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Abstract 

A theory of the heterophase fluctuations in the vicinity of the gas-liquid critical point is developed. The 
formulated fluctuon model of heterophase fluctuations is genetically connected with the Frenkel model 
but includes description of the fluctuaton interaction. As a result a mean-field theory of the heterophase 
fluid in critical and overcritical region is obtained. Solutions of the deduced equation of state describe 
thermodynamics and heterophase structure of fluid. It is shown that the continuation of the gas-liquid 
coexistence curve in the overcritical region is the Widom line on which the constant-pressure heat 
capacity has a maximum and diverges when temperature approaches the critical point. 

1. Introduction 

Physics of SCW is developing intensively due to specific properties of the water fluid states and 
because it is planned to be used as coolant in nuclear reactors of the next generation, in part, in the 
Supercritical Water Reactor [1]. Results from experimental and computer simulations show that SCW 
is essentially heterogeneous [2-5]. It is composed of dense regions with hydrogen-bonded (H-bonded) 
molecular clusters surrounded by less dense regions with non-bonded molecules of gas-like phase. It is 
naturally to assume that in the critical and overcritical region the fluid is a heterophase "mixture" 
consistent of gas-like and liquid-like molecular short-living clusters possessing different densities and 
short-range orders (SRO). 

In spite H-bonds play an important role in formation of the liquid and fluid structure of water [6-8], it 
is clear that other substances, with different interaction of atoms or molecules, also have the 
heterophase structure of fluid state. Remarkably is that Van der Waals was the first who noted 
imperfections of his theory of fluid. In his Nobel Prize Lecture, The equation of state for gases and 
liquids, (1910) he has demonstrated that his equation fails to describe the high density fluid states and 
explained why. He conjectured that contribution of the molecular complexes, which are forming in gas 
at high densities, play an important role and has to be taken into account. 

Meanwhile the known models of the gas-liquid transition have nothing to do with the heterophase 
fluctuations in the vicinity of critical point and in overcritical region. As an exception Frenkel's theory 
of the heterophase fluctuations has to be mentioned [9]. Frenkel has considered the isolated 
heterophase fluctuations in the vicinity of the phase coexistence curve far from the critical point. Later 
Fisher has developed a droplet model of the gas-to-liquid transition including the critical point [10] 
(see also [11]). The critical exponents for the gas containing the non-interacting droplets are 
considered. But this model fails to describe liquid state and the fluid in overcritical region. 
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In this communication a phenomenological model of the heterophase fluid states is proposed. It is 
based on ideas formulated at consideration of the heterophase fluctuations in liquid near the second 
critical point [12-16] but the fluid features are taken into account. The fraction of molecules belonging 
to the liquid-like fraction, plays the role of the order parameter which determines the heterophase 

structure of fluid. Below the critical point the theory gives a correct description of Frenkel's 
heterophase states. The gas-to-liquid transformation at passing around the critical point takes place due 
to continuous increase of 

The paper is organized as follows. In Section 2. the heterophase fluctuations in the liquid and gas 
phases are considered and fluctuons (the liquid-like droplets and gas-like bubbles of a minimal size) 
are defined. The fluctuon model of heterophase fluid state in the mean field approximation is 
formulated in Section 3. The equation of the heterophase states is deduced. It has the well known 
Landau's form [17]. Its solutions are presented in explicit form. The Widom line is considered in 
Subsection 3.4. Brief discussion and conclusions are placed in the Sections 4 and 5 respectively. 

