wall shear stresses when the P/D is 

smaller than a threshold value (i.e., 1.1 for triangular lattices of cylindrical pins) as reported by 

Krauss and Meyer [6]. For the flow in tight lattice geometry like SCWRs, both experiments and 

Direct Numerical Simulation (DNS) have clearly revealed that flow conditions inside fuel bundles 

are very different from those of typical pipe flow due to strong anisotropy in the non-uniform 

channel geometry [7]. At a long time, the high mixing rate was attributed to the secondary flow [8] 

since the mixing rates measured by experiments were higher than those could be accounted for by 

turbulent diffusion along [9]. An important observation was reported in 1970 by van der Ros and 

Bogaardt [10] that there are very regular pulsation in amplitude and frequency in the gap. In 1972, 

the experimental results of Rowe et al.[11, 12] show that there exists an additional macroscopic flow 

process in the regions adjacent to the gaps, i.e. large scale turbulence moves through the gaps which 

can be considered as a periodic flow pulsation across the gap, which was considered as an additional 

important part for the high mixing rate. 

The accuracy of the turbulent mixing calculation is dominated by the anisotropy of turbulence flow 

in the narrow region. Early investigations tried to calculate turbulent mixing on the basis of isotropic 

turbulence, resulting in significant under-estimation of the mixing values compared to the 

experiments [2]. Also in the fully developed turbulent flows in a fuel pin subassembly without 

spacer effects, there are a couple of interesting phenomena that were hardly captured in the past by 

the Reynolds-Averaged Navier-Stokes (RANS) equations approach with isotropic k-ε turbulence 

models but found theoretically or experimentally, as they are connected to the anisotropy of 

turbulence [13]. In order to develop a methodology capable of modeling flow inside tight lattice fuel 

bundles, preliminary comparisons and evaluations have already been done by the many researchers, 

both for isothermal cases and for heated rod bundles. A wide variety of models were investigated, to 

show their limitations and advantages. Ninokata[13] focuses on the numerical simulation of low 

Reynolds (Re) number turbulence flow phenomena in tightly packed fuel pin subassemblies and in 

channels of irregular shape by DNS, Large Eddy Simulation (LES) and RANS equations approach. 

They found that complicated turbulent flow structure in subchannels is due to strong anisotropy in 

the non-uniform channel geometry that is characterized by wide open channels connected by a 

narrow gap. The secondary flows in subchannels play an important role in transporting small eddies 

generated in the wider region toward the narrow gap. Periodic cross-flow oscillations are calculated 

to appear in the vicinity of the gap region, and the coherent structure is transported in the main flow 

direction. 

Among many approaches of CFD, DNS is the most preferred when we try to investigate the 

phenomena whose mechanisms are unknown or not clearly understood [14]. However, it is well 

understood that simulating a whole bundle by DNS is not possible, while it could be done by LES on 

high-end computers available. Thus the purpose of this work is to validate the current turbulent 

model(s) and numerical method(s) for the turbulent mixing calculation, and try to modify or develop 

some engineering applicable model(s) or method(s) that can accurately capture the turbulent flow 

phenomena in tight lattice geometry, and apply them to nuclear reactor thermo-hydraulic design and 

safety analysis. 

2. Subchannel calculations 

2.1  Model description 



The 511' Int. Sym. SCWR (ISSCWR-5) P110 
Vancouver, British Columbia, Canada, March 13-16, 2011 

The k-co Shear Stress Transport (SST) model [15] which in stead of the dissipation rate, e, adopt an 
equation for the turbulent frequency, co, of the large scales. For k-co SST model, the general form of 
the k and co equation is as follows: 
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where k is the turbulence kinetic energy, co is the turbulence frequency, y is the distance to the 
nearest wall, S is the invariant measure of the strain rate, p is the density and Ui is the flow velocity. 
F1 and F2 are blending functions which are equal to zero away from the surface (k-e model), and 
switches over to inside to the boundary layer (k-co model) [16]. All constants are computed by a 
blend from the corresponding constants of the k-e and the k-co model via a= ociFi+a2(1-Fi), etc. the 
constants for this model are )6 = 0.09, ai=5/9, )61=3/40, 6k1=0.95, 6,0=0.5, a2=0.44, 182=0.0828, 6k2=1, 
60)1=0.856. 

