
The 5th Int. Sym. SCWR (ISSCWR-5) P060 
Vancouver, British Columbia, Canada, March 13-16, 2011 

LESSONS LEARNED FROM THE APPLICATION OF CFD MODELS IN THE PREDICTION 
OF HEAT TRANSFER TO FLUIDS AT SUPERCRITICAL PRESSURE 

M. De Rosa 1,G. Guetta 1, W. Ambrosini 1, N. Forgione 1, S. He 2, J.D. Jackson 3
1 University di Pisa, Dipartimento di Ingegneria Meccanica Nucleare e della Produzione, Via Diotisalvi 

2, 56126 Pisa, Italy, Tel. +39-050-2218073, Fax +39-050-2218065, 
E-mail: walter.ambrosini@ing.unipi.it 

2 University of Aberdeen, School of Engineering, Fraser Noble Building, Aberdeen AB24 3UE, United 
Kingdom, Tel. +44 (0) 1224 272799, Fax +44 (0) 1224 272497, 

E-mail: s.he@abdn.ac.uk 
3 University of Manchester, Manchester M13 9PL, United Kingdom, Tel +44(0)161 275 4307 

E-mail: jdjackson@manchester.ac.uk 

Abstract 

Based on previous and recent work on the subject, the paper summarizes the results obtained in the 
assessment of various CFD codes and models against experimental data related to heat transfer with 
fluids at supercritical pressure. The aim of the work is to summarise the lessons learned in this regard, 
drawing conclusions about model suitability. The results discussed address different codes, models, 
fluids and geometrical conditions. In particular, experiments with both water and carbon dioxide are 
considered, the FLUENT and the STAR-CCM+ commercial codes were used together with two 
different in-house codes adopting different k-E, k-co and k-T models. Experimental data related to 
circular and non-circular ducts are addressed. 

1. Introduction 

Heat transfer to supercritical fluids represents an important issue for the design of new generation 
nuclear reactors, making use of supercritical fluids as primary or secondary coolant. Models for the 
analysis of heat transfer and fluid dynamics are required for application in the prediction of the 
complex phenomena occurring owing to the changes of properties exhibited at the transition across the 
pseudo-critical temperature and even before this threshold. Heat transfer, in particular, shows 
phenomena of enhancement and deterioration that must be carefully considered with a view to keeping 
the surface temperature of heater rods of a nuclear reactor within reasonable limits. 

Reviews of experimental data available for comparison with models and engineering 
correlations have been published in recent years [1-3], with the aim of providing a sound basis for 
designing Generation IV reactors involving supercritical fluids. Actually, interesting studies in relation 
to heat transfer deterioration because of buoyancy or acceleration effects were performed decades ago 
[4-11]; this interesting body of older data is presently reconsidered in the new perspective of the 
present needs for nuclear reactor design, together with updated information being provided by recent 
studies (see e.g., [12-16]), for refining or validating engineering correlations and CFD models (see e.g., 
[18-23]). 

The Universities of Manchester, Aberdeen and Pisa cooperated in the last years in an effort 
devoted to assessing presently available CFD codes against relevant experimental data [23-26]. 
Various low-Reynolds models implemented in in-house and also commercial codes were considered, 
reaching meaningful conclusions about the present state-of-the-art in the field. The cooperation is still 
ongoing and producing new data to be provided to the scientific community in order to establish the 
present needs in terms of model improvement. 
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Abstract 

Based on previous and recent work on the subject, the paper summarizes the results obtained in the 
assessment of various CFD codes and models against experimental data related to heat transfer with 
fluids at supercritical pressure. The aim of the work is to summarise the lessons learned in this regard, 
drawing conclusions about model suitability. The results discussed address different codes, models, 
fluids and geometrical conditions. In particular, experiments with both water and carbon dioxide are 
considered, the FLUENT and the STAR-CCM+ commercial codes were used together with two 
different in-house codes adopting different k-ε, k-ω and k-τ models. Experimental data related to 
circular and non-circular ducts are addressed. 

