
The 5ft Int. Sym. SCWR (ISSCWR-5) P042 
Vancouver, British Columbia, Canada, March 13-16, 2011 

LOOK-UP TABLE ESTABLISHMENT OF SUPERCRITICAL WATER HEAT 
TRANSFER IN VERTICAL UPWARD FLOW AND TUBE-SIZE EFFECT 

INVESTIGATION 

X. Liul, B. Kuangl, C. Nil, and X. Chengl

1 School of Nuclear Science and Engineering, Shanghai Jiaotong University, Shanghai, China 

Abstract 

The paper describes the derivation of a supercritical water heat transfer look-up table, which may be 
used for predicting the heat transfer behavior (wall temperature) for supercritical water upward flow 
in vertical tubes. With an exhaustive open-literature-reported test data collection of vertically 
upward-flowing water heat transfer under supercritical pressures in vertical tubes, related evaluation 
on supercritical water heat transfer characteristics is performed. With reasonable data screening and 
processing, a comparatively small look-up table of supercritical water heat transfer in vertical tubes 
is constructed by applying the techniques which has ever been used in CHF look-up table 
development. Further, assessment of the look-up table and several correlations are carried out and 
delivered. Meanwhile, based on the established look-up table, tube size effect on supercritical water 
heat transfer in vertically upward flow is preliminarily correlated and investigated. With the 
increase of test data in various other practical engineered regimes, the look-up table is expected to 
be further extended. 
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1. Introduction 

Based on the advantage of relatively high operation thermodynamic parameters, supercritical 
water-cooled reactor (SCWR) is expected to achieve high efficiency up to 45-50%, which 
demonstrates its obvious attraction for nuclear power industry. Among the challenges for SCWR 
design, operation and safety assessment, the unique heat transfer characteristics of supercritical 
fluid under certain conditions, such as flow flux, heat flux and channel geometries, remain to be a 
fundamental subject that needs extensive investigation. When water works at above critical pressure, 
however, it is characterized by extremely nonlinear variation of all properties in the vicinity of 
pseudo-critical line which is defined by the maximum of specific heat for pressures above the 
critical value. Therefore, knowledge of heat transfer characteristics of water in heating ducts at 
supercritical pressure conditions becomes one of the key fundamental issues for the present 
preliminary development stage of SCWR. 

Up to now, fairly many tests on supercritical fluid heat transfer within several geometries have been 
conducted among which those for vertical upward flow are the most common. Various predictive 
correlations are derived, mainly using empirical approaches ([1], [2], [3], [4]) and having relatively 
limited range of data validity for each correlation. As reviewed by Cheng and Schulenberg ([5]) and 
by Pioro and Duffey ([6]), most correlations, among others, are of Dittus - Boelter type, in which 
correction factors accounting significant effect of transverse/radial property variations between bulk 
and wall surface is used. However, due to extreme complexity of factors affecting heat transfer for 
various conditions, most of such empirical correlations still can not meet acceptable accuracy 
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requirement within the parametric range far beyond. The current proliferating prediction correlation 
deduction status itself reflects the lack of understanding on heat transfer of supercritical fluid for the 
present and makes it rather difficult to choose one suitable correlation in specific application. Some 
authors made efforts to cover more wide a parametric range in their correlation development. By 
identifying as comprehensive controlling mechanisms as possible and applying certain statistical 
processing method, Kuang, Zhang and Cheng ([7]) developed a wide-ranged correlation for SCW 
heat transfer of vertically upward flow in tubes. Their correlation is based on over 8000 data points 
collected in open literature. Moreover, in the framework of recent development of SCWR, 
application of system analysis codes for system design and safety analysis is on the schedule. Since 
many correlations applied are based on local parameters, even on system parameters, it is inevitable 
for us to face the problem of iteration when they are applied in simulation and calculation codes. 

Moreover, with more and more parameters included in the correlations for accurate prediction, they 
are on the one hand too complicated in form and inefficient in calculation, on the other hand might 
lead to challenges on convergence. For simplifying correlation structure, Cheng et al ([8]) proposed 
a simplified method for heat transfer prediction of supercritical fluids in circular tubes. However, 
for comprehensive validity of the correlations in a wide-spanning parametric space, there is still a 
long way to go. 

To overcome above-mentioned problems in heat transfer prediction through various empirical 
correlations, esp. for code development application, a way, namely Look-Up Table (LUT) method, 
which provides simple mapping relations between SCW heat transfer characteristic quantities and 
controlling parameters seems to be a good choice. It has been successfully applied for CHF 
prediction in several computer codes such as CATHENA, CATHARE, RELAP5/MOD3, etc ([9]). 
Besides its high accuracy and wide range of parameters, it is simple to use and easy to extend for 
further test data added. This enlightens one rather a good approach in pragmatically predicting 
SCW heat transfer features in a wide parametric range, meanwhile, with acceptable accuracy. 

As for SCW heat transfer LUT development, Loewenberg et al ([10]) has for the first time practiced 
in studying on the construction a look-up table for the condition of vertical upward flow of 
supercritical water in smooth tubes. In the pioneering work of Loewenberg et al, rather detailed 
discussion on the applicability of SCW LUT has been presented. On the basis of dimensional 
analysis, Loewenberg suggested that mass flux, pressure, tube diameter and bulk enthalpy be 
selected as primitive variables for construction of the wall temperature LUT framework. While 
developing the LUT for SCW heat transfer, Leowenberg et al adopted, under certain selection 
criteria, 5744 test data points of vertically upward water flow in different parameter regimes of 
mass flux, heat flux, pressures and tube diameters. 

It is necessary to mention that LUT method, as stated by Leowenberg et al, is usually applied for 
describing local phenomena. Therefore, they excluded data of deteriorated heat transfer (DHT) 
from the database for LUT establishment, following Jackson's criterion ([10]). Principally this is 
the case. However, with exclusion of DHT data, applicability is limited in possible relatively 
wide-ranged use of LUT in thermal-hydraulic design and analysis of SCWR. Actually, such kind of 
data is possible to be included in the formation of LUT to predict DHT mode for the reasons which 
are to be discussed in following part of the paper. 