2.2 Compound wall treatment 

The near wall treatment is of equal importance in practical industrial CFD simulations as the 
formulation of the turbulence model itself [16]. The continuous increase in computing power has 
resulted- among others- in a trend towards using denser computational grids for computing industrial 
flows. However, because of prohibitive costs, in most cases such grids are still too coarse to satisfy 
the prerequisites for the Integrate to Wall (ItW). Instead, the first grid point often lies in the buffer 
layer (5 < y+ < 30 in the wall attached flows), making neither ItW nor WF applicable [17]. Recently, 
several proposals appeared in the literature aimed at improving and generalising the wall treatment. 
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where k is the turbulence kinetic energy, ω is the turbulence frequency, y is the distance to the 

nearest wall, S is the invariant measure of the strain rate, ρ is the density and Ui is the flow velocity. 

F1 and F2 are blending functions which are equal to zero away from the surface (k-ε model), and 

switches over to inside to the boundary layer (k-ω model) [16]. All constants are computed by a 

blend from the corresponding constants of the k-ε and the k-ω model via α= α1F1+α2(1-F1), etc. the 

constants for this model are β = 0.09, α1=5/9, β1=3/40, σk1=0.95, σω1=0.5, α2=0.44, β2=0.0828, σk2=1, 

σω1=0.856. 

2.2  Compound wall treatment 

The near wall treatment is of equal importance in practical industrial CFD simulations as the 

formulation of the turbulence model itself [16]. The continuous increase in computing power has 

resulted- among others- in a trend towards using denser computational grids for computing industrial 

flows. However, because of prohibitive costs, in most cases such grids are still too coarse to satisfy 

the prerequisites for the Integrate to Wall (ItW). Instead, the first grid point often lies in the buffer 

layer (5 ≤ y
+
 < 30 in the wall attached flows), making neither ItW nor WF applicable [17]. Recently, 

several proposals appeared in the literature aimed at improving and generalising the wall treatment. 
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One can distinguish two approaches. The first approach, based on early ideas of Chieng and Launder 
[18] pursues to derive wall functions by splitting the first near-wall cell into a viscosity-affected 
sublayer and the fully turbulent part, then assuming the variation of all flow properties in each part 
of the cell and integrating the expressions over the complete cell. A more general variant of such an 
approach are the so called Analytical Wall Functions of Craft et al [19]. The second approach 
employs a blending between the wall-limiting and fully turbulent expressions for various flow 
properties in question, using blending functions that ensure a smooth transition between the two 
layers. This makes it possible to provide adequate conditions for the first near-wall grid node even if 
it lies in the buffer region [17]. M. Popovac and K. Hanjalic presented compound wall treatment 
(CWT), which reduces either to the ItW when the first near-wall cell is in the viscous sublayer, or to 
the appropriate WF when it lies in the fully turbulent region. When the first grid node is in the buffer 
region, the boundary conditions are provided from blending the viscous and fully turbulent limits 
using exponential blending functions. 

2.3 Mass transfer 

In order to model the mixing in the subchannels, additional equations is solved for the concentration 
c. The transport equation for the passive scalar c can be written as: 

ac + a(uc) =  a  
D 
[ ac 

uc.1 
1 

(7) 
at ax; ax; ab ax, 

urc.=  vr ac 
(8) 

Scr ax, 

where D ab is the molecular diffusivity of the tracer fluid, and Sct is the turbulent Schmidt number. 
Turbulent Schmidt number is of the order of unity, values in the literature varying from 0.5 to 1. For 
flow in jets and wakes the value is more nearly 0.5 [20]. In this work we choose the value 0.5. 