1. Introduction 

Heat transfer to supercritical fluids represents an important issue for the design of new generation 
nuclear reactors, making use of supercritical fluids as primary or secondary coolant. Models for the 
analysis of heat transfer and fluid dynamics are required for application in the prediction of the 
complex phenomena occurring owing to the changes of properties exhibited at the transition across the 
pseudo-critical temperature and even before this threshold. Heat transfer, in particular, shows 
phenomena of enhancement and deterioration that must be carefully considered with a view to keeping 
the surface temperature of heater rods of a nuclear reactor within reasonable limits. 
 Reviews of experimental data available for comparison with models and engineering 
correlations have been published in recent years [1-3], with the aim of providing a sound basis for 
designing Generation IV reactors involving supercritical fluids. Actually, interesting studies in relation 
to heat transfer deterioration because of buoyancy or acceleration effects were performed decades ago 
[4-11]; this interesting body of older data is presently reconsidered in the new perspective of the 
present needs for nuclear reactor design, together with updated information being provided by recent 
studies (see e.g., [12-16]), for refining or validating engineering correlations and CFD models (see e.g., 
[18-23]).  
 The Universities of Manchester, Aberdeen and Pisa cooperated in the last years in an effort 
devoted to assessing presently available CFD codes against relevant experimental data [23-26]. 
Various low-Reynolds models implemented in in-house and also commercial codes were considered, 
reaching meaningful conclusions about the present state-of-the-art in the field. The cooperation is still 
ongoing and producing new data to be provided to the scientific community in order to establish the 
present needs in terms of model improvement. 
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The conclusions reached so far in the research are reported here to try to highlight the 
relevant lessons learned. 

2. Pis'menny et al. (2006) data for supercritical water 

A purposely developed in-house code was applied by Sharabi [24-25] in the prediction of experiments 
conducted by Pis'menny et al. [12] at the National Technological University of Ukraine. The 
experiments investigated turbulent heat transfer in vertical circular tubes for water in a gas-like state or 
affected by mixed convection in both upward and downward flows, at an operating pressure of 23.5 
MPa. The test section was made by thin stainless steel tubes with an inner diameter of 6.26 mm. 
Uniform heating by direct or alternating electric current was used and thermocouples were placed at 
the inlet and the outlet of the tube and along its outer surface to measure fluid and wall temperatures. 

The in-house code adopted solved the flow balance equations by different two-equation RANS 
models in axi-symmetric geometry using the finite volume technique. The turbulence models used 
were: the k-E models by Jones and Launder (JL) [27], Launder and Sharma (LS) [28], Lam and 
Bremhorst (LB) [29], Chien (CH) [30], Yang and Shih (YS) [31], Abe, Kondoh and Nagano (AKN) 
[32], the k-co model by Wilcox (WI) [33] and the k-T model by Speziale (SP) [34]. 

Figure 1 reports the typical behaviour shown by the models considered. In particular, the 
following considerations can be drawn from the presented data and the complete analysis is reported in 
references [24-25]: 
• all the models considered are reasonably able to simulate the observed heat transfer conditions in 

downward flow and in upward flow at low heat flux to mass flux ratio; 
• the k-E models are able to detect the occurrence of heat transfer deterioration when the wall 

temperature exceeds the pseudo-critical value; nevertheless, they tend to overestimate the wall 
temperature after deterioration, over-responding to the decrease in turbulence kinetic energy, and, 
furthermore, do not show a sufficient recovery after the temperature peak; 

• the k-co and k-T models exhibit a lower ability to capture deterioration, though the latter model does 
show deterioration, but very much delayed along the pipe length. 

As it will be shown later on, this situation is characteristic of the capabilities of models currently 
available and has been confirmed in the analysis of other data, with different fluids and geometries. 
The impression is that k-E models have to differing extents the right ingredients for predicting 
deterioration, though with a consistent overestimation of this effect. 

In relation to the causes at the root of the observed behaviour, it was noted that deteriorated 
heat transfer is predicted to be induced by laminarisation consequent to a decreased turbulence 
production by shearing. This is clearly shown in Figure 2, where the axial and radial distributions of 
velocity and turbulence kinetic energy are reported; it can be noted that the distortion of the velocity 
profile from the classical forced flow to mixed convection has a corresponding effect on turbulent 
kinetic energy, causing a big drop in its values close to the wall. This is at the root of heat transfer 
deterioration, shown in the corresponding plot of wall temperature in Figure lf. 