Moreover, in the process of LUT formation, Leowenberg et al applied a "best-correlation" method 
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for interpolation of some grid points in making the LUT. This is to a extent a possible approach, for 
it is based on existed mechanistic achievement in correlation development and reflects somewhat 
controlling effects and factor interactions on SCW heat transfer such as heat flux, mass flux, bulk 
enthalpy, pressure etc. However, from viewpoint of the authors, it still seems to have not made fully 
advantages of the information provided by experimental data itself. Instead test data acts only as 
criterion that judge the accuracy of certain correlation in specific range. And as stated by 
Lowenberg, "in some cases, correlations which are outside their range of validity showed even 
better predictions than correlations within their recommended range".([10]) Some confusion might 
still rise here about interpolation, though it turns out to make no significant problem It is suggested 
in this paper that other systematic interpolation or regression method which mainly based on 
experimental data without any prior trend applied in the making of LUT. 

In this paper, based on open-literature test data collection, the authors' practice on derivation of a 
new supercritical water heat transfer LUT for upward flow in vertical channels is presented, along 
with related accuracy assessment. Size effect is preliminarily discussed as well. 

2. Data collection and processing for LUT 

2.1 Design of LUT framework 

It has been pointed out by Loewenberg ([10]) that, after dimensional analysis, a lot of 
dimensionless parameters have to be introduced for complete description of SCW heat transfer, 
considering extremely nonlinear variation of properties near the pseudo-critical line which causes 
very complex heat transfer features. This means theoretically tremendous experiments are needed to 
adjust the constants for perfect correlations. Fortunately, these numerous dimensionless parameters 
are actually expressed by very limited physical parameters. Therefore, Loewenberg (2007) 
recommended 5 dimensional parameters for prediction of heat transfer in vertical up-flow of 
supercritical water in smooth tubes, namely, mass flux G, heat flux q, pressure p, bulk enthalpy H, 
and tube diameter d. So Loewenberg's LUT takes the form as Table 1. 

Table 1. Loewenberg's sample LUT 

p J BulkeMhalpy(1,ftg) 

0,81.9' ,̀03, 7.6,N1P,00.“20)14001600180019002000205021002150220022502300240025002700 

Wall tempentlure (C) 
1000 300 24 S 29S 337 366 334 387 391 301 391 392 303 394 396 401 400 433 
1000 300 24 In MX 337 367 335 383 391 302 392 392 393 395 307 402 410 4M 
IMO 300 24 15 302 339 369 336 383 393 303 393 394 395 396 308 404 412 437 
1000 100 ,4 1co 14n 17n 136 100 104 104 104 104 105 107 100 40i 411 41R 
1000 300 25 S 29S 337 367 336 390 393 394 395 396 397 399 401 406 414 438 
1000 300 25 10 30C 338 368 336 390 393 395 396 307 393 399 401 407 415 439 
IMO 300 25 15 302 339 369 337 391 395 396 397 398 399 401 403 408 417 441 
IOW 300 2S 20 30 341.370.333 392.396.397 398.399 400 401.404 409.418.443 
2250 1200 22.5 8 32E 362.388.396 400.403.404 405.406 408 411.415 424.430.462 
2250 1200 22.5 10 331 364.390.403 403.409.409 409.411 413 417.420 426.432.464 
22 50 1200 22.5 15 33C 366.393.400 405.407.408 408.409 411 414.413 430.436.470 
2250 1200 22.5 20 333 368.393.393 401.405.406 407.407 408 412.416 426.440.474 
2250 1200 23.5 8 32f 361.338.397 402.404.406 407410 41 1 414417 423.434.466 
2250 1200 23.5 10 326 363.390.401 407.410.411 412.413 415 417419 425.437.469 
2250 1200 23.5 15 33C 366.393.401 406.409.410 411.413 414 417. 420 420.441.474 
2250 1200 23.5 20 KO 360 394 400 404 407 409 41 1 412 415 417 421 432 444 473 

In this paper, we adopt the same structure as Loewenberg's, only that tube diameter d is not chosen 
as one of the dimensions of LUT. A close look at the collected test data shows that they are not 
well-distributed on tube diameter, though we have data on altogether 9 tube diameters. Therefore, 
introduction of d dimension is considered unfavorable for accuracy of present LUT. Hence, for each 
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specific diameter a table is made, one of the tables which contains relatively enough and 
well-distributed data and the d value is close to practical SCWR core channel, is considered as a 
"main LUT". When predicting heat transfer for a diameter other than the main table, one might 
either interpolate among main LUT and tables of neighboring diameters (for the present), or 
multiply the main LUT prediction with a diameter modifying factor, if possible. 

It should be also mentioned that the main LUT is, for the present, a local-concept-based primitive 
Tw- (G, q, p, I-I) type table applicable for limited conditions. The present main LUT alone might not 
be considered as the final table for all practical and more complex applications. Instead, it is 
intended to be used as a basic table rather than an independent, integral one, which needs further 
development of multipliers accounting for such other effects as those of tube diameter, rod buddle 
geometry, power shape, boundary layer changes from inlet and spacers, etc. Unfortunately, current 
test data are still far from sufficient for developing these multipliers. However, the authors believe 
that this problem will be gradually solved with further tests conducted. 

Tables for other diameters are also completed with the same method and using the same p, G, q, hb 
grids, which might provides convenience for interpolations between tube sizes before proper 
diameter modifying multiplier is available. Yet since data for some of the tables other than the main 
one are relatively less or poorly parametric distributed, improvement on their accuracy and 
applicable range is open for further data supplement. 

Anyway, the tables of different diameters are for the present given as appendix tables for 
accounting tube diameter effect in this paper, and thus do we design the task of an open-type LUT 
group development for further extension. 

2.2 Data preparation 

Through open literature survey and data collection, a databank which consists of heat transfer data 
of water under various conditions is implemented, in which test data for vertical upward flow of 
supercritical water in smooth tubes for the present LUT are included. Altogether 11564 data from 
11 publications ([2-4], [12-19]) are selected, which are listed in Table 2. Parametric distribution of 
the data for water heat transfer of vertical upward flow under supercritical pressures is overviewed 
in Figures 1 and 2. In summary, working condition of selected data ranges: pressure: 22.5 — 31.03 
MPa; mass flux: 407 — 3500 kg/m2s; heat flux: 157.6 — 2000 kW/m2; bulk enthalpy: 72.73 — 3084.6 
kJ/kg; tube inner diameter: 7 — 26 mm. 

