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Abstract 

It is expected that the next generation of water-cooled nuclear reactors will operate at 
supercritical pressures (-25 MPa) and high coolant temperatures (350-625°C). In support of 
the development of SuperCritical Water-cooled Reactors (SCWRs), research is currently 
being conducted for heat-transfer at supercritical conditions. Currently, there are no 
experimental datasets for heat transfer from power reactor fuel bundles to the fuel coolant 
(water) available in open literature. Therefore, for preliminary calculations, heat-transfer 
correlations obtained with bare-tube data can be used as a conservative approach. This paper 
presents an analysis of experimental supercritical-water data and new supercritical heat-
transfer correlations, for water and carbon dioxide, developed as part of a larger project 
assessing the feasibility of Generation W SCWR concepts. 

1. Introduction 

SuperCritical Water-cooled nuclear Reactors (SCWRs) are high-pressure (-25 MPa) and high-
temperature (outlet temperatures up to 625°C) reactors that will operate above the 
thermodynamic critical point of water (22 MPa and 374°C) (see Figure 1) [1], [2]. As part of the 
Generation-IV International Forum (GIF), SCWR concepts are currently under development 
worldwide. Figure 2 outlines the difference in the operating conditions (pressures, temperatures 
and entropies) of current generation reactor systems in comparison to SCWRs. Compared to 
existing Pressurized Water Reactors (PWRs), SCWRs would involve increasing the coolant 
pressure from 10 — 16 MPa to about 25 MPa, the inlet temperature to about 350°C, and the outlet 
temperature to about 625°C. The coolant would pass through the pseudocritical region before 
reaching the channel outlet [1]. 

1.1 SCWR Concepts 

SCWRs can be divided into two subcategories: 1) Pressure-Vessel (PV) reactors, and 2) 
Pressure-Tube (PT) reactors. Currently, both Canada and Russia are working on the 
development of PT-reactor concepts. One of the main objectives for developing and utilizing 
SCWRs is that SuperCritical Water (SCW) Nuclear Power Plants (NPPs) offer an increased 
thermal efficiency, approximately 45 — 50%, compared to that of current generation NPPs (30 —
35%). Additionally, they allow for a decrease in capital and operational costs. 

Generation-IV reactor concepts (see Table 1) under development at AECL [3] and RDIPE [4] 
have a main design objective of achieving major reductions in unit energy cost relative to 
existing PWR designs [5]. This approach builds on using existing SCW experience in currently 
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operating fossil-fired thermal power plants. A major contribution to this energy cost reduction 
would result from boosting the outlet coolant temperature, thereby increasing the thermal 
efficiency of the NPP. A further benefit of using SCWRs is their ability to facilitate hydrogen 
co-generation, on an economical scale, through either thermochemical cycles or direct high-
temperature electrolysis. 
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Figure 1 Pressure-Temperature Diagram for 
Water in Critical Region [2]. 

Figure 2 Temperature-Entropy Diagram 
Comparison of Current Generation Nuclear 

Reactors and SCWRs [1]. 

The current Canadian SCWR concept includes a fuel channel comprised only of a pressure tube 
insulated internally, which would enable the pressure tube to operate at temperatures close to that 
of the moderator. This fuel-channel design would be used for supercritical water heating from 
350 to 625°C. A re-entrant fuel-channel design, allowing the pressure tube to operate at the 
SCW inlet temperature, might be used for a nuclear steam re-heat at subcritical pressures. The 
current heat-transfer evaluation has shown that PT SCWRs are feasible. A further study on 
conceptual thermal-design options for pressure-tube SCWRs can be found in [6]. 

1.2 Supercritical Fluids 

Supercritical fluids have unique properties [7], [8]. It is well established that thermophysical 
properties of any fluid, including water and carbon dioxide, experience significant changes 
within critical and pseudocritical regions. Beyond the critical point (22.1 MPa and 374.1°C for 
water and 7.38 MPa and 31.0°C for carbon dioxide) the fluid resembles a dense gas. Figure 3 
illustrates these variations for water passing through the pseudocritical point at 25 MPa, the 
proposed operating pressure of SCWRs. 
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Figure 1  Pressure-Temperature Diagram for 
Water in Critical Region [2]. 