The same data were the subject of analyses by different models implemented in the STAR-
CCM+ code [35-36]. The results showed that the V2F [37] model has also a response similar to the 
ones of the low Reynolds number k-E models considered (Figure 3a,b); expectedly, models making use 
of wall functions (as the "All y+" one), are not able to reproduce the onset of deterioration. On the 
other hand, the standard "low-Re" k-E model implemented in the code [38] produced results similar to 
the ones observed from other similar models. 
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 The conclusions reached so far in the research are reported here to try to highlight the 
relevant lessons learned.  

2. Pis’menny et al. (2006) data for supercritical water 

A purposely developed in-house code was applied by Sharabi [24-25] in the prediction of experiments 
conducted by Pis’menny et al. [12] at the National Technological University of Ukraine. The 
experiments investigated turbulent heat transfer in vertical circular tubes for water in a gas-like state or 
affected by mixed convection in both upward and downward flows, at an operating pressure of 23.5 
MPa. The test section was made by thin stainless steel tubes with an inner diameter of 6.26 mm. 
Uniform heating by direct or alternating electric current was used and thermocouples were placed at 
the inlet and the outlet of the tube and along its outer surface to measure fluid and wall temperatures.  
 The in-house code adopted solved the flow balance equations by different two-equation RANS 
models in axi-symmetric geometry using the finite volume technique. The turbulence models used 
were: the k-ε models by Jones and Launder (JL) [27], Launder and Sharma (LS) [28], Lam and 
Bremhorst (LB) [29], Chien (CH) [30], Yang and Shih (YS) [31], Abe, Kondoh and Nagano (AKN) 
[32], the k-ω model by Wilcox (WI) [33] and the k-τ model by Speziale (SP) [34]. 
 Figure 1 reports the typical behaviour shown by the models considered. In particular, the 
following considerations can be drawn from the presented data and the complete analysis is reported in 
references [24-25]: 
• all the models considered are reasonably able to simulate the observed heat transfer conditions in 

downward flow and in upward flow at low heat flux to mass flux ratio; 
• the k-ε models are able to detect the occurrence of heat transfer deterioration when the wall 

temperature exceeds the pseudo-critical value; nevertheless, they tend to overestimate the wall 
temperature after deterioration, over-responding to the decrease in turbulence kinetic energy, and, 
furthermore, do not show a sufficient recovery after the temperature peak; 

• the k-ω and k-τ models exhibit a lower ability to capture deterioration, though the latter model does 
show deterioration, but very much delayed along the pipe length. 

As it will be shown later on, this situation is characteristic of the capabilities of models currently 
available and has been confirmed in the analysis of other data, with different fluids and geometries. 
The impression is that k-ε models have to differing extents the right ingredients for predicting 
deterioration, though with a consistent overestimation of this effect. 

In relation to the causes at the root of the observed behaviour, it was noted that deteriorated 
heat transfer is predicted to be induced by laminarisation consequent to a decreased turbulence 
production by shearing. This is clearly shown in Figure 2, where the axial and radial distributions of 
velocity and turbulence kinetic energy are reported; it can be noted that the distortion of the velocity 
profile from the classical forced flow to mixed convection has a corresponding effect on turbulent 
kinetic energy, causing a big drop in its values close to the wall. This is at the root of heat transfer 
deterioration, shown in the corresponding plot of wall temperature in Figure 1f. 
 The same data were the subject of analyses by different models implemented in the STAR-
CCM+ code [35-36]. The results showed that the V2F [37] model has also a response similar to the 
ones of the low Reynolds number k-ε models considered (Figure 3a,b); expectedly, models making use 
of wall functions (as the “All y+” one), are not able to reproduce the onset of deterioration. On the 
other hand, the standard “low-Re” k-ε model implemented in the code [38] produced results similar to 
the ones observed from other similar models. 