2. Heterophase fluctuations: the gas-like and liquid-like fluctuons 

To deduce equations of the heterophase fluctuations model of fluid we start from consideration of the 
heterophase fluctuations following approach developed in Ref. [9]. Near the gas-liquid coexistence 
temperature, the free energy of the spherical gas bubble in liquid or liquid droplet in gas is 

rj 3
gi(r,T)= — — a vsk — pi )+ 47r( —1 3 

2
a 

r 3 
/ 

=  ) sk X7'e — T)+ 47c(r) 
2 

(1) 
(3 a a 

i,k = g,l; #k; T < 7'e

The subscripts "g" and "1" are denoting the quantities concerning the gas and liquids respectively; 
sg and pi, si is the free energy and entropy per molecule of the "pure" gas and liquid; a is the 

interfacial free energy per molecule; a is the size of molecule; r is the embryo radius. All 
thermodynamics quantities are dependent of T and P but this dependence is not shown explicitly in (1). 
The Gibbs equation for the coexistence curve Te(P) is 

Pl(P,T)= Pg(P,T) (2) 

Eq. (1) is valid at r >> a . Eq. (2) determines the real coexistence curve at T < Tc is the critical 

temperature. Since pi(P,T) and pg (P, T) are continuous functions, they can be extrapolated from the 

under-critical into the overcritical region. 

The lower limit of r, roi , at which Eq. (1) still makes sense, can be estimated as follows. Let us 

consider the bubble of volume V — r3 which contains kg molecules. It has the specific volume 

v= V / k . The specific volume fluctuations depend on V, kg and T as follows [16] 

The 5th Int. Sym. SCWR (ISSCWR-5)  P052 
Vancouver, British Columbia, Canada, March 13-16, 2011 

 
In this communication a phenomenological model of the heterophase fluid states is proposed. It is 
based on ideas formulated at consideration of the heterophase fluctuations in liquid near the second 
critical point [12-16] but the fluid features are taken into account. The fraction of molecules belonging 
to the liquid-like fraction, lc , plays the role of the order parameter which determines the heterophase 
structure of fluid. Below the critical point the theory gives a correct description of Frenkel’s 
heterophase states. The gas-to-liquid transformation at passing around the critical point takes place due 
to continuous increase of lc . 
 
 
The paper is organized as follows. In Section 2. the heterophase fluctuations in the liquid and gas 
phases are considered and fluctuons (the liquid-like droplets and gas-like bubbles of a minimal size) 
are defined. The fluctuon model of heterophase fluid state in the mean field approximation is 
formulated in Section 3. The equation of the heterophase states is deduced. It has the well known 
Landau’s form [17]. Its solutions are presented in explicit form. The Widom line is considered in 
Subsection 3.4. Brief discussion and conclusions are placed in the Sections 4 and 5 respectively. 

  
 

2. Heterophase fluctuations: the gas-like and liquid-like fluctuons 

 
To deduce equations of the heterophase fluctuations model of fluid we start from consideration of the 
heterophase fluctuations following approach developed in Ref. [9]. Near the gas-liquid coexistence 
temperature,  the free energy of the spherical gas bubble in liquid or liquid droplet in gas is 

( )

( )( )

e

eki

iki

TTkilgki
a
rTTss

a
r

a
r

a
rTrg

<≠=

⎟
⎠
⎞

⎜
⎝
⎛+−−⎟

⎠
⎞

⎜
⎝
⎛=

⎟
⎠
⎞

⎜
⎝
⎛+−⎟

⎠
⎞

⎜
⎝
⎛=

;;,,

4
3

4

4
3

4),(

23

23

σππ

σπμμπ

   (1) 

The subscripts “g” and “l” are denoting the quantities concerning the gas and liquids respectively; 
gg s,μ and ll s,μ  is the free energy and entropy per molecule of the “pure” gas and liquid; σ  is the 

interfacial free energy per molecule; a is the size of molecule; r is the embryo radius. All 
thermodynamics quantities are dependent of T and P but this dependence is not shown explicitly in (1). 
The Gibbs equation for the coexistence curve )(PTe  is  

),(),( TPTP gl μμ =      (2) 
 

Eq. (1) is valid at ar >> . Eq. (2) determines the real coexistence curve at cTT < , cT  is the critical 
temperature. Since ),( TPlμ  and ),( TPgμ  are continuous functions, they can be extrapolated from the 
under-critical into the overcritical region.  
 