2.4 Model validation 

A series of velocity and wall shear stress measurements, that were performed by Mantlik et al. are 
adopted by Baglietto and Ninokata as benchmark. The experiments were completed in a wind 
tunnel, using a 19 rods model with triangular array configuration and an outer diameter of 120mm 
simulating a fuel assembly. The PID ratio is 1.17. Length of the model was 6 m and the 
measurements were performed inside the model at a distance of 5600mm from the model inlet, i.e. 
in the region of fully developed turbulent flow and without the back effect of outlet cross-section 
change. The measurements were performed in a central subchannel, so that it can be considered an 
elementary flow cell of an infinite rod bundle. The Reynolds number, based on bulk velocity and 
bundle hydraulic diameter, considered in this case is 64,300. 

When simulating an infinite triangularly arrayed rod bundle of cylindrical pins, under fully 
developed flow conditions, due to the symmetry it is sufficient to simulate only one sixth of a 
subchannel, adopting the appropriate symmetric boundaries, which constitutes an elementary infinite 
flow cell as shown in Figure 1. In the axial direction, due to the fully developed conditions, it is 
possible to apply cyclic boundaries between inlet and outlet, while fixing the inlet mass flow rate as 
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where Dab is the molecular diffusivity of the tracer fluid, and Sct is the turbulent Schmidt number. 
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input. The height of the computational model can be therefore extremely reduced without interfering 
with the correctness of the calculation; in this case a height of 20 mm is adopted. 

P110 

Computational results based on the previously described turbulence models have been compared 
with the experimental data available. The wall shear stress distribution by Krauss and Meyer [6], 
normalised by the average shear for the 0 to 30° segment, is shown by Figure 2. For comparison, a 
numerically prediction by CFD calculation for an infinite subchennels was also presented. Baglietto 
and Ninokata [21] already shown that the k-e as well as the SST and SST with compound wall 
treatment (SST_CWT) produce very similar predictions, where the wall shear stress monotonically 
increase toward the center of the subchannel. 
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Figure 1 Subchannel and adopted calculation grids Figure 2 Wall shear stress for Re=64,300 [21] 

3. Turbulent mixing calculation 

3.1 Experiment used for validation 

In order to investigate the problem experimentally, a turbulent mixing experiment under single-
phase, fully developed flow conditions without pressure difference in a two-channel experiment 
carried out by Kumamoto University, Japan[22]. Single-phase turbulent mixing rate was obtained 
using a tracer technique under adiabatic conditions with three test channels, as shown in Figure 3. 
In Ch. F-F, two identical circular subchannels of 16.0 mm are interconnected through a gap. The 
turbulent mixing rate between the subchannels was measured by a tracer technique for fully 
developed turbulent flows of water (or air) at atmospheric pressure and at room temperature using 
acid orange II solution (or methane) as the tracer fluid. In order to produce fully developed flow at 
the inlet of the mixing section, the length of the entry section was set to 2.0 m, and the length of the 
mixing and outlet section were 2.5 m and 0.5 m respectively. The range of Reynolds number covers 
was 5800-66400. The experiment uncertainties of the water mixing rate and the air mixing rate in 
the experiment were evaluated to be 6% and 8% respectively [22]. As the axial distribution of the 
tracer concentration in both subchannels were measured, the turbulent mixing rate w' was obtained 
as 

C',(Z + AZ)—C.,(Z + AZ) G A, + G A 
  xp—AZ " w' 

Cri (Z)—C.,(Z) e
GtAG'AJ (9) 
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where Gi and Ai are the mass flux and the cross-section area of a subchannel I, Ci(Z) is the tracer 
concentration in the subchannel i at an axial position Z, and AZ is the distance between two axial 
position. 
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3.2 Turbulence mixing calculation 

Due to the symmetry of the flow channel, it is sufficient to simulate only half of the channel. In the 
axial direction, due to the fully developed conditions, it is possible to apply cyclic boundaries 
between inlet and outlet, while fixing the inlet mass flow rate and the inlet tracer concentration as 
input. The height of the computational model can be mainly concentrated on the mixing section as 
the inlet and outlet section was reduced to 160mm (10xDh), therefore extremely reduced without 
interfering with the correctness of the calculation. It is straightforward that the importance of the 
"numerical viscosity" is directly proportional to the grid size and to the discretization scheme order 
[21]. In our approach, repeating the calculations on different finesse grids and with different 
numerical schemes allows to accurately evaluate the significance of the numerical smearing. Figure 
4 shows the increasing grid finesses adopted for this case. The number of nodes for each grid and the 
dimensionless wall distance y+ values for the near wall cells are given in the following Table 1. 

