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Abstract 

The High Performance Light Water Reactor (HPLWR) is the European version of the various 
supercritical water cooled reactor proposals. The paper presents the activity of KFKI-AEKI in the 
field of neutronic core design within the framework of the "HPLWR Phase 2" FP-6 and the 
Hungarian "NUKENERG" projects. As the coolant density along the axial direction shows 
remarkable change, coupled neutronic- thermohydraulic calculations are essential which take into 
account the heating of moderator in the special water rods of the assemblies. A parametrized 
diffusion cross section library was prepared for the HPLWR assembly with the MULTICELL 
neutronic transport code. The parametrized cross sections are used by the KARATE program 
system, which was verified for supercritical conditions by comparative Monte Carlo calculations. To 
design the HPLWR equilibrium core preliminary loadings were assessed, which contain insulated 
assemblies with Gd burnable absorbers. The fuel assemblies have radial and axial enrichment 
zoning to reduce hot spots. 

1. Introduction 

As the target average outlet temperature (500 C) and the maximum foreseen cladding temperature 
(-630 C) are very close to each other, the 3-pass core concept was proposed [1]. The hot spots in 
this proposal can be potentially eliminated by multiple flow of coolant through the active core with 
mixing after each passing. First the ascending coolant is heated in the central evaporator region of 
the core passing through the pseudocritical point, then after mixing in the upper mixing chamber 
flows downwards in the first superheater region. After leaving the lower mixing chamber, the 
coolant flows again upwards in the second superheater region located at the core periphery. 

2. Testing the KARATE code system by the HPLWR Neutronic Benchmark 

The KFKI Atomic Energy Research Institute uses the KARATE code system for core design. As the 
original KARATE [2,3] which is used for the calculation of VVER-440 reactors worked only in 
hexagonal geometry, we had to improve our code system to be able to treat the square assemblies 
planned in the HPLWR Phase 2 project. The improvement concerns both the MULTICELL 
neutronic transport code and the GLOBUS nodal code of the KARATE system. The more 
heterogeneous fuel assembly structure than usual, the smaller node size than usual, the steep axial 
and radial water density variation and last but not least the lack of experimental results require a 
thorough verification with the help of a Monte Carlo code. Realistic full core calculation of the 
HPLWR three pass core at prescribed thermo-hydraulic distribution with reflector was carried out 
with the help of the MCNP4C Monte Carlo code [4]. The arrangement of the HPLWR core is as 
follows. 
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In the HPLWR reactor core the basic unit is a closed fuel assembly with thermal insulation 
comprising of 40 fuel rods. Inside the assembly a moderator channel is applied which together with 
the assembly gap regions serves as moderator for the fuel pins in the tight lattice. One cluster (see 
Figure 1), the basic element of fuel shuffling consists of 9 assemblies with enrichment zoning. The 
control rods can be inserted into five of nine assemblies. The reactor core having 45 degree 
symmetry consists of 156 clusters surrounded by reflectors. 
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Figure 1 The MCNP model of the 9 assembly cluster with inserted control rods. 

In order to avoid the possible buoyancy effects in the assembly a new flow path was proposed [5]. 
The new flow path of descending moderator flow, ascending gap flow and descending reflector 
water flow with mixing with the downcomer flow has been modeled in the KARATE code system 
at beginning of life, full power conditions. The calculated water density distributions served as a 
basis for defining the coolant, moderator channel and gap water densities in the benchmark (See 
Figures 2-4). 
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Figure 2 Prescribed water density distributions for the evaporator. 
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Figure 3 Prescribed water density distributions for superheater 1. 
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Figure 4 Prescribed water density distributions for superheater 2. 

The core main data can be found in [6]. The definition of cluster types in the test can be seen in 
Table 1. 

Table 1 Definition of cluster tunes in the test. 
Cluster 

type 
Basic 

enrichment 
[w/o] 

Corner rod 
enrichment 

[w/o] 

Gd doped rod 
enrichment 

[w/o] 

No. of Gd 
doped 
rods 

Gd2O3
conten 

t 
[w/o] 

1 4.0 3.0 - - -
2 5.0 4.0 - - -
3 6.0 5.0 5.5 4 2.0 
4 7.0 6.0 6.5 4 2.0 
5 3.0 2.0 - - - 
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The core map of cluster types is presented in Figure 5 for the quarter of the core. The central 
evaporator, the first superheater and the second superheater at the core periphery are separated by 
black lines. 
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Figure 5 The core map of the test case. XX: Cluster sequence number. YY: Cluster type. 

The rod positions in the three defined cases can be found in Table 2. The rod insertion is illustrated 
in Figure 6. 

Table 2 
Rod positions in the test. 

Cluster Case A 
Rod position 

[cm] 

Case B 
Rod position 

[cm] 

Case C 
Rod position 

[cm] 
5,28 420. 0. 0. 
11,23 420. 0. 0. 