The lower limit of r, ir0 , at which Eq. (1) still makes sense,  can be estimated as follows. Let us 
consider the bubble of volume 3~ rV  which contains gk  molecules. It has the specific volume 

gkVv /= . The specific volume fluctuations depend on V, gk   and T as follows [16] 
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(Oaf) = vTicT , kg

Here KT is the compressibility at constant 7'. For gas KT ^'1 /P. 

We have to demand 

(3) 

(0.4) << v2 (4) 

Taking into account that PV kT , we have from (3) and (4) that at kg >> 1 the specific volume 

fluctuations within the bubble are small as compare to its mean value. 

Considering the liquid droplet in gas, we have to put 

r>r 01 %:-.1 r , (5) 

where ro is the correlation radius of molecules in the liquid. The thermodynamic properties of the 

droplet and bulk liquid are close only when the condition (5) is satisfied. 

The range of the pair potential is a . Because the many-particle interactions are also responsible for 
the molecular correlations, it occurs that ro > a . Temperature and pressure dependence of ro can be 

determined (measured) in under-critical region and then extrapolated into the overcritical region. 

The distribution of the droplets on r is 
f i (r,T)— exp[— gi(r,T) I T] , r> roi (6) 

Here and later on the Boltzmann constant is put 1. As it follows from (1) and (6), f(r,T) has a sharp 

supremum at r = roi . Therefore for the mean droplet radius we have 

(0' /Or (7) 

Since the droplet is a short-living transient cluster in gas we call it 1-fluctuon. Considering the droplets 
as the structure elements of the heterophase state we therein neglect the variance of their sizes. The 
number of molecules per l-fluctuon is 

kol 42r(r01 /a)3 / 3 >> 1 (8) 

Considering the gas bubbles in the same manner we determine the gas-like fluctuons (g-fluctuons) 
consisting of kog >> 1 molecules. Both conditions (4) and (5) are satisfied simultaneously if we put 

that the fluctuons of both types are consisting of the same number of molecules, 

kog = ko1 = ko (9) 
This condition is not necessary and could be avoided but it simplifies formulation of the fluctuon 
model of the heterophase states. 

3. The fluctuon model of the heterophase gas-liquid states 

3.1 Basic equations 
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Previous consideration lead to the following formulation of this model. The heterophase system is 
consisting of N1 =Nlko fluctuons (Nis the number of molecules). Each fluctuon is /-like or g-like. In 

the "pure" liquid or gas phase the fluctuons have free energies 

gl = koPI and gg = koPg (10) 

respectively. 

Let us denote by No  and Nfg the numbers of the l- and g-fluctuons respectively. Then the fractions 

of the fluctuons are 
c1 • =N IN cg =Nf  IN g 

and 
CI Cg = 1 (12) 

Taking into account the interfacial fluctuon interactions, gradient term and mixing entropy, the density 
of the free energy of heterophase state can be presented as follows 

g = — [ -24(roi)2 (V ci )2 + E ci gi zcicgggoi TE ci inci go l of 2 

1 [ -1 261(ro1)2 (V c1)2 + E ci gi + cicgggl + TE in ci gol of 2 

i,k =1,g 

Here z is the coordination number of fluctuons, g: is the free energy of the fluctuons pair interaction; 

g are slow varying fields. Since roi is the scale of characteristic short-range correlations, the 

gradient term, as usually, takes into account the contribution of the large scale heterogeneities, 
(roi )2 (V c1)2 «1. It determines the spectrum of long-range fluctuations in the vicinity of critical point. 

v f is the mean value of the fluctuon volume, 

(13) 

of = V 1 Nf (14) 

The coefficients A and are positive. go is the independent of co cg part of the free energy per 

fluctuon. 

The equilibrium equations (the saddle point equations, equations of state) one can get by varying the 
free energy functional 

G = f g(x)c13.x (15) 

Taking into account the condition (11), we have 
(5.  