Figure 2  Temperature-Entropy Diagram 
Comparison of Current Generation Nuclear 

Reactors and SCWRs [1]. 

The current Canadian SCWR concept includes a fuel channel comprised only of a pressure tube 
insulated internally, which would enable the pressure tube to operate at temperatures close to that 
of the moderator.  This fuel-channel design would be used for supercritical water heating from 
350 to 625°C.  A re-entrant fuel-channel design, allowing the pressure tube to operate at the 
SCW inlet temperature, might be used for a nuclear steam re-heat at subcritical pressures.  The 
current heat-transfer evaluation has shown that PT SCWRs are feasible.  A further study on 
conceptual thermal-design options for pressure-tube SCWRs can be found in [6]. 

1.2       Supercritical Fluids 

Supercritical fluids have unique properties [7], [8].  It is well established that thermophysical 
properties of any fluid, including water and carbon dioxide, experience significant changes 
within critical and pseudocritical regions.  Beyond the critical point (22.1 MPa and 374.1C for 
water and 7.38 MPa and 31.0C for carbon dioxide) the fluid resembles a dense gas.  Figure 3 
illustrates these variations for water passing through the pseudocritical point at 25 MPa, the 
proposed operating pressure of SCWRs.   
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The most significant changes in properties occur within ±25°C from the pseudocritical 
temperature (384.9°C at 25 MPa for Fig. 3). The National Institute of Standards and Technology 
(NIST) [9] Reference Fluid Properties (REFPROP) software was used to calculate these 
thermophysical properties. Crossing from high-density fluid to low-density fluid does not 
involve a distinct phase change at these conditions. Phenomena such as dry-out (critical heat 
flux) are therefore not applicable. However, at supercritical conditions, a Deteriorated Heat-
Transfer (DHT) regime may exist [1]. 
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Figure 3 Selected Properties of Supercritical Water at Pseudocritical Point [2]. 

Table 1. Major parameters of SCW CANDU reactor concept [3]. 

Thermal power, MW 2540 
Electric power, MW 1220 
Thermal efficiency, % 48 
Pressure, MPa 25 
Inlet temperature, °C 350 

Outlet temperature, °C 625 
Mass flow rate, kg/s 1320 
Number of fuel channels 300 
Number of fuel elements 43 
Maximum cladding temperature, °C 850 

In support of developing an SCWR, studies are being conducted into heat transfer at supercritical 
conditions using carbon dioxide as a modeling fluid as a less expensive alternative to using SCW 
and to aid in the improvement of fundamental knowledge of the transport processes and handling 
of supercritical fluids. Table 1 lists parameters of current PT-SCWR concepts being developed 
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by AECL (Canada). Preliminary parameters used for scaling nominal operating conditions of a 
generic SCWR to carbon dioxide-equivalent values are listed in Table 2. 

Table 2. Basic scaling parameters for fluid-to-fluid modeling at supercritical conditions. 

Pressure (P j = (P 

P cr CO2 P crl 

Bulk-fluid temperature (K) T T 

( T: CO2 =  T:  1 

Table 3 lists critical parameters and nominal operating parameters of the SCW CANDU reactor 
concept in water and CO2-equivalent values. 

Table 3. Critical and nominal operating parameters. 
Parameter Unit Water CO2

Critical parameters 
Critical pressure MPa 22.1 7.38 
Critical temperature °C 374.1 31.0 
Critical density kg/m3 315 468 

Operating parameters 
Operating pressure MPa 25 8.34 
Inlet temperature °C 350 20 
Outlet temperature °C 625 150 

This work investigates heat transfer at supercritical conditions, for water and using carbon 
dioxide as a modeling fluid, as part of a larger project assessing the feasibility of Generation IV 
SCWR concepts. Heat-transfer correlations for SCW and CO2 were developed. The results are 
provided and a comparison was conducted for several correlations. 