Table 2. Source of selected data 

No. Authors Number of data 
1 Ackerman 163 

2 Swenson 157 

3 Hu 227 

4 Zhu 89 

5 Yamagata 253 

6 Griem 166 

7 Shitsman 11 

8 Vikhrev 281 
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Figure 2. q, p distribution on the bulk enthalpy range of the collected data 

2.3 Data Screening 

Considering data reliability for the LUT making and various conditions of the tests carried out by 
different authors, not all the selected data can be used for LUT construction. The following 
procedure is followed for data screening: 

• Data duplication checking: Limited number of duplicated data are identified and 162 such 
data are simply removed. 

• Heat balance checking: All experimental data are checked for consistency in heat balance, 
following the criterion as 

q•(ndL)
  1.0<_0.03 
(Haw, — / „). G • (71- d 2 14) 

(1) 

with which 191 data are dropped. 

• Inlet effect checking: The present LUT describes heat transfer in fully developed flow. Inlet 
effect which is to be ignored or left for inlet effect multiplier should not be considered in this table. 
Therefore, using the following criterion 

xld> 50 (2) 

447 data are eliminated. 

• About DHT data: Other than Loewenberg's simply removing, DHT data are included in 
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construction of the present look-up table. 

Detailed survey of the existed DHT mechanism studies (eg. [11], [20]) shows that strong buoyancy 
effect, among some other factors, contribute most to DHT onset. Several successful CFD 
simulations of DHT conditions (both first and second peak of wall temperature) applying certain 
low-Reynolds turbulence model ([21], [22]) also indicate that DHT from buoyancy effect basically 
originates from specific near-wall turbulence production law and related turbulence structures that 
cause local laminarization. The present data after screening are all under conditions of fully 
developed flow (large length - to - diameter ratio) with uniform heating and thin tube wall. Thus, 
local parameters are considered to dominate heat transfer feature for the present test conditions, 
even for DHT. The present LUT development is based on a local concept. For heat transfer under 
conditions other than the above-mentioned ones, multipliers accounting for size (hydraulic), wall 
dynamics, heated length and non-uniform heating effects, etc. (and even for bundle and grid spacer 
effects) are expected to be developed to modify the present LUT predictions. From this viewpoint, 
DHT data are preserved. 

Therefore, through above-mentioned data screening, number of data for LUT construction is 
reduced to 10764. That is, 93% of the total data are preserved for further research. 

2.4 Data smoothing 

Some of the data in databank are questionable for random error which is known as data noise or 
data scatter. Therefore, experimental data with great random error should be smoothed by a suitable 
smoothing method. A simple mathematical method, which is introduced by Huang and Cheng ([23]), 
is applied case by case in this paper for smoothing the multidimensional tabulated test data 
subject to random errors. Applying this method, scatter of data can be reduced significantly while 
remaining good agreement with original ones. Figure 3 shows several examples of data smoothing. 
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Figure 3. Examples of data smoothing 
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Having carefully examined data and test conditions, skeleton of a four-dimensional table is formed, 
which contains 7 discrete values of pressure, 8 of mass flux, 9 of heat flux and 31 of bulk enthalpy 
as dimensional grids. Considering that distribution of the applied data for tube diameter are quite 
non-uniform (eg. data number for diameter of 8mm is only 10, while 5229 data are for diameter of 
12mm) and conditions covered by respective diameter's data are rather uneven, we give up using 
tube diameter d as a dimension of the LUT, rather, for each diameter a "table" is made whilst the 
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construction of the present look-up table. 

Detailed survey of the existed DHT mechanism studies (eg. [11], [20]) shows that strong buoyancy 
effect, among some other factors, contribute most to DHT onset. Several successful CFD 
simulations of DHT conditions (both first and second peak of wall temperature) applying certain 
low-Reynolds turbulence model ([21], [22]) also indicate that DHT from buoyancy effect basically 
originates from specific near-wall turbulence production law and related turbulence structures that 
cause local laminarization. The present data after screening are all under conditions of fully 
developed flow (large length - to - diameter ratio) with uniform heating and thin tube wall. Thus, 
local parameters are considered to dominate heat transfer feature for the present test conditions, 
even for DHT. The present LUT development is based on a local concept. For heat transfer under 
conditions other than the above-mentioned ones, multipliers accounting for size (hydraulic), wall 
dynamics, heated length and non-uniform heating effects, etc. (and even for bundle and grid spacer 
effects) are expected to be developed to modify the present LUT predictions. From this viewpoint, 
DHT data are preserved. 

Therefore, through above-mentioned data screening, number of data for LUT construction is 
reduced to 10764. That is, 93% of the total data are preserved for further research. 

2.4 Data smoothing 

Some of the data in databank are questionable for random error which is known as data noise or 
data scatter. Therefore, experimental data with great random error should be smoothed by a suitable 
smoothing method. A simple mathematical method, which is introduced by Huang and Cheng ([23]), 
is applied case by case in this paper for smoothing the multidimensional tabulated test data 
subject to random errors. Applying this method, scatter of data can be reduced significantly while 
remaining good agreement with original ones. Figure 3 shows several examples of data smoothing. 
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as dimensional grids. Considering that distribution of the applied data for tube diameter are quite 
non-uniform (eg. data number for diameter of 8mm is only 10, while 5229 data are for diameter of 
12mm) and conditions covered by respective diameter’s data are rather uneven, we give up using 
tube diameter d as a dimension of the LUT, rather, for each diameter a “table” is made whilst the 
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one for 10mm diameter case (2174 data relatively well-distributed and covering the widest 
parametric range) is seen as the "main table". 

For the main table, as well as other ones for other tube diameters, unified grids are designed 
covering the whole parametric range for all data. Further, bulk enthalpy grids give a finer resolution 
around pseudo - critical point allowing for strong property variations (of course, certain blank 
regions are observed in each table for the present due to databank limitation). The gird design is 
summarized as following: 

7 grid values for pressure: 22.5, 23, 24, 25, 27, 30, 31 (MPa); 

8 grid values for mass flux: 600, 700, 800, 1000, 1200, 1500, 2250, 3500 (kg/(m2s)); 

9 grid values for heat flux: 200, 300, 500, 800, 1000, 1200, 1400, 1600, 2000 (kW/m2); 

31 grid values for bulk enthalpy: 300, 400, 500, 600, 700, 800, 900, 1000, 1100, 1200, 1300, 
1400, 1500, 1600, 1700, 1800, 1900, 2000, 2050, 2100, 2150, 2200, 2250, 2300, 2400, 2500, 2600, 
2700, 2800, 2900, 3000 (kJ/kg) 

Altogether 9 tables are constructed, one for each diameter value (7, 8, 9, 10, 12, 18, 20, 24, 
26mm). However, due to the scarcity of available data and unevenly distribution, tables of 7, 8, 18, 
24mm diameters contain too small amount of values for practical use, while tables of 9, 26mm 
diameters is limited in use for part of the parameter ranges. 

