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Abstract 

The core design concept of the High Performance Light Water Reactor features a thermal 
neutron spectrum, provided by additional moderator water in water boxes and in gaps between 
assembly boxes, and a heat-up of the coolant in three steps from 280°C to 500°C. Intermediate 
coolant mixing has been foreseen by mixing chambers underneath and above the core to 
overcome the hot channel issue of a core design with a large enthalpy rise. The paper 
summarizes the various analyses performed within the project HPLWR-Phase 2 with respect to 
this core design and assesses how far the initial design target has been met. 

1. Introduction 

The High Performance Light Water Reactor is a conceptual design of a Supercritical Water 
Cooled Reactor, worked out from 2006 to 2010 by a consortium of 13 partners of 8 Euratom 
member states within the 6th European Framework Program as their contribution to the 
Generation W International Forum. Starflinger et al. [1] summarize the HPLWR Phase 2 project 
and introduce the tasks of the project partners. Basically, the core of such a reactor can be 
designed with a thermal or fast neutron spectrum. Using synergies within the International 
Forum, however, the partners decided to concentrate mainly on a thermal core design, as will be 
described next, leaving the fast core studies to Japanese scientists, see Ishiwatari et al. [2]. 

2. HPLWR Thermal Core Design 

2.1 Design Target 

Aiming at a net electric power of around 1000MW and a net efficiency of almost 44%, the target 
thermal power of the reactor core needs to be 2300MW, confirmed by steam cycle analyses of 
Brandauer et al. [3]. Early cycle studies by Dobashi et al. [4] indicated an optimum thermal 
efficiency at a feedwater temperature of 280°C which was kept constant also for the present 
study. The target core outlet temperature was chosen as 500°C which is still rather low for a once 
through steam cycle with single reheat, compared with latest fossil fired power plants, but 
appears to be challenging enough with regard to available fuel cladding materials. Their peak 
temperature limit was targeted at 630°C which is not only a challenge for oxidation and 
corrosion protection, but also for their creep strength and resistance to stress corrosion cracking. 
The fuel centreline temperature is a function of the linear power of the fuel rod. The latter one 
has been limited to 39kW/m under nominal conditions. To be competitive with respect to latest 
pressurized water reactors, the target burn up should be at least 60 MWd/tHM. Like with boiling 
water reactors, boron acid cannot be used to compensate the excess reactivity at the beginning of 
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a bum-up cycle, so that burnable absorbers like Gd must be used instead. The target power and 
temperatures result in a coolant mass flow rate of 1179kg/s. Schlagenhaufer et al. [5] suggest a 
feedwater pressure of 25MPa for all load conditions which keeps some margin from the critical 
pressure of 22.1MPa. 

2.2 General Design Strategy 

These target data differ from conventional light water reactors not only by the higher pressure 
and core outlet temperature, but also by a significantly higher enthalpy rise in the core. Indeed, 
the difference between life steam enthalpy and feedwater enthalpy of 1936kJ/kg exceeds the one 
of pressurized water reactors by around a factor of 8. Assuming an overall hot channel factor of 
2 between the peak and the average coolant heat-up, this enthalpy rise would result in peak 
coolant temperatures of 1200°C which is far beyond the target temperature limit. A strategy to 
overcome this issue can be learned from fossil fired boiler design. These boilers are 
characterized by multiple heat-up steps with intensive coolant mixing between them to eliminate 
hot streaks. 
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Figure 1 Sketch of the coolant flow path 

Schulenberg et al. [6] applied such a strategy for a thermal core layout with a first heat-up of 
50% of the coolant as moderator water, comparable with the economizer of a fossil fired boiler, 
as sketched in Figure 1. After mixing with the mulaining feedwater, supplied through the 
downcomer, the second heat-up should be in the evaporator assemblies in the centre of the core, 
followed by coolant mixing in a mixing chamber above the core. From there, the coolant is 
directed downwards in assemblies of the first superheater, surrounding the evaporator, to be 
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Schulenberg et al. [6] applied such a strategy for a thermal core layout with a first heat-up of 
50% of the coolant as moderator water, comparable with the economizer of a fossil fired boiler, 
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mixed again in an annular chamber underneath the core. Final heat-up to the envisaged core 
outlet temperature of 500°C was proposed to happen in a second superheater stage with upward 
flow again in assemblies at the core periphery. Assuming a hot channel factor of 2 for each heat-
up step, as an initial guess, the power ratio of evaporator to superheater 1 to superheater 2 should 
be around 4:2:1 to reach the same peak coolant temperature in each region. The proposed core 
layout is trying to reach this power ratio by placing the second superheater at the core periphery 
where the neutron leakage is reducing the neutron flux anyway. Meanwhile, the concept has 
been worked out to a substantial detail to assess if the design target has been met. 