Calculations are repeated on the three different grids adopting the Upwind scheme (UD) and linear 
Upwind scheme. The comparison shows that for flow field, the two finest grids are clearly 
converged, the results in fact do not present any distinguishable difference between the two cases 
and with both discretization schemes. Such convergence is appreciated by comparing the predictions 
for the maximum velocity inside the channel in each case, as given in Table 2. Also for the turbulent 
mixing rate, the difference between calculation results and the experiment results are within the 
maximum experiment error range 6%. 

Table 1 Calculation grids date 
Model Number of nodes Averaged y+ value 

at the near wall cell (Re = 29,300) 
Coarse grid 1,018,140 46.732 
Fine grid 1,652,176 18.800 
Refined grid 1,942,580 16.801 
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Table 2 Calculated turbulent mixing coefficient 

P110 

Model 
Maximum 
Velocity 

Difference 
Turbulence 
mixing rate 

Difference with 
the experiment 

Coarse grid (UD) 1.79 -1.97% 28.10 +5.71% 
Coarse grid (linear UD) 1.79 -1.97% 28.11 +5.68% 
Fine grid (UD) 1.83 0 27.03 +5.46% 
Fine grid (linear UD) 1.83 0 27.04 +5.42% 
Refined grid (UD) 1.83 0 29.94 +4.76% 
Refined grid (linear UD) 1.83 0 29.95 +4.75% 

4. Results and discussion 

Because of the importance of the mixing coefficients for the design of nuclear fuel element many 
experiments and simulation work have been done to study the surprisingly high mixing rate between 
subchannels. The coolant mixing could be explained in general by several transport mechanisms, 
e.g., convection by divergence cross-flow, turbulence and molecular diffusion, and other 
macroscopic flow processes including the global flow pulsation[13]. 

4.1 Molecular and turbulent diffusion 

Molecular and turbulence diffusion, especially the latter one, is considered as the important driven 
force for mass transfer. For large PID subchannel flow, turbulence diffusion does play an important 
role on mixing rate. However, for small gap subchannel flow, because of the existence of a special 
phenomena--turbulence to laminar transition, the influence of turbulence diffusion on mixing rate in 
the gap region is much waker. DNS calculation for the low bulk Re numbers (Rebuik) have shown 
that a turbulent region is developing into the narrow gap region as Rebuik increase but there still 
remains a locally laminar flow in the gap region [13]. For all the cases of current calculation, the 
average boundary layer thickness is around 0.0065 m, much larger than the gap size. Figure 5 shows 
the distribution of the maximum dimensionless turbulent viscosity p  in the 4 mm gap region. For 

large gap cases (SFF = 4mm), turbulence eddy diffusion play an important role on the mixing rate, 
thus steady-state calculation can get good results although the contribution of macroscopic pulsation 
is ignored. 