As for determination of tabulated wall temperature value on table grid points, Leowenberg et al 
applied a "best-correlation" method for interpolation in the LUT making ([10]). This method is 
essentially dependent partially on experimental data and partially on existed correlations. Accuracy 
of the LUT is dependent, to some extent, on current knowledge about SCW heat transfer 
mechanism or accuracy of the correlations. 

To make full use of test data information, a pure regression over all experimental data within each 
bulk enthalpy interval is applied for wall temperature Tw prediction. In each interval, Tw (or heat 
transfer) is independent function of parameters of p, G, q and hb, and perhaps also their interaction 
and cooperation. To this point, Response Surface Methodology (RSM) is adopted for regression. 
Response Surface function (RS function) is introduced to account for functional relation among the 
primitive variable Tw and independent ones (ie. p, G, q, hb ) within each interval, which takes 
following polynomial form 

Ax i,x 2,• • • , Xk , • • • , ) = ao + 1- • • • • •I • • • X/N' • • • + E # # 171) (3) 
m=i 

where, Xi, X2, ... XM are independent variables (ie. p, G, q, hb), while Y is estimation of 

primitive variable (Tw here), and c is fitting error. Moreover, 0 < NZ + + + Nm L; L is 
the highest order of the regression polynomial. 

In RS function of this form, the coefficients of exponential terms represent the linear, quadratic, 
cubic effects of independent variables  and so on, and those of cross product terms represent 
linear-by-linear, linear-by-quadratic, linear-by-cubic, quadratic-by-cubic interaction between 
independent variables  and so on. This is considered somewhat a reasonable for regression 
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of the LUT is dependent, to some extent, on current knowledge about SCW heat transfer 
mechanism or accuracy of the correlations. 

To make full use of test data information, a pure regression over all experimental data within each 
bulk enthalpy interval is applied for wall temperature Tw prediction. In each interval, Tw (or heat 
transfer) is independent function of parameters of p, G, q and hb, and perhaps also their interaction 
and cooperation. To this point, Response Surface Methodology (RSM) is adopted for regression. 
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where, X1, X2, …, Xk, …, XM are independent variables (ie. p, G, q, hb), while Ŷ  is estimation of 

primitive variable (Tw here), and ε is fitting error. Moreover, 0 < Ni + … + Nl … + Nm  ≤  L; L is 
the highest order of the regression polynomial.  

In RS function of this form, the coefficients of exponential terms represent the linear, quadratic, 
cubic effects of independent variables…… and so on, and those of cross product terms represent 
linear-by-linear, linear-by-quadratic, linear-by-cubic, quadratic-by-cubic interaction between 
independent variables…… and so on. This is considered somewhat a reasonable for regression 
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accounting various effects of parameters on heat transfer behavior. 

In present LUT making, at highest 3rd-order of the polynomial RS function is assumed for each 
intervals using the professional software, Design Expert. And the accuracy is later proved to be 
acceptable. Thus are the RS functions regressed and then Tw grid values calculated. 

During case-by-case re-evaluation, such phenomena are observed that overall accuracy of RS 
function prediction is acceptable for the entire bulk enthalpy interval while for "test data vs 
prediction value" diagrams they are poorly-distributed or some data are poorly-regressed in certain 
sub-regions. Then parametric sub-regions in intervals with relatively too large error is identified, a 
new RS function right for the sub-region is deduced and specific grid values are renewed. Figure 4 
presents a typical example of LUT prediction result before and after RS function re-evaluating and 
renewing procedure. Figure 4(a) gives the original LUT prediction vs. test data within the bulk 
enthalpy interval corresponding to 20500/kg grid in the main LUT. With a new regression for 
sub-regions of A[22.25-25.25 MPa (p), 400-1200 kg/m2s (G), 150-800 kW/m2 (q)] and 
B[22.25-25.25 MPa (p), 1200-2000 kg/m2s (G), 800-1450 kW/m2 (q)], as shown in Figure 4(b)—(e), 
the new RS functions are substituted for related grid value calculation. The final LUT prediction vs. 
test data diagram is presented in Figure 4(f), which demonstrates obviously better prediction. 
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Figure 5 presents several examples of response surfaces at the grid point of hb=1700kJ/kg along 
with comparison to test data falling in the corresponding interval (1650-1750kJ/kg). 
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Figure 5. Examples of response surfaces and related test data falling in related hb intervals 

If one of the parameters for a grid point is out of range of test condition, the corresponding LUT 
interval is then printed blue, which means that predictive accuracy inside and the grid value is not 
assured for it is obtained through some kind of "extrapolation". 

Specifically, it is possible that only one or very few test data fall in a certain interval and RS 
regression is no longer valid. Then the unknown grid value is for the present simply treated through 
linearly interpolating or extrapolating the datum with the nearest next known grid points. The 
linearly crossed interval is then painted green (interpolation) while the linearly extended edge 
interval is painted blue (extrapolation), which means that predicting error inside might be a bit 
larger (for green) or the precise is not assured (for blue). 

Therefore, extrapolation outside the experimental range is usually not recommended. Use of grid 
values in blue areas of LUT is considered extrapolation operation, which is normally invalid or one 
should be careful. Also, since linear interpolation has been used in determining grid values since 
they are subject to data scarce, it might bring relative a bit larger error in green areas for prediction. 

A few more words about the blue intervals in the LUT, though error of prediction within them 
might be possibly unreasonably large, they are still preserved in the LUT waiting for future 
"revival" when more reliable test data filled in. Improvement of accuracy in green region is also 
expected for more test data. 

A sample table extracted from the final main LUT (d = 10mm) is shown in Table 3. The last row of 
the table gives standard deviation between wall temperature predictions and experimental data in 
each interval. The averaged accuracies within the bulk enthalpy intervals seem rather satisfactory. 
Tables of related polynomial coefficients of RS functions are obtained as well. 

Table 3. Example of the main look-up table (d = 10mm) 

P G Q Bulk Endudpy(kEkg) 
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expected for more test data. 