 



The 5m Int. Sym. SCWR (ISSCWR-5) 
Vancouver, British Columbia, Canada, March 13-16, 2011 

480 

W
al

l T
em

pe
ra

tu
re

, 0
C

 
W

al
l T

em
pe

ra
tu

re
, 0

C
 

W
al

l T
em

pe
ra

tu
r,

 O
C

 
460 

440 - 

420 - 

400 

380 

r  ♦ data-'
I AKN 

O CH 
❑ JL 
✓ LB 
A LS 

YS 
I> WI 

SP 

A 
A A 

• • 

0 20 40 60 80 

L/D 

a) upward flow, G=2193 kg/(m2s), 
q=433 kW/m2

, 391 °C 
600 600 

W
al

l T
em

pe
ra

tu
re

, 0
C

 

600 

560 

520 

480 

P060 

• data'
I AKN 

0 CH 
JL 
LB 
LS 
YS 
WI I> 

A A SP 
A • 

A 
• A • 

440 A 
A A

400 

560 

520 

480 

440 

• data
I AKN 
O CH 
❑ JL 
✓ LB 

—A— LS 
YS 

C. WI 
SP 

 J

A 

• 

A A

A 
• 

• 

100 

W
al

l T
em

pe
ra

tu
re

, 0
C

 

A A 

0 20 40 60 80 100 

UD 

b) upward flow, G=2193 kg/(m2s), 
q= 750 kW/m2, Tin =391 °C 

570 - 

540 - 

510 - 

480 - 

450 

400 420 

900 

800 

700 

600 

500 

400 

A data 
 AKN 

O CH 
❑ JL 

—V— LB 
A LS 

YS 
C. WI 

SP 

A A A

0 20 40 60 80 100 0 20 40 60 80 100 

L/D UD 

c) upward flow, G=2193 kg/(m2s), d) upward flow, G=2193 kg/(m2s), 
q=1172 kW/m2, Tin =393 °C) q= 750 kW/m2, Tin = 391 °C 

A data' 
AKN 

O CH 
O JL 
✓ LB 
A LS 

- YS 
E.— WI 

SP 
 J

W
al

l T
em

pe
ra

tu
re

, 0
C

 

600 

500 

400 

A data's
 AKN 
—0— CH 

❑ JL 
V LB 

—A— LS 
- YS 
—D.— WI 

SP 
 J

• 

300 300 

0 20 40 60 80 100 120 140 160 0 20 40 60 80 100 

UD UD 

e) upward flow, G=509 kg/(m2s), f) downward flow, G=509 kg/(m2s), 
q=390 kW/m2, Tin = 300 °C q=390 kW/m2, Tin = 300 °C 

Figure 1. Typical results obtained for Pis'menny et al. (2006) data by an in-house code [24] 
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Figure 2. Axial and radial distribution of velocity and kinetic energy for the case in Figure lf 
(Yang and Shih model, upward flow, G=509 kg/(m2s), q=390 kW/m2, T; 300 °C) [24] 
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Figure 3. Results obtained by the STAR-CCM+ code for Pis'menny et al. (2006) data 
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Later analyses on the same data by STAR-CCM+ showed that the inclusion of a model for the 
wall was relatively ineffective in improving the predicted behaviour [39], shedding light on the minor 
effect played by axial heat conduction along the wall on wall temperature (Figure 3c). Finally, a recent 
application to the same data of the SST k-co model [40] produced relatively poor results and a strong 
influence of the assumed turbulent Prandtl number, which was not noted with other models (Figure 
3d). 

