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Abstract 

AECL R&D work covers experiments, analysis, sub-channel code development and applications, and 
neutronic and thermalhydraulic coupling analysis to improve the understanding of heat transfer, 
stability, and critical flow. The latest advances in thermalhydraulics and safety R&D at AECL have 
been summarized. A compilation of experimental data on heat transfer with supercritical non-aqueous 
flows over bundle subassemblies and in tubes is presented. Several tube-data based supercritical 
heat-transfer correlations were assessed against the bundle data. None of these correlations closely 
predict the experimental data. 

1. Introduction 

Among various Generation-IV International Forum (GIF) participants in the design of the 
Super-Critical Water-cooled Reactor (SCWR) concept, Canada has interest mainly on the pressure-tube 
type design concept, which is a natural extension of the existing CANDU®1 reactor. 
Thermalhydraulics characteristics at supercritical water flow conditions are required in support of the 
design and qualification of the fuel bundle and safety analyses for the SCWR. The lack of qualified 
experimental data on heat transfer and pressure drop for supercritical water flow has been identified as 
a significant risk. This is due to the drastic deterioration of heat-transfer characteristics in the vicinity 
of the critical point. Fundamental understanding of thermalhydraulics characteristics has relied on 
experimental information obtained with tubes, annuli, and bundle subassemblies. Experimental data 
obtained with tubes and bundles at supercritical water conditions are required for the development of 
heat-transfer correlations. The tube data provide a fundamental understanding of the SC heat transfer 
phenomena, but may not be directly applicable to bundle geometries with a large degree of flow and 
enthalpy imbalances. Full-scale bundle (or bundle sub-assemblies) experiments were performed at 
some institutes, but most data are proprietary information and details of these experiments are generally 
unavailable. Based on the published information on small bundles, there are differences in SC heat-
transfer characteristics between tubes and bundles. The sub-channel effect in bundles appears to have 
improved the SC heat transfer. 

Testing with SCW flow is costly and inflexible due to the severe operating conditions. Surrogate fluids 
have been adopted in sub- and supercritical heat-transfer studies. A large amount of experimental data 
on SC heat transfer is available for carbon dioxide and various types of refrigerants in tubes. The 
objective of this study is to compile a surrogate-fluid database on supercritical heat transfer for tubes 
and bundles, and use these data to assess the existing tube-data based correlations for the supercritical 
heat-transfer. 

2. Heat Transfer in Tubes and Bundles for the Surrogate Fluids 

1 CANDU-Canada Deuterium Uranium (a registered trademark of Atomic Energy of Canada Limited (AECL)) 
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2.1 Heat Transfer in Tubes 

A supercritical heat-transfer database for surrogate fluids in tubes was assembled to examine 
parametric and asymptotic trends of these databases. A total of 3787 data points were compiled for 
Freon-12, CO2, N, and He (see Table 1). After applying fluid-to-fluid modeling parameters, the 
surrogate-fluid data were converted into water-equivalent values, which in turn were used to verify the 
water-data based correlations. 

Table 1 : Surrogate Fluid Database for Tubes 
Reference P (MPa) Tin (K) q (kW/m2) G (kg/m2s) Comments 

Carbon Dioxide 
Adebiyi and Hall 
(1976) [1] 

7.6 283.1 - 303.2 5.2 - 26.9 104.4 - 392.2 Tube ID : 22.1 mm, L=2440 mm, 
Horizontal 

Ankudinov and 
Kurganov (1982) [2] 

7.7 293.1 297.3 - 952.9 2050 - 3230 Tube ID : 8.0 mm, L=1840 mm, 
Horizontal, Upward, Downward 

Bae (2006) [3] 8.2 278.1 10 - 90 400 - 750 Tube ID : 4.4 mm, L= 2000 mm, 
Upward 

Bourke et al. (1970) [4] 7.44 - 
10.32 

288.1 - 308.1 8 - 270 311.1 - 1234.4 Tube ID : 22.8 mm, L= 4560 mm, 
Upward, Downward 

He et al. (2004) [5] 7.6 283.1 2.6 - 15.1 102.3 - 289.2 Tube ID : 19.0 mm, L= 2451 mm, 
Upward 