A sample table extracted from the final main LUT (d = 10mm) is shown in Table 3. The last row of 
the table gives standard deviation between wall temperature predictions and experimental data in 
each interval. The averaged accuracies within the bulk enthalpy intervals seem rather satisfactory. 
Tables of related polynomial coefficients of RS functions are obtained as well. 
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P G Q Bulk Enthalpy(kJ/kg) 



The 5ft Int. Sym. SCWR (ISSCWR-5) 
Vancouver, British Columbia, Canada, March 13-16, 2011 

P042 

MPa 
kg/(m's kW/m2 1400 1500 1600 1700 1800 1900 2000 2050 2100 2150 2200 2250 2300 2400 25001 2600 27001 2800 

Wall temperature(degree C) 

22.5 800 400 492.9 364.2 361.8 390.4 347.6 399.5 398.6 399.4 396.2 394.5 405.6 399.3 400.7 407.9 416.8 432.2 449.9 470.5 

22.5 800 600 507.1 385.1 396.5 402.9 379.5 430.2 412.6 434.6 434.7 429.2 424.3 424.7 422.8 421.1 434.6 454.8 470.9 505.7 

22.5 800 800 521.3 408.4 453.1 433.9 416.2 457.3 441.7 469.7 473.1 463.9 452.1 450.1 444.8 434.2 452.4 477.3 492 568.4 

22.5 800 1000 535.5 436 484.2 484.2 480.5 484.7 483.3 477.7 474.9 462.3 475.8 465.9 471 476.3 471.4 495.1 513 556.7 

22.5 800 1200 549.8 469.8 535.1 542.2 517.9 522.3 517.7 512.5 504.7 483.1 511.9 486 502.2 509.7 490.8 512.3 534.1 585.4 

22.5 

22.5 

1000 

1000 

400 

600 

447.7 358.6 

376 

371.9 

395.5 

385.4 

402.9 

386.8 

411.7 

389.5 

416.9 

375 

412.6 

379.8 

409.4 

373.1 

403.9 

373.8 

399.7 

396 

407.9 

380.5 

405.9 

384.9 

406.9 

398.1 

411.3 

401.4 

419.2 

424.2 

436.3 

439 

460 

458.7 

474.3 461.9 

22.5 1000 800 476.1 395 440.9 433.9 441.5 443.9 441.7 439 434.8 425.6 435.8 431.3 429 424.5 437 448.5 481.1 537 

22.5 1000 1000 490.3 417.5 453 454.1 460.4 464.6 463.9 459.3 457.8 448 458.1 454.3 455.7 461.3 463.2 484.1 502.1 540.1 

22.5 1000 1200 504.5 445.4 494.2 500.5 494.4 498.9 495.4 491.1 485.4 467.5 490.9 474.4 484.7 492.3 483 502.6 523.2 567.3 

23 1200 600 398.6 401.1 497.2 492.4 771.2 405.4 417.7 390.1 381.4 378 396.4 396.4 399.4 409.6 414.6 427 466 448.5 

23 1400 600 374.5 395.4 376.9 382.8 385.1 388.5 390.5 390.1 389.9 390.4 391.1 389.2 390.3 394.1 399.7 414.4 453.6 466.6 

23 1400 800 385.4 410.4 386.4 393.2 397.8 400.8 401.6 401.2 402.3 401.9 402.3 405.5 408.9 416 425 442.2 474.7 490.7 

23 2250 1000 293.8 402.8 416.2 497.4 394.7 397.4 399.3 399.3 398.5 399.5 400.7 402.6 403.5 405.3 401.6 415.7 474.1 481.9 

23 2250 1200 304.6 410.5 425.3 497.4 402.1 407.3 410.1 410 410.2 412.2 413.3 415.4 418.3 426.1 430.5 440.5 474.1 481.9 

23 2250 1400 315.5 420.3 440.2 497.4 409.6 417.3 421 420.7 421.9 424.8 426 428.2 433 446.8 459.4 465.3 474.1 481.9 

23 3500 1200 153.9 401.3 382.7 389.5 393.7 395.8 396.6 397 397.6 400.5 397 409.5 410 419.2 382.2 375.1 386.6 348.6 

23 3500 1400 164.8 407.8 386.3 393.8 398.1 400.9 401.6 401.1 404.6 404.5 405.2 409.5 413.3 423.5 406.5 407.5 407.7 356.2 

23 3500 1600 175.7 413.1 389.3 397.6 403.5 404.7 406.1 406 406.3 408.4 405.6 410.9 413 420.2 439.4 474.3 428.8 363.8 

23 3500 1800 186.5 419 393.4 402.9 411.1 412.5 414.1 414.7 414.3 412.4 412.6 417.3 421.6 428.9 448.3 474.3 449.8 371.4 

24 1200 1000 370.9 399.2 431.7 431.1 447.9 450.8 452.9 449.3 449.4 449.8 443.5 450 445.3 452 470.3 490.4 511.5 546.5 

24 1200 1200 375.1 420.1 464.5 468.7 478.5 481.8 481.6 478.2 474.7 470.9 469.9 467.3 468 474.1 490.4 510.3 532.6 572.1 

24 1400 400 376.5 354 368.3 373.2 372.4 377.6 383.5 383.6 380.7 382.1 380 372.9 371.7 376.3 381.6 392.6 433 457.8 

24 1400 600 380.6 364.9 377.8 383.6 385.1 389.9 394.5 394.6 393.2 393.6 391.1 389.2 390.3 398.2 406.8 423.7 454 481.9 

24 1400 800 384.8 375.6 387.3 393.9 397.8 402.2 405.6 405.6 405.6 405.2 402.3 405.5 408.9 420.1 432.1 451.5 475.1 505.9 
Error Std in Intervals CC) 

2.763 2.313 6.062 4.665 3.902 4.584 3.89 3.179 4.741 2.527 5.185 5.448 4.851 5.843 3.823 3.719 9.019 8.678 

In practical application, such a procedure is recommended to be followed: 

(1) Firstly check the p, G, q parameters for the prediction case: 

(a) If they encounter grid parameters in the main LUT, simply choose the Tw grid value; 

(b) Otherwise, find neighboring grids and interpolate among them to get the Tw value; 

(2) Secondly, check the tube diameter parameter d of the prediction case: 

(a) If d = 10mm, then simply use the Tw value obtained from the main LUT as fmal Tw
prediction; 

(b) Otherwise, check whether d is right the size parameter for the appendix tables: 

(i) If d of prediction case encounters either of the appendix table d values, then follow the 
same procedure as (1) in the appendix table to obtain Tw for prediction (Unluckily, some appendix 
tables are almost unfit for practical use due to data scarcity and needs future supplement). 