G(P,T)+  aEck(x)=0
8c; (x) aci (x) k 

where 2 is the Lagrange coefficient. 

It follows from (13)-(16) that 

— A(r01)2 Aci + (1— 2c1)gg1 + T In  
C1

= L
1—c1

gi

(16) 

(17) 
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he = gg — g1 r-.,' Ase (Te —T) (18) 

where &se is the difference of entropies of g-fluctuon and l-fluctuon at the phase coexistence 

temperature Te . 

3.2 The most probable state 

It follows from (13) and (16) that minimum of the free energy can be achieved with Vci = 0 . i.e. the 

stable homogeneous solutions of Eq. (17) determine the most probable states of the system. The 
inhomogeneous solutions describe the order parameter fluctuations. 

With Vci = 0 Eq. (17) reads 

(1— 2c1)g e + T In cl — As e(T e — 7') 
1— ci

Substitution 
1 1 

ci = — + a; a<_— 
2 2 

and subsequent expansion in series on a up to fourth power gives 
Tc)cy ± 1T a  3 _ / 

4(T — As AT e — T) + 0(a5 ) 
3 

where 
T = Te(Pc)= g e I 2 

Eq. (21) is the standard Landau equation for the gas-liquid phase transition in the vicinity of the 
critical point [16 ] but with specific order parameter, a . To connect it with the Van der Waals order 
parameter, 

v(P,T)—v e  . 
-V =  v e = v(Pe,Te ) (23) 

vc

one can note that the specific volume of the heterophase state is 
v r-t-, civi + cgvg, (24) 

vi vg is the specific volume of liquid and gas respectively. In the critical point ve = (v1 + vg) / 2 and in 

the vicinity of critical point 
vi — V 

V Pe 
v 

g a 
e

(25) 

Let us start from consideration of the small heterophase fluctuations in the vicinity of coexistence 
curve below 7'e . As it follows from Eq. (19), in the liquid (c1 —> 1 ,T <Te ) 

cg = expKAse(Te —T)— g e )1 Te .1 (26) 

In gas (with cg —> 1, T > T e ) 

ci = expKAs e(T —7'e )— g e )1 Te .1 (27) 

With T = Te 
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Cl = cg 
2 

= — (28) 

As it follows from (13), the solutions (26), (27) correspond to the stable states of the system while the 
solution (28) corresponds to the unstable state. Solutions (26), (27) are in accordance with the Frenkel 
result (6) describing the heterophase fluctuations. 

Equation (21) describes the heterophase fluctuations in critical and overcritical regions. With that the 
coexistence curve (2) has to be extrapolated in the overcritical region, T > T e; P > Pe , 

T e(P) = Te + 
dT (P) 

(P — Pc) (29) 
Pc 

dP 

Stable homogeneous solutions of the state equation (21) in the vicinity of the coexistence curve are 
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and b) cPP > . 
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In Fig. 1 the isobaric solutions (30) and (31) are shown. In Fig. 1 a the unstable and metastable states 
within the temperature interval T T T+ are shown too. T_(P) and T., (P) are branches of the 
spinodal. 

3.2 Fluctuations of the order parameter and density 

It is seen from (25) that the density fluctuations are directly connected with fluctuations of the order 
parameter. has to be added for completeness. As it follows from (21) [LL], the spectrum of the order 
parameter fluctuations is 

(a q 12 ) = T 

V[il(relq)2 + 4(T — Te )1 

Combining (32) and (25) we have 

(1 ,._ 12 _ 4 / 2 2 

liUg I ) — p . (Iv q ) = v: 4 Vg
 v 

— VI 2 ICY'? 12 ) = 

Vg 

vc Vv:[A(t•eiqY

T

+ 4(T — Te)1 

— Vi 2

c 

(32) 

(33) 

Here a q and pq are the Fourier components of a(x) and density p(x), q is the wave vector, V is the 

volume. 