3. Kim et aL (2005) data for supercritical carbon dioxide 

Kim et al. [13] made use of carbon dioxide at 8 MPa in a 1.2 m long test section heated by DC current 
and preceded by an adiabatic section of 0.8 m. The flow was upward and conditions of aided mixed 
convections were established in the channel. The geometry of the tubes varied, including circular, 
triangular and square cross section pipes with hydraulic diameters of 7.8, 9.8 and 7.9 mm, respectively, 
made of Inconel 625 with a thickness of 1 mm. Thermocouples were silver-soldered on the outer pipe 
surface every 30 mm along the heated length. The experimental conditions addressed in the simulations 
[25] involve an inlet temperature of 15 °C, a mass velocity of 314 kg/mks and heat fluxes of 20, 23 and 
30 kW/m2. The obtained results are shown in Figure 4 and Figure 5. 
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triangular and square cross section pipes with hydraulic diameters of 7.8, 9.8 and 7.9 mm, respectively, 
made of Inconel 625 with a thickness of 1 mm. Thermocouples were silver-soldered on the outer pipe 
surface every 30 mm along the heated length. The experimental conditions addressed in the simulations 
[25] involve an inlet temperature of 15 °C, a mass velocity of 314 kg/m2s and heat fluxes of 20, 23 and 
30 kW/m2. The obtained results are shown in Figure 4 and Figure 5. 

  
Figure 4. Results obtained by an in-house code for Kim et al. (2005) circular tube data [25] 

 

a) triangular channel     b) square channel 

Figure 5. Results obtained by the FLUENT code for Kim et al. (2005) non-circular tube data [26] 
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It can be noted that the use of an in-house code and FLUENT [41] confirmed previous findings 
about the capability of k-E models in predicting heat transfer deterioration even in 3D conditions and 
with a different fluid, but sometimes with a marked overestimate of wall temperature. The conclusions 
were extended also to other low-Re models (as the Cheng et al. [42] model, CHC; note that SAA has 
the same meaning as SP in previous plots). The intrinsic incapability of wall functions (the case 
labelled RNG since this k-E model was used in the bulk fluid) in detecting deterioration phenomena 
and the poor behaviour of the k-co and k-T models were also confirmed. 

4. Watts (1980) data for supercritical water 

Watts data [11] are the subject of an extensive work [43-46] being carried out in the frame of the IAEA 
CRP on "Heat Transfer Behaviour and Thermo-hydraulics Codes Testing for SCWRs". The interest of 
these data is in the broad range of conditions over which they were obtained, involving both upward 
and downward flow and showing deteriorated heat transfer also at temperatures well below the pseudo-
critical one. In this respect, these data added an interesting contribution to the understanding of model 
behaviour. 

Watts' experiments were conducted in a uniformly heated pipe, having a diameter of 25.4 mm and 
length of 2 m. A unheated length of 0.78 m was located upstream the test section. The operating 
pressure of the fluid was 25 MPa and the heat flux ranged from 175 to 400 kW/m2, with values of the 
inlet temperature equal to 150, 200, 250, 300 °C and inlet mass fluxes from 200 to 1000 kg/(m2s). A 
natural circulation loop was used to produce the flow and the test section was heated by electrical 
current. The inside tube temperatures were inferred by the measurement of the outside surface values, 
considering heat conduction in the pipe wall. 

In a first phase of the work [23, 43], the data were simulated extensively by the SWIRL code 
[44], allowing to test the performance of the Yang and Shih [31], the Abe, Kondo and Nagano [32] and 
the Launder and Sharma [32] models. This revealed again a general capability of these k-E models to 
quantitatively reproduce deteriorated heat transfer in upward flow at temperatures lower than the 
pseudo-critical one (see e.g., Figure 6). Considering the previous experience, obtained mainly in 
comparison with deteriorated conditions across the pseudo-critical threshold, this finding represented 
an interesting additional information. Despite the encouraging behaviour shown by models in such 
cases, quantitative inadequacies are still present even under non-deteriorated conditions related to 
upward flows, indicating an incomplete descriotion of turbulence effects; as already noted, downward 
flow seemed easier to reproduce (Figure 7). 

An interesting conclusion from the work is indicated by the results in Figure 8, which show a 
general deterioration of heat transfer in upward flow, with respect to pure forced convection conditions 
(calculated assuming zero gravity), and a general enhancement in downward flow. The work also 
confirmed the overestimation of wall temperature in deteriorated heat transfer cases in which the fluid 
temperature is crossing the pseudocritical threshold. A partial comparison of the results from SWIRL 
with those obtained by the STAR-CCM+ and the FLUENT codes, with available k-E models, 
confirmed these findings (Figure 9 and Figure 10), motivating a thorough application of these codes. 