(ii) Else if d of prediction matches none of the appendix table d values, calculate 
corresponding Tw values using both appendix tables whose diameters are the nearest larger and 
smaller, following the same procedure as (1). Then simply interpolate the two Tw values as per d to 
get the predicted Tw. Another possible way is to multiply the Tw value main LUT with a size effect 
multiplier. Unfortunately, this multiplier is not satisfactorily acquired yet. 
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MPa kg/(m2s kW/m2 1400 1500 1600 1700 1800 1900 2000 2050 2100 2150 2200 2250 2300 2400 2500 2600 2700 2800

Wall temperature(degree C) 

22.5 800 400 492.9 364.2 361.8 390.4 347.6 399.5 398.6 399.4 396.2 394.5 405.6 399.3 400.7 407.9 416.8 432.2 449.9 470.5 

22.5 800 600 507.1 385.1 396.5 402.9 379.5 430.2 412.6 434.6 434.7 429.2 424.3 424.7 422.8 421.1 434.6 454.8 470.9 505.7 

22.5 800 800 521.3 408.4 453.1 433.9 416.2 457.3 441.7 469.7 473.1 463.9 452.1 450.1 444.8 434.2 452.4 477.3 492 568.4 

22.5 800 1000 535.5 436 484.2 484.2 480.5 484.7 483.3 477.7 474.9 462.3 475.8 465.9 471 476.3 471.4 495.1 513 556.7 

22.5 800 1200 549.8 469.8 535.1 542.2 517.9 522.3 517.7 512.5 504.7 483.1 511.9 486 502.2 509.7 490.8 512.3 534.1 585.4 

22.5 1000 400 447.7 358.6 371.9 385.4 386.8 389.5 375 379.8 373.1 373.8 396 380.5 384.9 398.1 401.4 424.2 439 458.7 

22.5 1000 600 461.9 376 395.5 402.9 411.7 416.9 412.6 409.4 403.9 399.7 407.9 405.9 406.9 411.3 419.2 436.3 460 474.3 

22.5 1000 800 476.1 395 440.9 433.9 441.5 443.9 441.7 439 434.8 425.6 435.8 431.3 429 424.5 437 448.5 481.1 537 

22.5 1000 1000 490.3 417.5 453 454.1 460.4 464.6 463.9 459.3 457.8 448 458.1 454.3 455.7 461.3 463.2 484.1 502.1 540.1 

22.5 1000 1200 504.5 445.4 494.2 500.5 494.4 498.9 495.4 491.1 485.4 467.5 490.9 474.4 484.7 492.3 483 502.6 523.2 567.3 

23 1200 600 398.6 401.1 497.2 492.4 771.2 405.4 417.7 390.1 381.4 378 396.4 396.4 399.4 409.6 414.6 427 466 448.5 

23 1400 600 374.5 395.4 376.9 382.8 385.1 388.5 390.5 390.1 389.9 390.4 391.1 389.2 390.3 394.1 399.7 414.4 453.6 466.6 

23 1400 800 385.4 410.4 386.4 393.2 397.8 400.8 401.6 401.2 402.3 401.9 402.3 405.5 408.9 416 425 442.2 474.7 490.7 

23 2250 1000 293.8 402.8 416.2 497.4 394.7 397.4 399.3 399.3 398.5 399.5 400.7 402.6 403.5 405.3 401.6 415.7 474.1 481.9 

23 2250 1200 304.6 410.5 425.3 497.4 402.1 407.3 410.1 410 410.2 412.2 413.3 415.4 418.3 426.1 430.5 440.5 474.1 481.9 

23 2250 1400 315.5 420.3 440.2 497.4 409.6 417.3 421 420.7 421.9 424.8 426 428.2 433 446.8 459.4 465.3 474.1 481.9 

23 3500 1200 153.9 401.3 382.7 389.5 393.7 395.8 396.6 397 397.6 400.5 397 409.5 410 419.2 382.2 375.1 386.6 348.6 

23 3500 1400 164.8 407.8 386.3 393.8 398.1 400.9 401.6 401.1 404.6 404.5 405.2 409.5 413.3 423.5 406.5 407.5 407.7 356.2 

23 3500 1600 175.7 413.1 389.3 397.6 403.5 404.7 406.1 406 406.3 408.4 405.6 410.9 413 420.2 439.4 474.3 428.8 363.8 

23 3500 1800 186.5 419 393.4 402.9 411.1 412.5 414.1 414.7 414.3 412.4 412.6 417.3 421.6 428.9 448.3 474.3 449.8 371.4 

24 1200 1000 370.9 399.2 431.7 431.1 447.9 450.8 452.9 449.3 449.4 449.8 443.5 450 445.3 452 470.3 490.4 511.5 546.5 

24 1200 1200 375.1 420.1 464.5 468.7 478.5 481.8 481.6 478.2 474.7 470.9 469.9 467.3 468 474.1 490.4 510.3 532.6 572.1 

24 1400 400 376.5 354 368.3 373.2 372.4 377.6 383.5 383.6 380.7 382.1 380 372.9 371.7 376.3 381.6 392.6 433 457.8 

24 1400 600 380.6 364.9 377.8 383.6 385.1 389.9 394.5 394.6 393.2 393.6 391.1 389.2 390.3 398.2 406.8 423.7 454 481.9 

24 1400 800 384.8 375.6 387.3 393.9 397.8 402.2 405.6 405.6 405.6 405.2 402.3 405.5 408.9 420.1 432.1 451.5 475.1 505.9 
Error Std in Intervals (°C) 2.763 2.313 6.062 4.665 3.902 4.584 3.89 3.179 4.741 2.527 5.185 5.448 4.851 5.843 3.823 3.719 9.019 8.678 

 

In practical application, such a procedure is recommended to be followed: 

(1) Firstly check the p, G, q parameters for the prediction case:  

(a) If they encounter grid parameters in the main LUT, simply choose the Tw grid value;  

(b) Otherwise, find neighboring grids and interpolate among them to get the Tw value; 

(2) Secondly, check the tube diameter parameter d of the prediction case: 

(a) If d = 10mm, then simply use the Tw value obtained from the main LUT as final Tw 
prediction; 

(b) Otherwise, check whether d is right the size parameter for the appendix tables: 

(i) If d of prediction case encounters either of the appendix table d values, then follow the 
same procedure as (1) in the appendix table to obtain Tw for prediction (Unluckily, some appendix 
tables are almost unfit for practical use due to data scarcity and needs future supplement). 