2.3 Design Concept 

A mechanical design of core components was worked out by Fischer et al. [7] which was 
updated recently by Koehly et al. [8] to account for the optimized moderator flow path indicated 
in Figure 1. Schulenberg et al. [9] summarize the basic features of the mechanical design and 
give a status of the first analyses performed for this concept. Some figures given here shall 
illustrate this design again to understand the following analyses. 

A cut out view of a single fuel assembly is shown in Figure 2, left. The assembly box and the 
water box are made of a stainless steel sandwich construction with an internal honeycomb 
structure to improve the thermal insulation, as reported by Herbell et al. [10]. 40 fuel rods with 8 
mm outer diameter are arranged with a pitch to diameter ratio of 1.18. A wire wrapped around 
each fuel rod with an axial pitch of 200 mm serves as a spacer providing efficient coolant 
mixing. The active core height of 4.2 m leads to a total core height of 5.331 m including inlet 
and outlet sections as well as a fission gas plenum. 
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Figure 2 Assembly design with wire wrapped fuel rods (left) and honeycomb structures of the 
assembly and moderator box (right). A square control rod is inserted from top. 
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Figure 3 Assembly cluster design with 
head and foot piece; control rods are 
running inside 5 of the 9 moderator 
boxes, inserted from the top. 

The arrangement of 9 of these assemblies to an assembly cluster with common head and foot 
pieces is illustrated in Figure 3. The moderator boxes are welded into the head piece, running 
through the upper mixing chamber and through the assemblies. Window elements in the head 
piece are releasing the steam horizontally at the evaporator or superheater 2 outlet. Inside the 
foot piece, a channel system is collecting all moderator water of each cluster to supply it to the 
gaps between the assembly boxes through horizontal openings in the foot piece. Square control 
rods, as proposed by Schlagenhaufer et al. [11], are running inside 5 of these water boxes as 
shown in Figs. 2 and 3. Inlet orifices avoid a mismatch between mass flow rates of moderator 
boxes with and without control rods. Two layers of spacer pads between assembly boxes are 
minimizing their bending as discussed by Schulenberg et al. [9]. 

3. Summary of Analyses Performed for the Thermal Core Design 

Meanwhile, a large number of core design analyses have been completed to assess the feasibility 
[18]. The steady-state, full load power distribution of this core design has been analyzed in detail 
with coupled neutronic/thermal-hydraulic analyses for an equilibrium burn-up cycle. Local 
coolant and cladding temperatures were predicted with sub-channel and even with CFD 
analyses, and structural mechanics analyses were performed to yield deformations and stresses of 
core components [9]. The results enable to estimate the hot spot temperatures and the achievable 
burn-up and to quantify uncertainties as well as allowances for operation. 

An equilibrium burn-up cycle has been predicted with KARATE and SPROD for this core, using 
up to 4 cycles of 1 year each. Different from conventional light water reactors, the new assembly 
clusters are not inserted at the outer core positions but rather at the outer positions of the 
evaporator region, whereas older assembly clusters are preferred in the superheater 2 region to 
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achieve the envisaged power distribution. The pattern of clusters of different age is shown in 
Figure 4. The small upper numbers 4 and 6 refer to the cluster types used to replace the fuel as 
defined in Table 1. Solid lines separate evaporator from superheater clusters. Four fuel rods of 
each assembly have been doped with Gd for compensation of excess reactivity. The shuffling 
scheme and the control rod pattern are explained in [18]. 
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Figure 4 Age of assembly clusters in the equilibrium core 