At the time of writing, the work of systematic application of these two commercial codes is 
close to completion [45-46]. Some relevant results obtained by STAR-CCM+ are reported in Figure 11 
and Figure 12, confirming that k-E models are capable of providing quantitatively correct estimates of 
wall temperature for deteriorated heat transfer for temperatures below the pseudo-critical value, while 
the agreement is much worse when this limit is exceeded. On the other hand, the SST k-co model [40] 
seems unable to even detect the onset of deterioration in the cases addressed. Similar conclusions are 
reached using FLUENT, as shown in Figure 13, which illustrates again the typical behaviour of k-E 
models in predicting deterioration with wall temperatures below the pseudo-critical temperature. 
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cases, quantitative inadequacies are still present even under non-deteriorated conditions related to 
upward flows, indicating an incomplete descriotion of turbulence effects; as already noted, downward 
flow seemed easier to reproduce (Figure 7).  

An interesting conclusion from the work is indicated by the results in Figure 8, which show a 
general deterioration of heat transfer in upward flow, with respect to pure forced convection conditions 
(calculated assuming zero gravity), and a general enhancement in downward flow. The work also 
confirmed the overestimation of wall temperature in deteriorated heat transfer cases in which the fluid 
temperature is crossing the pseudocritical threshold. A partial comparison of the results from SWIRL 
with those obtained by the STAR-CCM+ and the FLUENT codes, with available k-ε models, 
confirmed these findings (Figure 9 and Figure 10), motivating a thorough application of these codes.  
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close to completion [45-46]. Some relevant results obtained by STAR-CCM+ are reported in Figure 11 
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Figure 6. Comparison between experimental and calculated inner wall temperature for Watts (1980) 
data obtained by the SWIRL code with different turbulence models [23] 
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Figure 7. Comparison between experimental and calculated inner wall temperature for Watts (1980) 
data obtained by the SWIRL code with different turbulence models [23] 
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energy along the channel as evaluated by STAR-CCM+ with standard Low-Re k-E model 
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Figure 13. Comparison between experimental and calculated inner wall temperature 
obtained using the FLUENT code with the YS model for upward flow [46] 

5. Conclusions 

The work jointly performed by the Universities of Manchester, Aberdeen and Pisa in the frame of their 
cooperation, starting with the PhD study of Medhat Sharabi [25] and continuing with the joint co-
tutoring of MSc and BSc students, has addressed a broad range of operating conditions. The result of 
this work is a meaningful picture concerning the present capabilities of CFD models in predicting heat 
transfer to supercritical fluids, clearly showing the areas requiring further improvement. 

In particular, it was found that: 
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obtained using the FLUENT code with the YS model for upward flow [46] 
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cooperation, starting with the PhD study of Medhat Sharabi [25] and continuing with the joint co-
tutoring of MSc and BSc students, has addressed a broad range of operating conditions. The result of 
this work is a meaningful picture concerning the present capabilities of CFD models in predicting heat 
transfer to supercritical fluids, clearly showing the areas requiring further improvement. 
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• low-Re k-E models generally have good capability in reproducing deteriorated heat transfer when 
the wall temperatures are below the pseudo-critical threshold; the mechanism acting in this case is 
clearly the laminarisation due to the reduction of turbulence production by shearing associated with 
the effects of buoyancy on the radial velocity profile; 

• the major flaw exhibited by k-E models is that they overestimate observed wall temperature when 
deterioration occurs with the temperature exceeding the pseudo-critical value at the wall and in the 
boundary layer; also in this case, the mechanism causing deterioration is mainly laminarisation, 
accompanied and made even worse by the sharp changes in fluid properties near the wall; 

• the reproduction of heat transfer in non-deteriorated cases by k-E models is sometimes excellent 
and sometimes poor; the reasons for this inconsistent behaviour are not completely understood and 
require further investigation concerning the details of the model assumptions adopted; 

• on the other hand, within the limits of the analyses performed, k-co models were not found to be 
effective enough in reproducing heat transfer deterioration; this conclusion will be better supported 
by work to be performed with more direct comparison with published data in which the SST k-co 
model was found to have better performance [20]. 