(ii) Else if d of prediction matches none of the appendix table d values, calculate 
corresponding Tw values using both appendix tables whose diameters are the nearest larger and 
smaller, following the same procedure as (1). Then simply interpolate the two Tw values as per d to 
get the predicted Tw. Another possible way is to multiply the Tw value main LUT with a size effect 
multiplier. Unfortunately, this multiplier is not satisfactorily acquired yet. 
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For predictive cases with additional conditions, eg. non-uniformly heating, inlet effect, or bundle 
geometries, no corresponding multipliers allowing for such effects is for now available. One might 
simply locally use the LUT for the time being until related test conducted and corresponding 
multipliers developed. 

4. Accuracy of the look-up table 

To assess accuracy of the LUT constructed in this paper, three error evaluation quantities, namely 
averaged relative error 61, averaged absolute of relative error o-2 and standard deviation of relative 
error 63, are introduced, which are defined respectively as 

cri = Ee, IN 
Cr2 =

N 

0 -3 — —criy l( N-0 

(4) 

where e1=Vm,,,,pre — T,,,,,j1T.,,,en, with Tw, i, pre represents wall temperature predicted by LUT (using 

corresponding RS function), and Tw, i, exp is related original test data. 

Table 4 delivers both the overall accuracy of the LUT and accuracies of separate tables for different 
tube diameter, which presents fairly good features for error analysis. 

Furthermore, applicability of heat transfer trend for the current LUT in some typical cases 
(non-deterioration and deterioration cases) is qualitatively evaluated and demonstrated as in Figure 
6(a), (b) respectively. For non-DHT case, as in Figure 6(a), the LUT presents rather obvious 
advantage over most correlations, while for typical DHT case as shown in Figure 6(b), the best 
prediction in region around pseudo-critical point is also obtained by the LUT. 

Table 4. Error analysis for different correlation 

Error Index 
01 0 -2 63Tables 

7 mm-diameter table (149 pt.$) -1.35089x10-4 18.67116x10-4 26.11868x10-4
8 mm-diameter table (10 pt.$) -28.17364x10-4 60.21861x10-4 103.01783x10- 4 

9 mm-diameter table (209 pt.$) 14.80415x 104 145.79386x 104 339.28461x 104
10 mm-diameter table (2174 pt.$) 3.61264x10-4 128.93139x10-4 181.56377x10-4
12 mm-diameter table (5229 pt.$) 0.702235x10-4 34.50983x10-4 46.84112x10-4
18 mm-diameter table (34 pt.$) 0.791x10-4 49.67297x10-4 89.33019x10-4
20 mm-diameter table (2686 pt.$) -37.97392x 104 160.34597x 104 318.31556x 104
24 mm-diameter table (64 pt.$) 9.48113x 10-4 153.00022x 10-4 281.36437x 104
26 mm-diameter table (209 pt.$) 49.67063x10-4 425.34324x10-4 675.55322x10-4
LUTs overall (10764 pt.$) -7.2x 10-4 95.24x 10-4 211.76x 10-4 
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where ( ) exp,,exp,,pre,, iwiwiwi TTTe −=  with Tw, i, pre represents wall temperature predicted by LUT (using 

corresponding RS function), and Tw, i, exp is related original test data. 

Table 4 delivers both the overall accuracy of the LUT and accuracies of separate tables for different 
tube diameter, which presents fairly good features for error analysis. 

Furthermore, applicability of heat transfer trend for the current LUT in some typical cases 
(non-deterioration and deterioration cases) is qualitatively evaluated and demonstrated as in Figure 
6(a), (b) respectively. For non-DHT case, as in Figure 6(a), the LUT presents rather obvious 
advantage over most correlations, while for typical DHT case as shown in Figure 6(b), the best 
prediction in region around pseudo-critical point is also obtained by the LUT. 

Table 4. Error analysis for different correlation 

Error Index
Tables σ1 σ2 σ3 

7 mm-diameter table (149 pt.s) -1.35089×10-4 18.67116×10-4 26.11868×10-4

8 mm-diameter table (10 pt.s) -28.17364×10-4 60.21861×10-4 103.01783×10-4

9 mm-diameter table (209 pt.s) 14.80415×10-4 145.79386×10-4 339.28461×10-4

10 mm-diameter table (2174 pt.s) 3.61264×10-4 128.93139×10-4  181.56377×10-4

12 mm-diameter table (5229 pt.s) 0.702235×10-4 34.50983×10-4 46.84112×10-4

18 mm-diameter table (34 pt.s) 0.791×10-4 49.67297×10-4 89.33019×10-4

20 mm-diameter table (2686 pt.s) -37.97392×10-4 160.34597×10-4 318.31556×10-4

24 mm-diameter table (64 pt.s) 9.48113×10-4 153.00022×10-4 281.36437×10-4

26 mm-diameter table (209 pt.s) 49.67063×10-4 425.34324×10-4 675.55322×10-4

LUTs overall (10764 pt.s) -7.2×10-4 95.24×10-4 211.76×10-4
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Figure 6. Comparison of test data with values predicted by the LUT and other for typical heat 
transfer cases 

5. Effect of tube diameter Parameter 

According to data distribution, we divide whole affecting parameter (pressure p, mass flux G and 
heat flux q) range into several sections to form a parametric space consisting of several sub-regions, 
in which the parameter ranges are: 

Pressure, p, regions: (I) 22.25-25.25 MPa, (II) 25.25-28.25 MPa, (III) 28.25-31.25 MPa; 

Mass flux, G, regions: (I) 600-1200 kg/m2s, (II) 1200-2000 kg/m2s, (III) 2000-2800 kg/m2s, 
(IV) 2800-3600 kg/m2s; 

Heat flux, q, regions: (I) 150-800 kW/m2; (II) 800-1450 kW/m2; (III) 1450-2100 kW/m2. 