He et al. (2005) [6] 9.5 304.1 - 324.1 30 - 70 590.3 - 1641.0 Tube ID : 0.95 mm, L= 55 mm 
Ikryannikov et al. 
(1972) [7] 

8.1 - 9.1 288.8 - 299.2 9.0 - 84.3 190.0 - 381.0 Tube ID : 29.0 mm, L= 2262 mm 

Kim et al. (2005) [8] 8.0 288.8 - 305.1 3.0 - 180.0 209.0 - 1230.0 Tube ID : 7.8 mm, L= 1200 mm 
Krasnoshchekov et al. 
(1967) [9] 

7.9 - 9.7 293.1 - 383.1 266.8 - 2644.3 1136.7 - 7521.3 Tube ID : 4.1 mm, L= 208.1 mm 

Kurganov et al. (1991 
[10]/ 1992 [11] / 1993 
[12], / 1998 [13]) 

7.7 - 9.0 282.0 - 333.0 40.0 - 1053.0 396.0 - 3250.0 Tube ID : 8 mm and 22.7 mm, L= 
2800 mm, 2951 mm and 5220 

mm, Upward, Downward, 
Horizontal 

Petukhow and 
Polyakov (1988) [14] 

9.0 397.1 30.3 - 30.8 182.0 Tube ID : 29.0 mm, L= 2378 mm 

Pioro et al. (2004/2005) 
[15], [16] 

8.2 307.5 - 315.5 189.2 1978.0 Tube ID : 8.0 mm, L= 2208 mm 

Shiralkar and Griffith 
(1969/1970) [17], [18] 

7.6 268.6 - 303.4 126.2 - 454.3 678.1 - 3390.6 Tube ID : 3.2 mm and 6.4 mm, L= 
1524 mm 

Tanaka et al. (1971) 
[19] 

7.9 287.0 - 308.0 488.5 - 639.7 1129.8 - 2426.6 Tube ID : 6.0 mm, L= 1000 mm, 
Upward 

Freon-12 
Pometko (2005) [20] 1.08 - 

4.46 
293.1 - 413.1 6 - 290 500 - 2000 Tube ID : 10 mm, L=1000 mm, 

Upward 
Helium 

Bogachev et al. (1985) 
[21] 

0.25 5.1 0.58 - 1.29 47.16 Tube ID : 1.8 mm, L=410 mm for 
Upward, L=388 mm for 

Downward 
Brassington and Cairns 
(1977) [22] 

0.62 - 
1.41 

4.4 - 15 0.32 - 1.08 18.90 - 50.63 Tube ID : 17.8 mm, L=1000 mm, 
Upward 

Nitrogen 
Dimitrov (1989) [23] 4 101 - 125 11.1 - 18.8 11.9 - 25.5 Tube ID : 21.0 mm, L=1471 mm, 

Upward 

Figure 1 shows the variation of wall temperatures with the bulk enthalpy and the heat flux. The wall 
temperature increases with increasing heat flux. At the lowest heat flux, the wall temperature increases 
gradually with the bulk temperature (enthalpy), however, at higher heat fluxes, one or two humps 
appear before the pseudo-critical point, showing the deterioration of the heat transfer in the vertical 
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upward flow. As shown in Figure 2, the heat transfer coefficient reaches a maximum at the pseudo 
critical point. 
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(Bogachev, 1985). 

Figure 3 shows the effect of flow direction in vertical tubes. Wall temperatures are higher in the 
upward flow case than in the downward flow case at similar conditions. Moreover, the wall 
temperature gradually increases with the bulk temperature for the downward flow, whereas, at similar 
conditions, drastic variations in the wall temperature are observed for the upward flow. Figure 4 
shows the flow orientation effect by comparing wall temperatures along tubes with vertical 
(upward/downward) flow against those with horizontal flow at similar conditions. Wall temperatures 
for the downward and horizontal flows are quite similar, whereas those in the upward flow deviate 
from the downward flow, becoming much higher at locations close to the tube exit. 