2. Existing Heat-Transfer Correlations 

Currently, there is just one SCW heat-transfer correlation for fuel bundles. This correlation was 
obtained for SCW flowing in a 7-element helically-finned bundle designed by Dyadyakin and 
Popov [1]. However, heat-transfer correlations for bundles are usually very sensitive to bundle 
design. Therefore, this correlation cannot be applied to other bundle geometries. To overcome 
this problem, a wide-range heat-transfer correlation based on bare-tube data can be developed as 
a conservative approach. This process is based on the fact that Heat Transfer Coefficients 
(HTCs) in bare tubes are generally lower than those in bundle flow geometries in which heat 
transfer is enhanced with appendages (endplates, bearing pads, spacers, buttons, etc.). 

A number of empirical generalized correlations, based on experimentally obtained datasets, have 
been proposed to calculate the HTC in forced convection for various fluids, including water, at 
supercritical pressures. These bare-tube-based correlations are available in various literature 
sources, however, differences in HTC values can be up to several hundred percent [1]. 
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The most widely used heat-transfer correlation at subcritical pressures for forced convection is 
the Dittus-Boelter correlation (1930) [10]. McAdams (1942) [11] proposed to use the Dittus-
Boelter correlation in the following form for forced-convective heat transfer in turbulent flows at 
subcritical pressures (this statement was based on the recent study by Winterton [12]): 

Nub = 0.0243 Ret'8Pri°,*4 (1) 

Later, Eq. (1) was also used at supercritical conditions. However, it was noted that Eq. (1) might 
produce unrealistic results within some flow conditions, especially near the critical and 
pseudocritical points, because it is sensitive to properties variations. Therefore, the Dittus-
Boelter correlation was used in the following form, for reference purposes: 

Nub = 0.023Reb 0.g. -rrb0.4 (2) 

Equation (2) is the most widely used interpretation of the original Dittus-Boelter correlation [14]. 
An analysis performed by Pioro and Duffey [1] showed that the Bishop et al. correlation was 
obtained within the same range of operating conditions as those for SCWRs. Bishop et al. 
(1964) [15] conducted experiments in SCW flowing upward inside bare tubes and annuli within 
the following range of operating parameters: pressure 22.8 — 27.6 MPa, bulk-fluid temperature 

g/m2s and heat flux 0.31 — 3.46 MW/m2. Their data for heat282 — 527°C, mass flux 651 — 3662 k 
transfer in tubes were generalized using the following correlation with a fit of ±15%: 

)0.43 

Nub = 0.0069 WV 1+ 2.4 D
661 p w

Pb X (3) 

Equation (3) uses the cross-sectional averaged Prandtl number. The last term in the correlation 
accounts for the entrance-region effect. In the present comparison, the Bishop et al. correlation 
was modified and used without the entrance-region term, because this term depends significantly 
on the particular design of the inlet of the bare test section: 

0.43 
. ( 

Nub = 0.0069 Reb .9 Prb 
66 p

—w  (4) 
Pb 

Swenson et al. (1965) [16] found that conventional correlations, which use the bulk-fluid 
temperature as a basis for calculating the majority of the thermophysical properties, did not work 
well. They suggested the following correlation in which thermophysical properties are based 
mainly on a wall temperature: 

0.231 

Nuw = 0.00459 Rew-- Prw
cy)/ — 0.613 ( p w 

Pb 
(5) 

Jackson (2002) [17] modified the original correlation of Krasnoshchekov et al. (1967) [18] (for 
details, see [1]), for forced-convective heat transfer in water and carbon dioxide at supercritical 
pressures, to employ the Dittus-Boelter type form for Nu 0 . Finally, the following correlation 

was obtained: 
0.3 — 

CP
Nub = 0.0183 Reb" 2 Prb" [ Pw 

Pb CA ) (6) 
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Where the exponent n is defined as following: 

n= 0.4 for T b <7;„ < Tpc and for 1.2Tpc < T b < Tw;

n=0.4+0.2H -1 
T 
T ) 

pc 

[n = 0.4 + 0.2 7'^' -1 
pc 

1- 5[ Tb -111
Tpc

for T b <T x  <7;„; and 

for T pc < T b < 1.2Tpc and T b < 

2.1 Comparison of Existing Heat-Transfer Correlations 

Figure 4 shows two sample experimental runs at supercritical pressures and provides 
experimentally measured HTC values. Also, a comparison between experimental and calculated 
HTCs using the Dittus-Boelter, modified Bishop et al., Swenson et al. and Jackson correlations 
are plotted in this figure. 