4.2 Macroscopic flow pulsation 

The macroscopic flow pulsations is considered as an additional effect to enhance the mixing through 
the gap of rod bundles [9]. The macroscopic flow pulsations observed by Rowe [11, 12] have been 
confirmed and stressed by Hooper [23], Hooper and Rehme [24], and Renksizbulut and Hadaller 
[25]. These instabilities were found in subchannels connected by narrow gaps or pitch to diameter 
(PID). Lack of modeling of the flow pulsation has been pointed out to be one of the reasons for this 
underestimation as discussed in Krauss and Meyer [6]. As the substantial failure of steady-state 
RANS model on capturing these instabilities, transient calculation with nonlinear turbulence models 
[21] as well as Explicit Algebraic Reynolds Stress Model (EARSM) [26] were carried out for the 
small gap cases. The cross velocity in each narrow gap has a quasi-sinusoidal behavior and a power 
spectrum with a peak frequency, which is quite different with the spectrum of homogeneous 
turbulence [1]. This is also confirmed by current calculation as shown in Figure 6. For extremely 
tight lattice geometry, the flow in the gap region is deep in the boundary layer, the influence of 
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turbulent eddy diffusion on mixing rate is quite wake, so the existence of large-scale periodic flow 
oscillations is responsible for the high mixing rate [27]. Also compare case (a) and (b) in Figure 7, 
both the peak and averaged intensity of the pulsation decrease with the increase of the gap size 
because the turbulence would be more isotropic. The detailed discussion of this coherent structure as 
well as its influence on the turbulent mixing rate will be done in the future work. 
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Another important feature of the flow in rod bundles is the presence of Reynolds-averaged 
secondary flow in the cross section [1]. Although at early times the high mixing rate between 
subchannels was explained by secondary flow [9]. However, later experiments and numerical 
simulation showed that secondary flow cannot be the reason for high mixing rates measured for low-
gap-to-diameter ratios [9]. Because the secondary flow velocities are very small. It is obvious that 
secondary flow do not contribute significantly to the mixing between subchannels of rod bundles 
since the secondary flow vortices are expected to move within the elementary cells of the 
subchannels. They do not cross the gaps between the subchannels. In general, the secondary flow 
vorticity concentrates in the vicinity of the pin walls as PID decrease, and the turbulence anisotropy 
is enhanced in the gap region. Figure 7 (2) shows the time-averaged secondary flow distribution for 
three cases with different gap size by transient calculation with EARSM model. The secondary flow 
is much smaller than the pulsation velocity across the gap, and it does not cross the gap. 

4.4 Turbulent mixing calculation results 

For large gap size cases (4mm case), the turbulent mixing was calculated with steady state 
calculation at 4 mm gap case, where the contribution of the coherent structure is not significant. 
Figure 8 shows the tracer fluid concentration distribution along the subchannel i and j due to 
turbulent mixing and molecular diffusion. However, the molecular diffusivity between water and 
acid orange H is nearly 10-9, so the mass transfer is mainly due to turbulent mixing. 
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High Reynolds number version RANS model use empirical wall functions, to bridge the gap 
between the solid wall boundary and the turbulent core. However, the universality of such functions 
breaks down for complex flows. Figure 9 compares the performance of 3 types of frequently used k-
c models (including stand k-c model, Realizable k-c models as well as RNG k-c model). The 
calculation results of these three models are little bit different, but all of them under-estimated the 
mixing rate about 50%. As the performance of k-c models are quite similar, Figure 10 only shows 
the calculation results of water-acid orange II mixing cases by SST_CWT and standard k-c models. 
The turbulence mixing rate is under-estimated against the experiment results by about 50%, while 
SST_CWT model has better performance compare to k-c model. It can successfully reproduce all the 
6 cases of water-acid orange II mixing. As already proved that stand k-c models can not reproduce 
the experiment results, only the SST_CWT model was used to calculate the rest of the 6 cases of air-
methane mixing. Figure 11 shows the mixing rate calculation results with only SST_CWT model of 
both water-acid orange II mixing cases and air-methane mixing cases. The calculation slightly 
under-estimated the mixing coefficient, however, if take the error of the experiment into 
consideration, the calculation results are quite close to the experiment. Also because of the steady-
state calculation, the contribution of macroscopic pulsation to the mixing rate is ignored. It is clearly 
seen that the mixing coefficient depends strongly on mass flux [28]. 

However, for smaller PID subchannels (with 1.0 mm or 1.9 mm), because of the anisotropic in the 
gap region, the contribution of macroscopic pulsation to mixing cannot be neglect any more, 
transient simulation with low Re number EARSM model are carried out to reflect the influence of 
anisotropic turbulence. Because of the computation domain is quite large, low Re number transient 
calculation is really time consuming for mass transfer calculation. Presently only three cases (one for 
each geometry) has been carried out. These three cases present coherent, turbulent structures in the 
narrow gap, which affects the distribution of the tracer concentration as well as they introduce 
turbulent mixing between subchannels, as shown in Figure 12. The calculation results proved that 
mixing rate is dramatically enhanced by the flow pulsation, and all these three cases can get good 
agreement of turbulent mixing rate compare with the experiment. Further study is going on for both 
flow field calculation and mass transfer calculation in narrow gap subchannels. 
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5. Conclusion 