2.2 Heat Transfer in Bundles 

Aoki et at (2006) [24], Mori (2004) [25] and Yamashita et at (2006) [26] carried out experiments with 
a 3-rod bundle in a vertical test section cooled upward and downward by Freon-22. Mori (2004) [25] 
also performed experiments in tubes and annular geometries to study the effect of geometry on the heat 
transfer. Figure 5 shows the effect of heat flux on the wall temperature in the upward flow. As 
observed for tubular test sections, increasing the heat flux increases the wall temperature. At high heat 
fluxes, wall temperatures vary significantly below the pseudo-critical point in the upward flow, 
showing the deterioration of the heat transfer. 
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The effect of flow direction in a vertical tube is presented in Figure 6. Local temperature spikes are 
observed below the pseudo-critical point in the upward flow, showing that the heat transfer is 
deteriorated. Wall temperatures in the upward flow are also higher than those of the downward flow 
before the pseudo-critical point at similar flow conditions. Figure 7 presents the effect of geometry on 
the heat transfer coefficient and the wall temperature. The wall temperatures measured in a tube, in an 
annular geometry and the 3-rod bundle are compared at similar conditions. Some enhancements shown 
as an increase in the heat transfer coefficient are observed near pseudo-critical point in the 3-rod 
bundle. The heat transfer in the tube is, on the other hand, deteriorated at similar conditions, with a 
drastic decrease in the heat transfer coefficient (or increase in the wall temperature). 
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3. Fluid-to-Fluid Scaling 

Several scaling analyses for fluid to fluid modeling are available in the open literature. Scaling criteria 
from Pioro and Duffey (2007) [27] were used in this analysis, and are presented in Table 2. 
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Table 2 • Similarity parameters suggested for 
fluid-to-fluid modeling 

(Moro and Duffey, 2007) 
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4. Assessment of Tube Base Correlations against the 
Surrogate Fluid Databases for Tubes and Bundles 

4.1 Assessment against Tube Database 

The Dittus—Boelter correlation [28], the Krasnoshchekov correlation [9], and the Jackson 
correlation [30] were assessed against the water equivalents of R12, CO2, Helium and Nitrogen 
databases. Table 3 presents the prediction accuracy of the correlations against the water equivalent 
values of the surrogate fluid data in tubes. The Dittus-Boelter correlation significantly overpredicts the 
CO2 data. Its predictions, in general, do not agree well with the data, except for the helium downward 
flow. The Krasnoshchekov correlation predicts the upward flow better than the downward flow for 
CO2 and helium. It systematically underpredicts the heat transfer coefficient for all fluids, except CO2 
horizontal flow. The Jackson correlation predicts CO2 downward flow better than the upward flow and 
horizontal flow, as well as predicts better than the other correlations for CO2 downward flow. 
However, it significantly underpredicts the Freon-12 and nitrogen data. It predicts quite accurately the 
upward helium data; however, predictions become poor for the downward flow. The differences could 
be caused by the limitation of the correlations, because correlations are derived covering only the range 
over which the experiments were performed. 
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horizontal flow.  The Jackson correlation predicts CO2 downward flow better than the upward flow and 
horizontal flow, as well as predicts better than the other correlations for CO2 downward flow.  
However, it significantly underpredicts the Freon-12 and nitrogen data.  It predicts quite accurately the 
upward helium data; however, predictions become poor for the downward flow.  The differences could 
be caused by the limitation of the correlations, because correlations are derived covering only the range 
over which the experiments were performed.   
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Figure 8 (a) and (b) through Figure 11 compare experimental heat transfer coefficients with 
predictions of the correlations. Most of the predictions of the Krasnoshchekov correlation and the 
Jackson correlation lie within ±25% for the CO2 data (Figure 8 (a) and (b)) for downward and upward 
flows. Large scatters in the helium predictions are observed for the Dittus-Boelter and 
Krasnoshchekov correlations. In addition, heat transfer coefficients are systematically underpredicted 
by the correlations for Freon-12 (Figure 9) and nitrogen (Figure 11) upward flow. 