Cluster 
type 

Axial 
segment 

235U Enrichment [w/o] Gd203 
conten 

t
Basic Corner With 

Gd 

4 Bottom 6.0 5.0 5.5 2.0 

Top 7.0 6.0 6.5 2.0 

6 Bottom 6.5 5.5 6.0 3.0 

Top 7.0 6.0 6.5 3.0 

Table 1 Enrichment of assembly clusters to replace fuel 

The assembly-wise radial bum-up distribution achieved at the end of the equilibrium cycle is 
shown in Figure 5. (The small upper numbers indicate the assembly number). Whereas some 
assemblies in the evaporator region are reaching a discharge bum-up of more than 50 GWd/tHm 
at mid core height, the average discharge bum-up is only 32.5 GWd/trim which means that the 
design target has not yet been met. 
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Figure 5 Burn-up distribution at the end of an equilibrium cycle at mid core height in GWd/tHm 
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Figure 6 Assembly averaged, relative core power distribution at the end of an equilibrium 
cycle. 
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The core power distribution, shown exemplarily at the end of an equilibrium cycle in Figure 6, 
reflects the envisaged power split with the highest power in the evaporator region, where the 
coolant has still the largest margins from the target peak coolant temperature. The radial peaking 
factors within each heat-up step can be compensated to some extend by inlet orifices of the 
clusters, proving more coolant mass flow rate to clusters with higher power while restricting the 
mass flow of clusters with lower power. As an example, the coolant mass flow distribution at the 
end of an equilibrium cycle is shown in Figure 7. To simplify the design, however, inlet orifices 
for each individual assembly have not been considered yet in this design stage. 
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Figure 7 Coolant mass flow rate of assemblies in kg's at the end of an equilibrium cycle. 

The local power distribution of individual fuel rods inside each assembly is influenced by the 
radial flux gradient, which is largest in the superheater assemblies. Monti [12] succeeded to 
estimate the power of each fuel rod of the core by analyzing first the global flux distribution with 
the neutron transport code ERANOS coupled with the thermal-hydraulic code TRACE, which he 
multiplied then with the power distribution of a single assembly analyzed with MCNP5 for a 
given neutron flux. An exemplary analysis of such a pin power reconstruction technique has 
been performed for a core with fresh fuel of uniform enrichment, but its results can also be taken 
to estimate the local peaking factor of the core described above. 

Further local power peaking factors arise from control rods which are inserted at the beginning 
of each equilibrium cycle to compensate the excess reactivity, from Gd poisoning of some fuel 
rods and its bum-out towards the end of the cycle, and from unavoidable deformations of 
assembly boxes. As examples of local power peaking factor analyses, we show in Figure 8 the 
change of the local power distribution of a single assembly cluster due to bum-up effects. 
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Figure 7   Coolant mass flow rate of assemblies in kg/s at the end of an equilibrium cycle. 

The local power distribution of individual fuel rods inside each assembly is influenced by the 
radial flux gradient, which is largest in the superheater assemblies. Monti [12] succeeded to 
estimate the power of each fuel rod of the core by analyzing first the global flux distribution with 
the neutron transport code ERANOS coupled with the thermal-hydraulic code TRACE, which he 
multiplied then with the power distribution of a single assembly analyzed with MCNP5 for a 
given neutron flux. An exemplary analysis of such a pin power reconstruction technique has 
been performed for a core with fresh fuel of uniform enrichment, but its results can also be taken 
to estimate the local peaking factor of the core described above. 

Further local power peaking factors arise from control rods which are inserted at the beginning 
of each equilibrium cycle to compensate the excess reactivity, from Gd poisoning of some fuel 
rods and its burn-out towards the end of the cycle, and from unavoidable deformations of 
assembly boxes. As examples of local power peaking factor analyses, we show in Figure 8 the 
change of the local power distribution of a single assembly cluster due to burn-up effects. 
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Figure 8 Local power peaking factors of an evaporator cluster with inserted control rods at the 
beginning of a burn-up cycle (left; corner rods contain 2.5% Gd2O3) and with Gd burn-out after a 

burn-up of 20GWd/tBm (right; control rods extracted) 

As a measure to manage the high enthalpy rise of the coolant in the core with such power 
peaking factors, an effective coolant mixing inside assemblies and between each heat up step has 
been a key requirement of this core concept. Mixing between sub-channels inside assemblies has 
been studied with sub-channel analyses by Himmel et al. [13]. A single wire wrapped around 
each fuel rod, which had already been applied successfully to sodium cooled fast breeder 
reactors in the past, turned out to be an effective mixing device which works well in both flow 
directions. It allows using the same assembly design in the evaporator as well as in both 
superheater sections. As a consequence of this mixing, even a radial power gradient of 20% 
inside a single assembly of superheater 2 caused only a coolant temperature non-uniformity of 
25°C at the outlet, which corresponds to an enthalpy peaking factor of 1.12. 