The fluctuon-fluctuon correlation function is 

with the correlation length 

T 
Kll (r) = 47rAr2 r 

exp(—
r / ) 01 

= rot .  A 
2 IT — Tc l 

(34) 

(35) 

It is clear that Eqs. (33-35) describe the coarsened (on scale r — r01 ) density fluctuations. Therefore 

they make a sense at q < 27z- I roi . 

3.3 The Widom line 

The coexistence curve continuation (29) makes a physical sense since the thermodynamic 
coefficients connected with the second order derivatives of the thermodynamic potentials have maxima 
on this line. The line on which the constant-pressure heat capacity, Cp , has maximum is named "the 

Widom line" [17]. It is easy to check that the line T = Te(P) is the Widom line. As it follows from 

(13), (19), the heat capacity of the fluid state at T > T e is 

d 2 g 1 i (1— 4a 2 )(ASgi )2cp , T dT2  2 C'i,/ + Cpg )+ (C C pg p1 )a +  r
4koLT — Tc (1— 4a2 (36) )1'

Here C 1 and Cpg is the heat capacity of liquid and gas. 
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Here qα  and qρ  are the Fourier components of )(xα  and density )(xρ , q is the wave vector, V is the 
volume. 
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Here plC  and pgC  is the heat capacity of liquid and gas. 
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Since on the coexistence curve a(T c(P))= 0, the last term of r.h.s. of (36) has here maximum and 

becomes singular with T —> Tc . 

3. Discussion 

The developed fluctuon model of heterophase fluctuations gives a coarse grained phenomenological 
description of the fluid. Coefficients of this model, unlike to the Van der Waals model with two 
constant parameters, are P, T-dependent functions. The thermodynamic phenomenological coefficients 
can be determined experimentally below the critical point and continued in the overcritical region. 

The model is symmetric with respect to both liquid and gas phase states, as in the Lee and Young 
lattice model of condensation [18] and other so called "two-state models" (see . [14] and references 
quoted). We have included in consideration interaction of the heterophase fluctuations. Therefore the 
formulated model is a generalization of Frenkel's model of heterophase fluctuations. From the other 
hand, a mean-field formulation of the critical point in terms of the heterophase fluctuations is obtained. 
Thus this model is as generalization of the mean-field critical point description taking into account the 
structured fluid states. 

As it is seen from the model formulation, it contains two characteristic correlation lengths, ro/ and . 

The first one is the SRO correlation length of the l-fluctuons. The second one concerns the fluctuon-
fluctuon correlations. The last one makes a sense if >> ro/ . To some extension ro/ can be treated as 

a parameter of the direct correlation function and as parameter of the total correlation function 

introduced by Ornstein and Zernike [19] but validity of the Ornstein-Zernike assumption that the 
Fourier transform of the direct correlation function can be presented in form of q- expansion is 

disputable. 

The completed consideration show that thermodynamic and dynamic properties of the fluids of 
different substances are expected to be similar but the equation of the corresponding states takes no 
place. 

5. Conclusion 

A theory of the heterophase fluctuations in the vicinity of the gas-liquid critical point is developed. The 
formulated fluctuon model of heterophase fluctuations is genetically connected with the Frenkel model 
but it is presented in a quantized form and includes the fluctuons interaction. As a result we have 
obtained a mean-field theory of the heterophase fluid in critical and overcritical region. Solutions of the 
deduced equation of state describe thermodynamics and heterophase structure of the fluid below and 
above the critical point. 

It is shown that the continuation of the gas-liquid coexistence curve in the overcritical region is the 
Widom line on which the constant-pressure heat capacity has a maximum. This quantity diverges when 
temperature approaches the critical point. 
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The developed theory provides a theoretical base for further investigations of the structure and 
properties of SCW and fluids of other substances. 