As the first step of predicting the turbulent mixing coefficient in the SCWR bundle geometries, the 
flows in three different gap size subchannels have been simulated under subcritical-pressure single-
phase condition through the use of RANS model. The case with 4mm gap, was carried out by 
steady-state SST_CWT turbulence model for mixing phenomenon. For this case, because of large 
P/D, the influence of anisotropic of turbulence is not significant, and mixing rate between 
subchannels is dominated by turbulence eddy diffusion. Steady-state calculation with SST model 
and CWT can successfully predict the mixing coefficient. However, for smaller P/D subchannels 
(with 1.0 mm or 1.9 mm), because of the anisotropic in the gap region, the contribution of 
macroscopic pulsation to mixing cannot be neglect any more, unsteady simulation with low Re 
number nonlinear k-c as well as EARSM are carried out to show the influence of macroscopic flow 
pulsation on turbulent mixing. And calculation results proved that mixing rate is dramatically 
enhanced by the flow pulsation. Further study is needed on both flow field calculation and mass 
transfer calculation. 

6. References 

[1] E. Merzari, et al., "Unsteady Reynolds-averaged Navier-Stokes: toward accurate prediction of 
turbulent mixing phenomena", International Journal of Process Systems Engineering, Vol. 1, Iss. 
1, 2009, pp. 100-123. 

[2] N. Silin, L. Juanico, and D. Delmastro, "Thermal mixing between subchannels: measurement 
method and applications", Nuclear Engineering and Design, Vol. 227, Iss. 1, 2004, pp. 51-63. 

[3] Y. Oka, et al., Super Light Water Reactors and Super Fast Reactors. 2010: Springer. 
[4] Development of SCWR in OW Collaboration (Phase-I). FY2008 and FY2009 annual reports. 
[5] Y. Oka, RESEARCH AND DEVELOPMENT OF SUPER LIGHT WATER REACTORS AND 

SUPER FAST REACTORS IN JAPAN, in In. Symp. on SCWR. 2010: Vancouver, Canada. 
[6] T. Krauss and L. Meyer, "Experimental investigation of turbulent transport of momentum and 

energy in a heated rod bundle", Nuclear Engineering and Design, Vol. 180, Iss. 3, 1998, pp. 185-
206. 

[7] H. Ninokata, et al., "Direct Numerical Simulation of Turbulent Flows in a Subchannel of Tight 
Lattice Fuel Pin Bundles of Nuclear Reactors", Annual Report of the Earth Simulator Center 
April, Vol. 2005, Iss., 2004. 

[8] V. Skinner, A. Freeman, and H. Lyall, "Gas mixing in rod clusters", International Journal of Heat 
and Mass Transfer, Vol. 12, Iss. 3, 1969, pp. 265-278. 

The 5th Int. Sym. SCWR (ISSCWR-5)  P110 

Vancouver, British Columbia, Canada, March 13-16, 2011 

 
(c) Tracer concentration 

Figure 12 Velocity and tracer concentration pulsation in the middle of the gap 

5. Conclusion 

As the first step of predicting the turbulent mixing coefficient in the SCWR bundle geometries, the 

flows in three different gap size subchannels have been simulated under subcritical-pressure single-

phase condition through the use of RANS model. The case with 4mm gap, was carried out by 

steady-state SST_CWT turbulence model for mixing phenomenon. For this case, because of large 

P/D, the influence of anisotropic of turbulence is not significant, and mixing rate between 

subchannels is dominated by turbulence eddy diffusion. Steady-state calculation with SST model 

and CWT can successfully predict the mixing coefficient. However, for smaller P/D subchannels 

(with 1.0 mm or 1.9 mm), because of the anisotropic in the gap region, the contribution of 

macroscopic pulsation to mixing cannot be neglect any more, unsteady simulation with low Re 

number nonlinear k-ε as well as EARSM are carried out to show the influence of macroscopic flow 

pulsation on turbulent mixing. And calculation results proved that mixing rate is dramatically 

enhanced by the flow pulsation. Further study is needed on both flow field calculation and mass 

transfer calculation. 
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