Sensitivity analysis about parametric effects of tube diameter (d), pressure (p) and heat flux (q) on 
wall temperature Tw are statistically conducted in various sub-regions based on related test data, 
using Standardized Regression Coefficient (SRC). Some SRC results are demonstrated in Figure 
7, which qualitatively determine relative importance of the explanatory variables for SCW heat 
transfer. And the relative importance (SRCs) of the parameters d, p, G and q as well as their varying 
trends across the parametric sub-regions are summarized in Table 5. 
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Figure 6. Comparison of test data with values predicted by the LUT and other for typical heat 
transfer cases 
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According to data distribution, we divide whole affecting parameter (pressure p, mass flux G and 
heat flux q) range into several sections to form a parametric space consisting of several sub-regions, 
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Sensitivity analysis about parametric effects of tube diameter (d), pressure (p) and heat flux (q) on 
wall temperature Tw are statistically conducted in various sub-regions based on related test data, 
using Standardized Regression Coefficient (SRC).  Some SRC results are demonstrated in Figure 
7, which qualitatively determine relative importance of the explanatory variables for SCW heat 
transfer. And the relative importance (SRCs) of the parameters d, p, G and q as well as their varying 
trends across the parametric sub-regions are summarized in Table 5. 
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Figure 7. Standardized regression coefficients of d, p, G, q on Tw in different parametric sub-regions 

Reminding that SRC is actually partial correlation coefficient between primitive variable Tw and 
affecting parameters d, p, G and q, it is observed that influences of p, G and q on wall temperature 
seem rather complicated (monotonously increasing or decreasing with p, G, q increase, or being 
non-monotonous). Instead, SRC values of tube diameter d effect drop monotonously with 
increasing of p, G or q, which implies that either positive dependence of Tw on d is weakened, or Tw
drops simply with d increasing when p, G, q increases. From Table 5, therefore, it is seen that there 
exist some sub-regions where Tw increases with d increasing, esp. for relative low mass flow and 
low heat flux; however, when G or q increases to high enough, Tw turnover to drop with G or q 
increasing. 

Table 5. Relative importance of the parameters on wall temperature and their varying trends across 
the parametric sub-regions 
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Figure 7. Standardized regression coefficients of d, p, G, q on Tw in different parametric sub-regions

Reminding that SRC is actually partial correlation coefficient between primitive variable Tw and 
affecting parameters d, p, G and q, it is observed that influences of p, G and q on wall temperature 
seem rather complicated (monotonously increasing or decreasing with p, G, q increase, or being 
non-monotonous). Instead, SRC values of tube diameter d effect drop monotonously with 
increasing of p, G or q, which implies that either positive dependence of Tw on d is weakened, or Tw 
drops simply with d increasing when p, G, q increases. From Table 5, therefore, it is seen that there 
exist some sub-regions where Tw increases with d increasing, esp. for relative low mass flow and 
low heat flux; however, when G or q increases to high enough, Tw turnover to drop with G or q 
increasing. 

Table 5. Relative importance of the parameters on wall temperature and their varying trends across 
the parametric sub-regions 
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It should be mentioned that the SRCs only give fairly rough impression on parametric sensitivity 
trend for complex heat transfer features. Due to interaction among parameters and even poor data 
distribution of present databank in some sub-regions, possibilities of introducing any distortion is 
conceivable. 

A prior guess of linear-log type formula for approximate diameter effect estimation is assumed, 
which reads 

In 
[ Tw,pre(hb,d;13,G'q) 

 \1 = 111 10 
d  +k 

2
Tw,Lur(hb,10mm; p, G, q)u 

(5) 

in which, Tw,Lui(hb, 10mm; p, G, q) represents wall temperature looked up in the main LUT (d = 
10mm) under related conditions of p, G, q and hb, while Tw, pre(hb, d; p, G, q) stands for wall 
temperature under the same condition but for a different tube diameter d. k1 and k2 are regressed 
constant from test data and the main LUT. And with the above eq. (5) and very limited data for 
different diameters, coefficient table of k1 and k2 for very limited conditions is obtained. Therefore, 
for the diameter effect prediction, we have 

Tw,pre(hb,d;p,G,q)  k,2  d 
Tw,LuT(hb,10Mifi; p,G,q) lOmm 

(6) 

in which, 14 = exp(k2 ). Figure 8 gives a prediction of Tw of a 13mm tube diameter (p=23MPa, 

G=1000kg/m2s, q=400kW/m2) using the coefficient table, as well as data under neighboring 
conditions for comparison. And Figure 9 presents Tw predictions for several diameters (d=13, 15, 
17mm) under the same p, G, q conditions. 
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It should be mentioned that the SRCs only give fairly rough impression on parametric sensitivity 
trend for complex heat transfer features. Due to interaction among parameters and even poor data 
distribution of present databank in some sub-regions, possibilities of introducing any distortion is 
conceivable. 

A prior guess of linear-log type formula for approximate diameter effect estimation is assumed, 
which reads 
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in which, Tw, LUT(hb, 10mm; p, G, q) represents wall temperature looked up in the main LUT (d = 
10mm) under related conditions of p, G, q and hb, while Tw, pre(hb, d; p, G, q) stands for wall 
temperature under the same condition but for a different tube diameter d. k1 and k2 are regressed 
constant from test data and the main LUT. And with the above eq. (5) and very limited data for 
different diameters, coefficient table of k1 and k2 for very limited conditions is obtained. Therefore, 
for the diameter effect prediction, we have 
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in which, ( )22 exp kk =′ . Figure 8 gives a prediction of Tw of a 13mm tube diameter (p=23MPa, 

G=1000kg/m2s, q=400kW/m2) using the coefficient table, as well as data under neighboring 
conditions for comparison. And Figure 9 presents Tw predictions for several diameters (d=13, 15, 
17mm) under the same p, G, q conditions. 
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Figure 8 Prediction of Tw for d =13mm with Figure 9 Prediction of Tw for d=13, 15 and 
comparison of neighboring test data 17mm 

It should be mentioned that this is for now, with limitation of data collection, a rough overview on 
the effect but still far from obtaining practical size effect multipliers. With more data for various 
diameters added, both formulation and accuracy of modification should be improved. 

6. Conclusions 

Look-up table seems to be a good method in predicting heat transfer of supercritical water for its 
easy-using, relatively high accuracy, and readiness to update as well. Besides, it avoids 
approximating and extrapolating concerning physical flow phenomena or fluid properties. Based on 
local concept of SCW heat transfer, in this paper, a LUT for inner wall temperature of heating tubes 
for vertically upward flowing supercritical water heat transfer has been derived with 10764 test data 
collected, applying response surface methodology as well as reasonable data selection and 
processing method 
Assessment carried out for the deduced LUT demonstrates that such good features as possible 
wide-range applicability, relatively low error, and satisfactory prediction ability under special 
conditions are preliminarily achieved. A preliminary size effect case investigation, which might be a 
first step for further development towards diameter modifying multiplier for LUT prediction, is also 
conducted. Further efforts and improvements are still necessary in database enlargement, data 
regression optimization and parametric effect study. 
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