Coolant mixing in the upper and lower mixing chambers was studied by Wank [14] with the 
CFD code STAR-CD. The coolant enthalpy differences at the inlets of superheater 1 could be 
minimized by additional walls welded into the upper mixing chamber. Using the core power 
distribution as described above, Wank obtained a maximum enthalpy difference of around 
45 kJ/kg at superheater 1 inlets. Similarly, mixing in the lower mixing chamber could be 
improved by adding swirl nozzles to the outlets of superheater 1 clusters in form of bended tubes 
welded with the core support plate. These swirl nozzles are causing a ring vortex in the lower 
mixing chamber which lower the enthalpy differences at superheater 2 inlets significantly. As a 
result, Wank [14] predicts there a maximum enthalpy difference of around 30 kJ/kg. 

A large number of statistical uncertainties are contributing additionally to the peak coolant and 
peak cladding temperatures. Some of them were studied systematically during this project, like 
fuel rod displacements, partial blockage of a sub-channel, bending of assembly boxes and the 
uncertainties of codes taken for predictions. Starflinger et al. [18] discuss these uncertainties in 
more detail, concluding that an overall peaking factor of these statistical uncertainties of 1.2 will 
hardly be exceeded. 
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4. Hot Channel Assessment 

The analyses summarized above lead to the following conclusions for the peak coolant outlet 
temperature of the hottest sub-channel of this core design. 

In a first step, we derive the hot channel factors for coolant enthalpies. The radial peaking 
factors of assembly averaged coolant enthalpies throughout the equilibrium cycle are a 
consequence of the radial power form factors at beginning and end of cycle (BOC and EOC, 
resp.), divided by the coolant mass flow rate of each assembly. They range between 1.15 and 
2.36 as shown in Figure 9, left. 

H
o
t c

h
a
n
n
e
l f

a
ct

o
r 

4 

3 

2 

■ Allowances 
❑ Uncertainties 
• Local peaking inside FA 
■ Radial peaking factor 

• 

EVA SH1 SH2 EVA SH1 SH2 

 I. 4 

C
o

o
la

n
t 

en
th

al
p

y 
[k

J/
kg

] 

I:Average inlet enthalpy ■ Mixing non-uniformity 

I 0 Average enthalpy rise ■ Peak enthalpy rise 

3900 

3400 

2900 

2400 

1900 

1400 

1 11 

r. 

600 

EVA SH1 SH2 EVA SH1 SH2 

BOC EOC BOC EOC 

Figure 9 Hot channel factors (left) and coolant enthalpy rise (right) in the evaporator (EVA), 
the first superheater (SH1) and the second superheater (SH2} assemblies at beginning (HOC) 

and end (EOC) of an equilibrium burn-up cycle. 

The local enthalpy peaking factors inside fuel assemblies are caused 

- by the gradient of the neutron flux causing power peaking factors of individual fuel 
rods, 

- by control rods and 

- by Gd-poisoning of some fuel rods for compensation of excess reactivity. 

While the local power peaking factors exceed even a factor of 1.3, as shown in Figure 8, most 
of these non-uniformities are mixed out in the coolant by the wire wrapped around the fuel 
rods. As a conclusion, we need to account for a local peaking factor of the coolant enthalpy of 
1.15 only. 
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Uncertainties arise primarily 

- from bending of assembly boxes, which is limited to max. 0.5 mm because of the 
spacer pads of these boxes as discussed by Schulenberg et al. [9], 

- from uncertainties of neutronic and sub-channel codes and 

- from local blockage of the coolant flow path. 

We can assume that these uncertainties are statistical errors, so that they sum up rather as the 
sum of variances. In total, however, an uncertainty of 10% is not considered to be too 
conservative. Details are given in [18]. 

Finally, we need to account for allowance for operation and for the limited accuracy of the 
core and plant instrumentation. We assume a factor of 1.15 as a realistic guess, confirmed by 
first analyses of the control system by Schlagenhaufer et al. [5] and by a recent proposal for 
the core instrumentation by Koehly et al. [16]. 

If we multiply these coolant enthalpy peaking factors for each heat up step at BOC and EOC, 
we get the total peaking factors as shown in Figure 9, left. They range between 1.81 and 3.44 
at BOC, decreasing to 1.68 and 2.66 at EOC. In superheaters, these peaking factors exceed 
the target hot channel factor of 2 mentioned in chapter 2.1, whereas the peaking factors in the 
evaporator have obviously some margin. 