A further valuable result of the studies made by the three Universities in cooperation is the 
involvement of young students and researchers in joint work on these fascinating and challenging 
aspects of heat transfer in support to the design of Generation W reactors. 

6. References 

[1] Romney B. Duffey, Igor L. Pioro, Experimental heat transfer of supercritical carbon dioxide 
flowing inside channels (survey), Nuclear Engineering and Design, 235 (2005) 913-924. 

[2] Igor L. Pioro, Romney B. Duffey, Experimental heat transfer in supercritical water flowing 
inside channels (survey), Nuclear Engineering and Design, 235 (2005) 2407-2430. 

[3] Igor L. Pioro, Romney B. Duffey, Heat Transfer and Hydraulic Resistance at Supercritical 
Pressure in Power Engineering Applications, ASME Press, New York, 2007. 

[4] W.B. Hall, J.D. Jackson, Laminarization of a pipe flow by buoyancy forces. ASME paper 69-
HT-55, 1969. 

[5] J.D. Jackson, and W.B. Hall, Influence of Buoyancy on Heat Transfer to Fluids in Vertical 
Tubes under Turbulent Conditions, Turbulent Forced Convection in Channels and Bundles, 
Hemishpere, New York, 1979, PP. 613-640. 

[6] M.A. Styrikovic, T.K. Margulova, and Z.L. Miropol'skii, Problems in the development of 
designs of supercritical boilers, Thermal Engineering, 14, 1967, pp.5-9. 

[7] H.S. Swenson, J.R. Carver, and C.R. Kakarala, Heat transfer to supercritical water in smooth-
bore tubes. Journal of Heat Transfer, 87, 1965, pp.477-84. 

[8] K. Yamagata, K. Nishikawa, S. Hasegawa, T. Fujii, and S. Yoshida, Forced Convection Heat 
Transfer to Supercritical Water Flowing in Tubes, Int. J. Heat Mass Trans. 15, 1972, 2575-
2593 

[9] M. E. Shitsman, Impairment of the heat transmission at supercritical pressures, High 
Temperatures, vol. 1, no. 2, pp. 237-244, 1963. 

[10] A.P. Ornatsky, L.P. Glushchenko and E.T. Siomin. The research of temperature condition of 
small diameter parallel tubes cooled by water under supercritical pressure. In Proceedings of 
the 4th International Heat Transfer Conference. Paris-Versailles, France, 1970. Elsevier 
Pulishing Company. 

[11] M.J. Watts, Heat transfer to supercritical pressure water — Mixed convection with upflow and 
downflow in a vertical tube. PhD Thesis. University of Manchester, 1980. 

The 5th Int. Sym. SCWR (ISSCWR-5)  P060 
Vancouver, British Columbia, Canada, March 13-16, 2011 
• low-Re k-ε models generally have good capability in reproducing deteriorated heat transfer when 

the wall temperatures are below the pseudo-critical threshold; the mechanism acting in this case is 
clearly the laminarisation due to the reduction of turbulence production by shearing associated with 
the effects of buoyancy on the radial velocity profile; 

• the major flaw exhibited by k-ε models is that they overestimate observed wall temperature when 
deterioration occurs with the temperature exceeding the pseudo-critical value at the wall and in the 
boundary layer; also in this case, the mechanism causing deterioration is mainly laminarisation, 
accompanied and made even worse by the sharp changes in fluid properties near the wall; 

• the reproduction of heat transfer in non-deteriorated cases by k-ε models is sometimes excellent 
and sometimes poor; the reasons for this inconsistent behaviour are not completely understood and 
require further investigation concerning the details of the model assumptions adopted; 

• on the other hand, within the limits of the analyses performed, k-ω models were not found to be 
effective enough in reproducing heat transfer deterioration; this conclusion will be better supported 
by work to be performed with more direct comparison with published data in which the SST k-ω 
model was found to have better performance [20]. 

 A further valuable result of the studies made by the three Universities in cooperation is the 
involvement of young students and researchers in joint work on these fascinating and challenging 
aspects of heat transfer in support to the design of Generation IV reactors. 
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