Table 3 : Prediction Results of the Correlations against the Water Equivalent Values of 
Surrogate Databases 

Upward Downward Horizontal 

Correlation # of 
Data 
Point 

Ave. 
error 
(%) 

SD 
(%) 

# of 
Data 
Point 

Ave. 
error 
(%) 

SD 
(%) 

# of 
Data 
Point 

Ave. 
error 
(%) 

SD 
(%) 

CO2
Dittus-Boelter 2771 96.2 193.2 436 106.2 235.9 186 92.4 249.7 
Krasnoshchekov 2771 -5.1 41.2 436 -22.3 35.7 186 23.1 53.1 

Jackson 2771 11.7 44.1 436 2.6 55.5 186 15.3 44.0 
Freon-12 

Dittus-Boelter 101 -46.3 24.5 
Krasnoshchekov 101 -37.6 36.7 
Jackson 101 -45.7 24.9 

Helium 

Dittus-Boelter 179 32.0 58.0 52 9.6 46.2 
Krasnoshchekov 179 -12.1 27.7 52 -18.7 38.1 

Jackson 179 0.08 15.63 52 -23.2 13.6 

Nitrogen 

Dittus-Boelter 62 -44.8 21.9 

Krasnoshchekov 62 -73.9 13.2 
Jackson 62 -65.4 13.5 
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Figure 8 Comparison of Experimental Heat Transfer Coefficient with the Predictions of the 
Correlations for CO2 (a) Downward and (b) Upward Flows 
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Figure 11 Comparison of Experimental Heat Transfer Coefficient with the Predictions of the 
Correlations for the Nitrogen Upward Flow 

4.2 Assessment against Bundle Database 

The tube-data based correlations were assessed against the 3-rod bundle data. Table 4 presents the 
prediction accuracies of the correlations. Heat transfer coefficients are significantly overpredicted by 
all the correlations. The overpredictions are improved for the downward flow as compared to upward 
flow. 

Table 4 : Prediction Results for Upward and Downward HCFC-22 Flow in Bundle 

Correlation # of Data Point Ave. error (%) SD (%) 
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Figure 12 through Figure 14 show the comparison of experimental heat transfer coefficients with the 
predictions using the correlations of Dittus-Boelter, Krasnoshchekov and Jackson, respectively. Large 
scatters in the prediction are observed for both Dittus-Boelter and Krasnoshchekov correlations. 
Systematically, Jackson correlation overpredicts the data; however, scatters are reduced as compared to 
the other correlarions. Predictions for the downward flow are slightly improved as compared to the 
upward flow. 
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5. Conclusion 

Surrogate fluid databases for tubes and bundles have been assembled. The data follow the general 
parametric trends (e.g., wall temperatures increase with increasing heat flux, wall temperatures are 
higher in upward flow than in downward and horizontal flows). Some enhancements in the heat 
transfer coefficient are observed near pseudo-critical point in the 3-rod bundle, as compared to that in 
tubes. 

The databases were converted to water equivalent values, using the fluid-to-fluid scaling parameters 
suggested by Pioro and Duffey [27]. The three most commonly used correlations, Dittus-Boelter, 
Krasnoshchekov and Jackson, were then assessed against the water equivalent values of the surrogate 
fluid data. The Dittus-Boelter correlation significantly overpredicts the CO2 data. Dittus-Boelter 
predictions agree better with the data than the other correlations only for the helium downward flow. 
The Krasnoshchekov correlation predicts the upward flow better than the downward flow for CO2 and 
helium. It systematically underpredicts the heat transfer coefficient for all fluids, except CO2 
horizontal flow. The Jackson correlation predicts CO2 downward flow better than the upward flow and 
horizontal flow, as well as predicts better than the other correlations for CO2 downward flow. 
However, it significantly underpredicts the Freon-12 and nitrogen data. It accurately predicts the 
upward helium data; however, predictions become poor for the downward flow. 

The heat transfer coefficients were significantly overpredicted with large uncertainties by the 
correlations for the bundle data. Nevertheless, the Krasnoshchekov's correlation provides the lowest 
bias and the Jackson's provides the lowest uncertainty. Predictions for the downward flow are slightly 
improved as compared to the upward flow. 
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