As can be seen from Figure 4, the Dittus-Boelter correlation provides a significant 
overestimation of the HTC values within the pseudocritical region, and thus, this correlation is 
unusable within a wide range of parameters. The modified Bishop et al. and Jackson correlations 
also tend to deviate substantially from the experimental data within the pseudocritical range. 
The Swenson et al. correlation provides a better fit for the experimental date than the previous 
three correlations within some flow conditions, but does not closely follow the experimental data 
within others [19]. 
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Where the exponent n is defined as following: 
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2.1 Comparison of Existing Heat-Transfer Correlations  

Figure 4 shows two sample experimental runs at supercritical pressures and provides 
experimentally measured HTC values.  Also, a comparison between experimental and calculated 
HTCs using the Dittus-Boelter, modified Bishop et al., Swenson et al. and Jackson correlations 
are plotted in this figure.   
 
As can be seen from Figure 4, the Dittus-Boelter correlation provides a significant 
overestimation of the HTC values within the pseudocritical region, and thus, this correlation is 
unusable within a wide range of parameters.  The modified Bishop et al. and Jackson correlations 
also tend to deviate substantially from the experimental data within the pseudocritical range.  
The Swenson et al. correlation provides a better fit for the experimental date than the previous 
three correlations within some flow conditions, but does not closely follow the experimental data 
within others [19]. 
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Figure 4  Temperature and HTC (Experimental and Calculated Values) Profiles along Heated 
Length of Bare Vertical Tube: (a) G = 1500 kg/m2s and q = 884 kW/m2; (b) G = 500 kg/m2s     

and q = 335 kW/m2 [19]. 
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It should be noted that all heat-transfer correlations presented in this paper are intended only for 
use at normal and Improved Heat-Transfer (IHT) regimes. None of the presented correlations 
can be used for the HTC prediction within the DHT regime. A more thorough discussion and 
comparison of heat-transfer correlations can be found in [1]. 

The majority of the reviewed empirical correlations were proposed in the 1960s and 1970s, when 
experimental techniques were not at the same level (i.e., advanced level) as they are today. Also, 
thermophysical properties of water have since been updated (for example, a peak in thermal 
conductivity in critical and pseudocritical points, within a range of pressures from 22.1 to 25 
MPa, was not officially recognized until the nineties [1]). Thus, this further emphasizes the 
necessity of developing a new or an updated correlation based on a new set of heat-transfer data 
and the latest thermophysical properties of water [9] within the SCWRs operating range. 

3. Updated Heat-Transfer Correlation for SCW 

3.1 Experimental Data 

The experimental SCW data used in the current paper were obtained at the State Scientific 
Center of Russian Federation — Institute for Physics and Power Engineering Supercritical-Test 
Facility (Obninsk, Russia) [20]. This set of data was obtained within operating conditions close 
to those of SCWRs including a hydraulic-equivalent diameter. The supercritical CO2 data was 
obtained at the MR-1 loop at the Thermalhydraulics Branch at Chalk River Laboratories. Details 
of the experimental set-up and procedures can be found in [2] and [21]. 

3.2 Data Analysis 

The objective of this study was to develop updated heat-transfer correlations for the normal and 
improved heat-transfer regimes. Therefore, data points within the DHT region were removed 
from the datasets (for details, see Figure 7). This region is subject to future investigations. Also, 
the very first and last points of most data runs were removed from the supercritical water dataset. 
Temperatures at these outlying points were likely affected with the test-section clamps, which 
were at a lower/higher temperature than the heated part of tube. 

3.3 Developing the Correlations 

It is well established that the general form of a correlation is as follows: 

Cly = co x tp t2 c2 .. 1 cn
(7) 

where Co is the constant, t represents the various parameters that affect heat transfer and Cn
represents the exponents. 

In order to obtain a general empirical form of an equation governing HTCs, a dimensional 
analysis was conducted. A review of trends in correlating heat-transfer data at supercritical 
pressures determined that there are nine parameters affecting heat transfer [1] (for details, see 
[19]). The Buckingham 17-Theorem [22], using dimensionless pi-terms, was chosen for this 
analysis. This theorem is based on dimensional homogeneity, in which dimensionless pi-terms 
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where Co is the constant, t represents the various parameters that affect heat transfer and Cn 
represents the exponents.   