6. References 

1. A Technical Roadmap for Generation IV Nuclear Systems: Technical Roadmap Report, Washington 
DC, October, 2002 

2. D.A. Guzonas, J. Wills, T. Do, J. Michel , "Corrosion of candidate materials for use in a 
supercritical water reactor", 13th International Conference on Environmental Degradation of 
Materials in Nuclear Power Systems Whistler, British Columbia, August 19 - 23, 2007 

3. D. Guzonas, P. Tremaine, J.-P. Jay-Gerin, "Chemistry control challenges in a supercritical 
water cooled reactor", International Conference on Water Chemistry of Nuclear Reactor Systems, 
Berlin (2007) 

4. A.J. Elliot, C.R. Stuart, G.A. Glowa, I.J. Muir, "Coolant radiolysis studies in the high 
temperature, Fuelled U-2 loop in the NRU reactor", AECL R&D Report 153-127160-440-003 (2008) 

5. I. Betova, M. Bojinov, P. Kinnunen, V. Lehtovuori, S. Penttila, and T. Saario, Surface Film 
Electrochemistry of AISI316 Stainless Steel and its Constituents in Supercritical Water, Proc. ICAPP 
2007, Nice, France, May 13-18, 2007. 
6. M. M. Hoffmann, M.S. Conradi, Are There Hydrogen Bonds in Supercritical Water? J. Am. 
Chem. Soc., v 119, 3811 (1997) 
7. Y. Ikushima, K. Hatakeda, N. Saito, M. Arai, An in situ Raman spectroscopy study of subcritical 
and supercritical water: The peculiarity of hydrogen bonding near the critical point, J. Chem. Phys., 
108, 5855 (1998) 
8. G.V. Bondarenko, Yu.E. Gorbaty, F.V. Okhulkov, A.G. Kalinichev, Structure and Hydrogen 
Bonding in Liquid and Supercritical Aqueous NaCl Solutions at a Pressure of 1000 bar and 
Temperatures up to 500 °C: A Comprehensive Experimental and Computational Study, J. Phys. 
Chem., v 110, 4042 (2006) 
9. J. Frenkel, A general theory of heterophase fluctuations and pretransition phenomena, J. Chem. 

Phys., v 7, 538 (1939) 

10. M.E. Fisher, The theory of condensation and the critical point, Physics, v 3, 255 (1967) 

11. A.S. Bakai, Phase transitions and vitrification, Low Temp.Phys. v 22 (8), 733 (1996) 

12. A.S. Bakai, Long-range density fluctuations in glass-forming liquids, J. Non-Cryst. Solids, v 

307-310, 623 (2002) 

13. A.S. Bakai, On correlated heterogeneities of glass-forming liquids, Low Temp.Phys. , v 28, 896 

(2002) 

14. A.S. Bakai and E.W. Fischer, On the nature of long-range correlations of density fluctuations in 

glass-forming liquids, J. Chem. Phys., v 120, 5235, (2004) 

The 5th Int. Sym. SCWR (ISSCWR-5)  P052 
Vancouver, British Columbia, Canada, March 13-16, 2011 

 
The developed theory provides a theoretical base for further investigations of the structure and 
properties of SCW and fluids of other substances.  
 
6. References 

1. A Technical Roadmap for Generation IV Nuclear Systems: Technical Roadmap Report, Washington 
DC, October, 2002 

2. D.A. Guzonas, J. Wills, T. Do, J. Michel , “Corrosion of candidate materials for use in a 
supercritical  water reactor”, 13th International Conference on Environmental Degradation of 
Materials in Nuclear Power Systems Whistler, British Columbia, August 19 - 23, 2007 

3. D. Guzonas, P. Tremaine, J.-P. Jay-Gerin, “Chemistry control challenges in a supercritical 
water cooled reactor”, International Conference on Water Chemistry of Nuclear Reactor Systems, 
Berlin (2007) 

4. A.J. Elliot, C.R. Stuart, G.A. Glowa, I.J. Muir, “Coolant radiolysis studies in the high 
temperature, Fuelled U-2 loop in the NRU reactor”, AECL R&D Report 153-127160-440-003 (2008) 

