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Abstract 

Heat transfer experiments in vertical tube were performed in Supercritical Water Thermal-hydraulic 
Mechanism Test (SCTM) Loop in Nuclear Power Institute of China. The test tube was 3.0 m long 
and the inner diameter of 6.0 mm. Experimental condition covered pressures of 23, 24 and 25MPa, 
mass flux of 600-1200 kg/m2•s, heat flux of 600-1100kW/m2, and bulk temperatures of 300-500°C. 
The experimental data were compared with several current correlations, respectively. It showed that 
these correlations could not predict heat transfer coefficient accurately in pseudo-critical area. 
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1. Introduction 

The Supercritical Water Cooled Reactor (SCWR) belongs to the six reactor types currently being 
investigated within the framework of the Generation IV International Forum, which are expected to 
exceed the current nuclear reactors in reliability, safety, electricity generation costs and proliferation 
resistance [1]. The most visible advantages of the SCWR are the low construction costs because of 
size reduction of components and buildings compared to current PWR and the low electricity 
production costs due to high efficiency (approaching 44%)E2-31. In China, SCWR is competitive and 
promising in Generation IV system not only for the low construction costs and the low electricity 
production costs, but also for successive technology of Chinese PWR roadmap and technology base 
of current supercritical-water-cooled fossil-fired power plants. 

Supported by Chinese Government, Nuclear Power Institute of China (NPIC) started SCWR 
technology research in 2010, which aimed at the design and construction of first prototype SCWR in 
China. One of the important SCWR technologies is thermal hydraulic performance of the reactor 
system, which influences the SCWR safety, plant design and economics directly [4]. The 
supercritical water environment is unique and deficient data exist on the thermal hydraulic 
performance of water with complicated fuel assembly geometries under high heat flux (about 
megawatt per square meter level) in near-critical and pseudo-critical area Pl. 

This paper devoted to the experimental research of heat transfer in vertical bare tube with a length 
of 3.0m and an inner diameter of 6.0mm, which were performed in Supercritical Water Thermal-
hydraulic Mechanism Test (SCTM) Loop. The Experimental condition covered pressures of 23, 24 
and 25MPa, mass fluxes of 600-1200 kg/m2.s, heat fluxes of 600-1100kW/m2, and bulk 
temperatures of 300-500°C 
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2. Test Loop and experimental conditions 
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2.1 Description of the SCTM Loop 

SCTM Loop was designed and constructed in NPIC for experimental research on SCW flow 
resistance and heat transfer with single/double pipe. The test loop not only supported supercritical 
water thermal-hydraulic test technology research, but also produced basic thermal hydraulic 
experimental data of supercritical water for CFD model and numerical research 
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Fig.1 Schematic diagram of SCTM loop 

The schematic diagram of SCTM Loop was shown in Fig.1. Distilled and de-ionized water from 
water tank was driven throng), a filter by a high pressure plunger pump which had a capacity of 
operating at up to 32MPa and mass flow rate supply up to 0.5t/h, an accumulator was used to 
control the loop pressure. The mass flow rate of test section was controlled and measured by 
regulator valves and flow meters in the test line and bypass line. Before flowing into the test section, 
water was preheated to the demanded temperature in the pre-heater which heated directly by a 
240kVA AC power supply. The heat flux of the test section was controlled by a 600kW DC power 
supply. Water from test section outlet of temperature up to 550°C mixed with water from bypass 
line of room temperature in the mixer and then flowed into two heat exchangers. The heat 
exchangers cooled down the water from the mixer to room temperature with circulating cooling 
water. Passing by the back-pressure valve, the water's pressure decreased to atmospheric pressure 
from supercritical pressure and then it flowed back to the water tank. The loop was controlled and 
measured with a control and data acquisition system which hardware provided by NI Company and 
Solartron Mobrey Company. 

2.2 Test section 

Fig.2a showed detailed structure of the single tube test section. The test tube was made of Inconel 
625, which inner diameter of 6mm, thickness of 2.0mm and active heated length of 300cni The tube 
was shunt-wound heated through three copper by a 600kW DC power supply. Besides 2 N-type 
thermocouples to measure the temperature of test section inlet and outlet, there were 11 outer wall 
temperature measure sections along the test tube and 2 N-type thermocouples fixed in every section. 
Also there was 1 pressure drop measure area with differential pressure transmitter to measure the 
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total pressure drop. Fig.2b showed the detailed temperature and pressure drop measuring points 
distributing along the tube. Tab.1 showed the uncertainties of measured parameters. 
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(a) detailed drawing of test section (b) measuring points distributing of test section 

Fig.2 Test section 

Tab.1 Uncertainties of measured parameters 

Parameter Maximum uncertainties 

Temperature ±1.3°C 

Mass flowrate ±0.77% 

Pressure ±0.75% 

Pressure difference ±0.63% 

Heated power ±1.12% 

2.3 Experimental condition 
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Experiments were performed changing pressure and heat flux at given mass flow rate. The pressure 
selected were 23, 24 and 25MPa, the mass flux changed from 600 kg/m2-s to 1200 kg/m2-s, the heat 
flux ranged from 600kW/m2 to 1100kW/m2. Tab.2 showed the detailed parameters of the experiment 
conditions. 