In order to obtain a general empirical form of an equation governing HTCs, a dimensional 
analysis was conducted.  A review of trends in correlating heat-transfer data at supercritical 
pressures determined that there are nine parameters affecting heat transfer [1] (for details, see 
[19]).  The Buckingham П-Theorem [22], using dimensionless pi-terms, was chosen for this 
analysis.  This theorem is based on dimensional homogeneity, in which dimensionless pi-terms 
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can be formed from the correlation variables. Thus, the following expression was produced for 
HTCs as a function of the identified heat-transfer parameters: 

HTC= Pw, Pb Pw, Pb kw, kb ,Cp (8) 

The resulting relationship based on this analysis is as follows: 

H1= f (112, 113, 114, 11.5, H6) , (9) 

Through consideration of the primary dimensions, six unique dimensionless H-terms were 
determined. The resulting relationship is given below: 

Nub = C • Re n2 Pr Hvk b b 
Pb Pb kb (10) 

Equation (10) provided a starting point for the development of a correlation, where HTC can be 
calculated from the following equation: 

HTC = Nu • kb 

D hY 

where Dhy and kb denote the hydraulic-equivalent diameter and thermal conductivity of water, 

respectively. The various coefficients for the resulting relationship needed to be determined for 
the final correlation. 

As a result of the experimental data analysis described, the following preliminary correlation for 
heat transfer to supercritical water was obtained. 

0.518 

Nub = 0.0053 Rer4K•
b0.654 p w

Pb

To finalize this correlation, the complete set of primary data and Eq. (12) were fed into the 
SigmaPlot Dynamic-Fit Wizard to perform final adjustments. The fmal correlation is as follows: 

1564 

Nub = O.0061 Rer" P 
rb0.684 p w

Pb 

(12) 

(13) 
The test matrix shown in Table 4 provides the range of applicability for the developed 
correlation. This matrix is the result of comparison with Kirillov et al. [20] experimental data in 
addition to a comparison with other datasets for supercritical water. 

Table 4 Test Matrix for Developed Correlation (Eq. (13)). 
Pressure, MPa Heat Flux, kW/m2 Mass Flux, kg/m2s Diameter, mm 

22.8 — 29.4 70 —1250 200 —1500 3 — 38 

Even though the final coefficients slightly deviate from the preliminary correlation, both 
correlations fit the data in nearly the same manner. Figure 5 provides scatter plots of the 
experimentally obtained HTC values versus the calculated HTC values for each of the above 
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can be formed from the correlation variables.  Thus, the following expression was produced for 
HTCs as a function of the identified heat-transfer parameters:  
 

HTC = f (D , ρw , ρb , µw , µb , kw , kb , cp , V)   (8) 
 

The resulting relationship based on this analysis is as follows: 
 

Π1 = f (Π2, Π3, Π4, Π5, Π6) ,   (9) 
 
Through consideration of the primary dimensions, six unique dimensionless П-terms were 
determined.  The resulting relationship is given below: 
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Equation (10) provided a starting point for the development of a correlation, where HTC can be 
calculated from the following equation:  
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HTC

, (11) 
where hyD  and bk  denote the hydraulic-equivalent diameter and thermal conductivity of water, 

respectively.  The various coefficients for the resulting relationship needed to be determined for 
the final correlation. 
 

As a result of the experimental data analysis described, the following preliminary correlation for 
heat transfer to supercritical water was obtained. 

518.0
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To finalize this correlation, the complete set of primary data and Eq. (12) were fed into the 
SigmaPlot Dynamic-Fit Wizard to perform final adjustments.  The final correlation is as follows: 
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b 0.0061
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The test matrix shown in Table 4 provides the range of applicability for the developed 
correlation.  This matrix is the result of comparison with Kirillov et al. [20] experimental data in 
addition to a comparison with other datasets for supercritical water. 
 