5. I. Betova, M. Bojinov, P. Kinnunen, V. Lehtovuori, S. Penttila, and T. Saario, Surface Film 
Electrochemistry of AISI316 Stainless Steel and its Constituents in Supercritical Water, Proc. ICAPP 
2007, Nice, France, May 13-18, 2007. 
6.  M. M. Hoffmann,  M.S. Conradi, Are There Hydrogen Bonds in Supercritical Water? J. Am. 
Chem. Soc.,  v 119, 3811 (1997) 
7. Y. Ikushima, K. Hatakeda, N. Saito, M. Arai,  An in situ Raman spectroscopy study of subcritical 
and supercritical water: The peculiarity of hydrogen bonding near the critical point, J. Chem. Phys., 
108, 5855 (1998) 
8. G.V. Bondarenko, Yu.E. Gorbaty, F.V. Okhulkov, A.G. Kalinichev, Structure and Hydrogen 
Bonding in Liquid and Supercritical Aqueous NaCl Solutions at a Pressure of 1000 bar and 
Temperatures up to 500 °C:  A Comprehensive Experimental and Computational Study, J. Phys. 
Chem., v 110, 4042 (2006) 
9. J. Frenkel, A general theory of heterophase fluctuations and pretransition phenomena, J. Chem. 

Phys., v 7, 538 (1939) 

10.     M.E. Fisher, The theory of condensation and the critical point, Physics, v 3, 255 (1967) 

11.     A.S. Bakai, Phase transitions and vitrification, Low Temp.Phys. v 22 (8), 733 (1996) 

12.     A.S. Bakai, Long-range density fluctuations in glass-forming liquids, J. Non-Cryst. Solids, v 

307-310, 623 (2002) 

13.      A.S. Bakai, On correlated heterogeneities of glass-forming liquids, Low Temp.Phys. , v 28, 896 

(2002) 

14.     A.S. Bakai  and E.W. Fischer, On the nature of long-range correlations of density fluctuations in 

glass-forming liquids, J. Chem. Phys., v 120, 5235, (2004) 



The 5th Int. Sym. SCWR (ISSCWR-5) P052 
Vancouver, British Columbia, Canada, March 13-16, 2011 

15. A.S. Bakai, On the role of frustration on the glass transition and polyamorphism of 

mesoscopically heterophase liquids , J. Chem. Phys. V 125, 064503 (2006) 

16. L.D. Landau, E.M. Lifshiz, Statistical Physics, Course in Theoretical Physics, Vol 5. 

17. B. Widom, Phase transitions and critical phenomena, Phase Transitions and Critical Phenomena, 

Vol.29eds. C. Domb & M.S. Green, Academic (1972) 

18. T D Lee, C N Yang Statistical Theory of Equations of State and Phase Transitions. II. Lattice 

Gas and Ising Model - Physical Review, v 87, 410 (1952 ) 

19. L.S. Ornstein and F. Zernike, Proc.Acad.Sci.(Amst.) 17, 793-806 (1915) 

The 5th Int. Sym. SCWR (ISSCWR-5)  P052 
Vancouver, British Columbia, Canada, March 13-16, 2011 

 
15.     A.S. Bakai,  On the role of frustration on the glass transition and polyamorphism of 

mesoscopically heterophase liquids , J. Chem. Phys. V 125, 064503 (2006) 

16.    L.D. Landau,  E.M. Lifshiz, Statistical Physics, Course in Theoretical Physics, Vol 5.   

17.    B. Widom, Phase transitions and critical phenomena, Phase Transitions and Critical Phenomena, 

Vol.29eds. C. Domb & M.S. Green, Academic (1972) 

18.    T.D. Lee, C.N Yang. Statistical Theory of Equations of State and Phase Transitions. II. Lattice 

Gas and Ising Model - Physical Review, v 87, 410 (1952 )  

19.   L.S. Ornstein and F. Zernike, Proc.Acad.Sci.(Amst.) 17, 793-806 (1915) 

  
 