This result suggests to increase the power in the evaporator and to decrease it in the 
superheaters with respect to the envisaged power ratio of 4:2:1 (i.e. EVA 57%, SH1 29%, 
SH2 14%). The core design concept described here is following this strategy already to some 
extend. Figure 6 shows a power split of 62%, 30% and 8% at EOC, for EVA, SH1 and SH2, 
respectively. 

The average coolant enthalpies at the inlet and outlet of each heat-up step, Figure 9 right, are 
a consequence of this power split. Due to the residual mixing non-uniformity of the upper and 
lower mixing chambers, the peak inlet enthalpy is slightly higher by up to 45 kJ/kg at SH1 
inlet and up to 33 kJ/kg at SH2 inlet. From these data, the peak coolant enthalpies at the outlet 
of each heat up step can be estimated as the peak inlet enthalpies plus the total peaking factor 
times the average enthalpy difference. 

Finally, the steam table yields the peak coolant outlet temperature for each peak outlet 
enthalpy. We get peak outlet temperatures beyond 600°C, which have obviously no more 
margin for the peak cladding temperature to stay below the material limits, in the evaporator 
and superheater 1 at BOC, and in superheater 1 at EOC, whereas the second superheater is not 
a cause for concern. Therefore, some further core optimization will be required to improve the 
remaining hot channels using the margins left in the rest of the core. The present result, 
however, is not too far from this optimum. 

The peak fuel temperature is expected in the evaporator, where we predict a maximum linear 
heat rate of 39 kW/m at BOC decreasing to 32.5 kW/m towards EOC. The peak cladding 
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a consequence of this power split. Due to the residual mixing non-uniformity of the upper and 
lower mixing chambers, the peak inlet enthalpy is slightly higher by up to 45 kJ/kg at SH1 
inlet and up to 33 kJ/kg at SH2 inlet. From these data, the peak coolant enthalpies at the outlet 
of each heat up step can be estimated as the peak inlet enthalpies plus the total peaking factor 
times the average enthalpy difference.  

Finally, the steam table yields the peak coolant outlet temperature for each peak outlet 
enthalpy. We get peak outlet temperatures beyond 600°C, which have obviously no more 
margin for the peak cladding temperature to stay below the material limits, in the evaporator 
and superheater 1 at BOC, and in superheater 1 at EOC, whereas the second superheater is not 
a cause for concern. Therefore, some further core optimization will be required to improve the 
remaining hot channels using the margins left in the rest of the core. The present result, 
however, is not too far from this optimum.  

The peak fuel temperature is expected in the evaporator, where we predict a maximum linear 
heat rate of 39 kW/m at BOC decreasing to 32.5 kW/m towards EOC. The peak cladding 
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surface temperature has been predicted by Monti [12] for a core with fresh fuel to be just 
15°C hotter than the peak coolant temperature of the hottest sub-channel, since the hottest 
spots appear in the low power range of superheater 2. A detailed CFD analysis and 
component tests of the evaporator assemblies will be needed, however, to confirm these 
results, since Chandra et al. [17] predicted severe hot spots in a small scale evaporator 
assembly when they were searching for local effects of deteriorated heat transfer. 

5. Conclusions 

As a conclusion, most of the hot channel factors meet with the initial expectations of 
Schulenberg et al. [6], except the radial form factors in the superheater sections and the 
limited discharge burn-up. The main reason for both issues is the large size of the fuel 
assembly cluster. While the cluster design is appropriate in the evaporator region, where it 
enables a low form factor, easy fuel shuffling during revisions and standard control rod 
drives, the cluster size extends over the whole width of most of the superheater regions each. 
Thus, fuel shuffling from outside to inside, flattening the power profile, is disabled. 
Moreover, a compensation of enthalpy peaks by higher coolant mass flow rates in local 
superheater regions with higher power is disabled as long as the large assembly clusters can 
only be equipped with a common inlet orifice. Therefore, a recommendation for future design 
could be to control the inlet mass flow rate of each assembly individually. Another reason for 
the limited burn-up is the use of stainless steel which is more neutron absorbing than 
Zircalloy and a higher percentage of structural material than in conventional light water 
reactors. 

The biggest uncertainties of this core design, however, are still caused by heat transfer 
predictions, in particular in evaporator region with high linear power, and by material 
properties of the stainless steel claddings. Some realistic fuel assembly tests will be needed to 
reduce these uncertainties to acceptable limits. 

This paper highlights only some key results of the entire core design assessment. More details 
like stability limits, risks of flow reversal, linear power distribution, cladding temperatures, 
and more are given in [18]. 
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