Table 4  Test Matrix for Developed Correlation (Eq. (13)). 
Pressure, MPa Heat Flux, kW/m2 Mass Flux, kg/m2s Diameter, mm 

22.8 – 29.4 70 – 1250 200 – 1500 3 – 38 
 
Even though the final coefficients slightly deviate from the preliminary correlation, both 
correlations fit the data in nearly the same manner.  Figure 5 provides scatter plots of the 
experimentally obtained HTC values versus the calculated HTC values for each of the above 
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mentioned correlations. The final correlation (Eq. (13), (Mokry et al. correlation) has an 
uncertainty of about ±25% for HTC values and about ±15% for calculated wall temperature. 
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Figure 5 Comparison of Data Fit (Eqs. (12) and (13)) with Experimental Data: (a) for Heat 
Transfer Coefficient and (b) for wall temperature [19]. 

In order to evaluate the accuracy of the derived correlation, a comparison of the experimental 
data with the calculated HTC profiles, using the modified Bishop et al., Dittus-Boelter and the 
derived correlations was conducted and is shown in Figure 6 and 7. As can be seen from these 
graphs, neither the modified Bishop et al. nor the Dittus-Boelter correlations provide a good fit 
for the experimental data, whereas the final Mokry et al. correlation (Eq. (13)) fits the data well 
and follows trends closely. A comparison between the Mokry et al. correlation (Eq. (13)) and 
calculations using the CFD Code FLUENT-6.0 can be found in [23]. 
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mentioned correlations.  The final correlation (Eq. (13), (Mokry et al. correlation) has an 
uncertainty of about ±25% for HTC values and about ±15% for calculated wall temperature. 
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An analysis of the plots in Figures 6 and 7 (for more details, see [19]) showed that in general, the 
final correlation (Eq. (13)) appeared to best fit the general data trends. Deviations in the 
calculated HTC values from the experimentally determined values were found, for the most part, 
at the test section inlet. Within this area, however, the flow was likely subject to an entrance 
effect. There were also slight deviations within the pseudocritical range; however, the most 
pronounced difference occurred only at data runs with lower mass flux values. 

Nevertheless, the derived correlation (Eq. (13)) showed the best fit for the experimental data 
within a wide range of flow conditions. This correlation has an uncertainty of about ±25% for 
HTC values and about ±15% for calculated wall temperature. For the final verification of the 
correlation, a comparison with other datasets was completed (Figures 8 and 9). From the 
presented figures, it can be seen that the updated correlation (Eq. (13)) closely represents the 
experimental data and follows trends closely, even within the pseudocritical range. 
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4. Updated Heat-Transfer Correlation for SCCO2 

Similarly, for the supercritical CO2 correlation the following preliminary correlation for heat 
transfer to supercritical carbon dioxide was obtained by the same method: 

0.47 
Nub= 0.0345 Reb'77 17 Prh - 

0. [p w
(14) 

Pb 
To finalize the development of the correlation, the complete set of primary data and Eq. (14) 
were fed into the SigmaPlot Dynamic Fit Wizard to perform the final adjustments. The final 
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To finalize the development of the correlation, the complete set of primary data and Eq. (14) 
were fed into the SigmaPlot Dynamic Fit Wizard to perform the final adjustments.  The final 
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correlation is as follows: 

Nub = 0.0121Reb' Prb 86 23 w 

Pb 

Figure 10 shows a scatter plot of the calculated Nu versus the experimental Nu according to Eq. 
(15). The data lie along a 45-degree straight line with a spread of ± 50%. Accounting for the 
relatively high uncertainty, a more thorough analysis of the experimental data is required. 

)0.59 

(15) 

In order to evaluate the accuracy of the derived correlation, (Eq. (15), Mokry and Pioro 
correlation) a comparison of the experimental data with the calculated HTC profiles, using the 
Bringer and Smith correlation (1957) [26], Krasnoshchekov et al. correlation (1964) [18], 
Jackson correlation (2001) [27] and Swenson correlation (1965)[16] was conducted and is shown 
in Figures 11 and 12. For further details, see [21]. 