Tab.2 Experimental condition 

Parameter Range 

Pressure(MPa) 23,24,25 

Mass flux (kg/m2-s) 600-1200 

Heat flux(kW/m2) 600-1100 

Bulk temperature (*C) 300-500 

3. Results and discussion 

3.1 The effect of mass flux, heat flux and pressure to heat transfer 

Fig.3 showed the effect of mass flux, heat flux and pressure to wall temperature. At pressure of 25 MPa 
and the mass flux of 1200 kg/m2-s, wall temperature of the test section increased entirely as the heat 
flux increasing from 607.5 to 858.9 kW/m2. Also at the same pressure of 24MPa and low heat flux of 
600 kW/m2, the tube wall temperature changed dramatically when the mass flux decreasing from 
1206.8 to 648.8 kg/m2-s. At normal heat transfer condition, experimental pressure affected the inner 
wall temperature of the tube unobvious. 
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(b) Wall temperature at 24MPa, 600 kg/m2is with different mass flux 
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(c) Wall temperature at 860 kW/m2, 1200 kg/m2.s with different pressure 
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Fig.3 Effect of mass flux, heat flux and pressure to heat transfer 
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There were several heat transfer correlations developed to calculate heat transfer coefficient (HTC) in 
forced convection of SCW. Majority of the correlations were based on D-B correlation with various 
modified factors. The correlations used in this paper to predict the wall temperature and HTC were 
showed in Tab.3. 

Tab.3 Heat transfer correlations for comparison 
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(c) Wall temperature at 860 kW/m2, 1200 kg/m2•s with different pressure 

Fig.3 Effect of mass flux, heat flux and pressure to heat transfer 

There were several heat transfer correlations developed to calculate heat transfer coefficient (HTC) in 
forced convection of SCW. Majority of the correlations were based on D-B correlation with various 
modified factors. The correlations used in this paper to predict the wall temperature and HTC were 
showed in Tab.3.  

Tab.3 Heat transfer correlations for comparison 
Author Correlation 

Bishop(1964)[6] 

0.43
0.660.90 2.40.0069 Re Pr 1w
BB B

b

DNu
L

ρ
ρ

⎛ ⎞ ⋅⎛ ⎞= ⋅ ⋅ ⋅ ⋅ +⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠             

Pr ( / )B p B BC μ λ= ⋅                                           
w b

p
w b

h hC
T T

−
=

−    

Swenson(1965) 
0.923 0.613 0.231

0.00459 W b W W

W W W b W b

H HhD DG
k T T k

μ ρ
μ ρ

⎛ ⎞ ⎛ ⎞ ⎛ ⎞−
= ⋅ ⋅ ⋅⎜ ⎟ ⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠ ⎝ ⎠  

Jackson(2002) 

0.3
0.82 0.50.0183Re Pr

n

pw
b b

b pb

c
Nu

c
ρ
ρ

⎛ ⎞⎛ ⎞
= ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

 

b w pc pc b w

b pc w

0.4                                                   T <T <T  and 1.2T <T <T

0.4 0.2( 1)                               T <T <T                           

0.4 0.2( 1) 1 5( 1)

w

pc

w b

pc pc

Tn
T

T T
T T

= + −

⎡ ⎤
+ − − −⎢ ⎥

⎢⎣ ⎦
pc b pc       T <T <1.2T     

⎧
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪ ⎥⎩

Watts（1982） 

0.295

-4
var 0.5 0.52.7 2.7

30001               <10
Re Pr Re Pr

b b
P

b bb b

Gr GrNu Nu
⎡ ⎤

= −⎢ ⎥
⎢ ⎥⎣ ⎦

 



The 5k" Int. Sym. SCWR (ISSCWR-5) 

Vancouver, British Columbia, Canada, March 13-16, 2011 

P21 

Nu= Nuvarp 
7000Grb  10.295 

—0.5 
Reb2.7 1713rb 

0.55 ) 035
Nu varp = 0.021 Rer1Prb —

Pb 

Grb 
°.5 >10-4 

Reb2.7 1713rb 

Fig.4 showed the comparison between experimental data and results calculated by 4 correlations. It 
was found that the wall temperature and HTC agree well between experimental data and correlations 
calculated results apart from pseudo-critical area. In pseudo-critical area there were a peak of HTC in 
both of experimental data and correlations calculated results. However, values of the HTC peek were 
quite different, and the experimental data was lower than the results of Bishop(1964), Jackson(2002) 
and Watts (1982) correlations. 
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Fig.4 Comparison between experimental data and results calculated by correlations 

3.2 Heat transfer deterioration phenomenon 

During the experiment, it was also found heat transfer deterioration phenomenon at different pressure 
and mass flux. Fig.5 showed the wall temperature of the test tube at 25, 23MPa with different heat flux. 
When the flow flux was fixed, a peak and trough of the wall temperature arose clearly in pseudo-
critical area during the increasing of heat flux. And the peak was nearly 50°C higher than the 
following trough when the ratio between heat flux and mass flux approach 1. 
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Heat transfer experimental research of SCW upward flowing in vertical bare tube was carried out in 
SCTM Loop of NPIC. At normal heat transfer condition, experimental pressure affected the inner 
wall temperature of the tube unobvious, but mass flux and heat flux influenced evidently. The 
experimental data were compared with Bishop(1964), Swenson(1965), Jackson(2002) and Watts 
(1982) correlations, respectively. It showed that these correlations could not predict heat transfer 

coefficient accurately in pseudo-critical area. Heat transfer deterioration phenomenon at different 
pressure and mass flux was observed as the heat flux increasing gradually. 
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4. Conclusions 

Heat transfer experimental research of SCW upward flowing in vertical bare tube was carried out in 
SCTM Loop of NPIC. At normal heat transfer condition, experimental pressure affected the inner 
wall temperature of the tube unobvious, but mass flux and heat flux influenced evidently. The 
experimental data were compared with Bishop(1964), Swenson(1965), Jackson(2002) and Watts
（1982）correlations, respectively. It showed that these correlations could not predict heat transfer 
coefficient accurately in pseudo-critical area. Heat transfer deterioration phenomenon at different 
pressure and mass flux was observed as the heat flux increasing gradually. 
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