From Figures 11 and 12, it can be seen that the Jackson correlation tends to over predict HTC 
values in the pseudocritical region. Similarly, the Krasnoshchekov et al. correlation tends to 
under predict HTC values in the pseudocritical region. For lower mass flux (1000 kg/m2s) the 
Bringer and Smith correlation, Swenson et al. correlation and Mokry and Pioro correlation all 
followed the general data trends. However, at higher mass flux (2000 kg/m2s) both the Bringer 
and Smith and Swenson et al. correlations began to slightly over predict HTC values, whereas 
the Mokry and Pioro correlation still appears to closely follow the data trends. 

Thus, despite the relatively high uncertainty, the obtained correlation for forced-convective heat 
transfer to supercritical carbon dioxide in a bare vertical tube with upward flow showed a 
reasonable fit for the analyzed dataset. This correlation can be used for future comparison with 
other independent datasets and for verification of scaling parameters between water and CO2. 
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correlation is as follows: 
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Figure 10 shows a scatter plot of the calculated Nu versus the experimental Nu according to Eq. 
(15).  The data lie along a 45-degree straight line with a spread of ± 50%.  Accounting for the 
relatively high uncertainty, a more thorough analysis of the experimental data is required. 
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correlation) a comparison of the experimental data with the calculated HTC profiles, using the 
Bringer and Smith correlation (1957) [26], Krasnoshchekov et al. correlation (1964) [18], 
Jackson correlation (2001) [27] and Swenson correlation (1965)[16] was conducted and is shown 
in Figures 11 and 12.  For further details, see [21]. 
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and Smith and Swenson et al. correlations began to slightly over predict HTC values, whereas 
the Mokry and Pioro correlation still appears to closely follow the data trends.   
 
Thus, despite the relatively high uncertainty, the obtained correlation for forced-convective heat 
transfer to supercritical carbon dioxide in a bare vertical tube with upward flow showed a 
reasonable fit for the analyzed dataset.  This correlation can be used for future comparison with 
other independent datasets and for verification of scaling parameters between water and CO2. 
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temperatures below, at, or above the pseudocritical temperature. The obtained correlation for 
forced convective heat transfer to supercritical water in a bare vertical tube showed a good fit 
(±25% for heat transfer coefficient) for the analyzed dataset. In addition, the calculated wall 
temperatures resulted in a more accurate fit for the analyzed dataset (±15%). 

An experimental dataset was analyzed and a heat-transfer correlation for supercritical CO2 was 
also developed. In order to evaluate the accuracy of the derived correlation, a comparison of the 
experimental data with the calculated HTC profiles, using the Bringer and Smith correlation 
(1957), Krasnoshchekov et al. correlation (1964), Jackson correlation (2001) and Swenson 
correlation (1965) was conducted. The obtained correlation for forced-convective heat transfer 
to supercritical carbon dioxide in a bare vertical tube with upward flow showed a reasonable fit 
for the analyzed dataset. 

Therefore, the derived correlations can be used for preliminary HTC calculations in SCWR fuel 
bundles as a conservative approach, for SCW heat exchangers, for future comparison with other 
datasets, for verification of computer codes and scaling parameters between SCW and modelling 
fluids. 
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temperatures below, at, or above the pseudocritical temperature.  The obtained correlation for 
forced convective heat transfer to supercritical water in a bare vertical tube showed a good fit 
(±25% for heat transfer coefficient) for the analyzed dataset.  In addition, the calculated wall 
temperatures resulted in a more accurate fit for the analyzed dataset (±15%).   
 
An experimental dataset was analyzed and a heat-transfer correlation for supercritical CO2 was 
also developed.  In order to evaluate the accuracy of the derived correlation, a comparison of the 
experimental data with the calculated HTC profiles, using the Bringer and Smith correlation 
(1957), Krasnoshchekov et al. correlation (1964), Jackson correlation (2001) and Swenson 
correlation (1965) was conducted.  The obtained correlation for forced-convective heat transfer 
to supercritical carbon dioxide in a bare vertical tube with upward flow showed a reasonable fit 
for the analyzed dataset. 
 
Therefore, the derived correlations can be used for preliminary HTC calculations in SCWR fuel 
bundles as a conservative approach, for SCW heat exchangers, for future comparison with other 
datasets, for verification of computer codes and scaling parameters between SCW and modelling 
fluids. 
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