9 420. 0. 0. 
18,24 420. 0. 210. 
Rest 420. 420. 420. 
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Figure 6 Control rod positions for case C. XX: Cluster sequence number. YY: Control rod insertion 
fraction (0: out, 1: in) 

The MCNP model of the radial reflector can be seen in Figure 7. 
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Figure 7 MCNP model of the HPLWR radial reflector. 

The kdrand 3D power distribution was calculated with the MCNP and GLOBUS codes. The reflector 
is modeled in detail in the MCNP calculations, while in the GLOBUS code albedo boundary conditions 
were used. The criticality results of the benchmark can be found in Table 3. 
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The 5th Int. Sym. SCWR (ISSCWR-5) 
Vancouver, British Columbia, Canada, March 13-16, 2011 

Table 3 
The criticality results of the HPLWR full core benchmark 

Test case MCNP 
keff 

MCNP 
St. dev. 

GLOBUS 
keff 

Reactivity 
difference 

A 1.07003 0.00005 1.06486 -0.00454 
B 1.02285 0.00005 1.01859 -0.00409 
C 1.03199 0.00005 1.02629 -0.00538 

P062 

The frequency of GLOBUS-MCNP nodal power distribution differences relative to the maximum can 
be seen in Figure 8 for all the test cases. On the basis of this figure an engineering safety factor of 1.09 
was chosen which covers the hot spot power calculation uncertainty. 
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Figure 8 GLOBUS-MCNP nodal power distribution differencies relative to the maximum. 

As there are no detailed pin wise calculations in the supercritical version of KARATE, the maximum 
intra assembly pin wise peaking factors were evaluated from this test for all the three flow regions (See 
Table 4). 

Table 4 
Maximum intra assembly pin wise peaking factors for the flow 
regions. 

Max (kk) for cases A, B and C 
Evaporator 1.22 

Superheater 1 1.28 
Superheater 2 1.30 

3. Cross Section Generation for HPLWR 

The KARATE code system applies the GLOBUS nodal code which uses the parametrized 2-group 
cross sections generated by the MULTICELL neutronic transport code. First burnup calculations were 
carried out at fixed, average technological parameters for assemblies with and without absorber cluster. 
At certain burnup points branch calculations were performed at wide range parameter combinations. 
After fitting the coefficients of cross section formulas the database of coefficients was prepared. The 
evaluation of the cross sections at the necessary parameters is performed during the nodal calculations. 
The interpolation of cross sections between the inserted rod and withdrawn rod cases is linear. The 
cross section dependence is as follows: 
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As there are no detailed pin wise calculations in the supercritical version of KARATE, the maximum 
intra assembly pin wise peaking factors were evaluated from this test for all the three flow regions (See 
Table 4).  
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cross sections generated by the MULTICELL neutronic transport code. First burnup calculations were 
carried out at fixed, average technological parameters for assemblies with and without absorber cluster. 
At certain burnup points branch calculations were performed at wide range parameter combinations. 
After fitting the coefficients of cross section formulas the database of coefficients was prepared. The 
evaluation of the cross sections at the necessary parameters is performed during the nodal calculations. 
The interpolation of cross sections between the inserted rod and withdrawn rod cases is linear. The 
cross section dependence is as follows: 
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, where 
Bu: Burnup 
235U: 235U concentration (optional) 
238•U-r: TIR 

II concentration (optional) 
239Pu: 239Pu concentration (optional) 
135Xe: 135Xe concentration 
149,,Nm: 149 

"Sin concentration 
Pc: Coolant density 
p.: Moderator rod water density 
pg: Gap water density 
Tf: Fuel temperature 
F: Absorber cluster insertion factor 
The cross section methodology for HPLWR has been tested in the following way: Hypothetic fuel 
history calculations including water density, power density changes and control rod insertion for the 
bottom, middle and top slice of fuel assemblies were carried out in several cases. The reference is the 
MULTICELL transport code. The burnup history calculations with the help of the parametrized cross 
sections have been imitated using the MONOKLI code. The MONOKLI code calculates the same fuel 
history as the MULTICELL code but uses only the 2-group parametrized cross sections. 
The MONOKLI code has two options: 

• The concentrations of actinides 235U, 238U and 239PU are calculated directly by applying their 
microscopic cross sections. 

• The concentrations of actinides 235U, 238U and 239PU are not calculated directly. 
The MONOKLI code evaluates the keff with the parametrized cross sections using the buckling from 
the MULTICELL criticality calculation. The deviation of the keff of MONOKLI from one characterizes 
the accuracy of cross section parametrization. keff is presented in Figure 9 at irradiation history 
parameters of the middle of core height. Figure 9 shows the superiority of the first option, so the 
explicit calculation of the above actinides will be applied. 
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Figure 9 Comparison of few-group parametrization accuracy at the middle height for three cycles. 
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Figure 9 Comparison of few-group parametrization accuracy at the middle height for three cycles.  
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4. Equilibrium core design with the KARATE code system 

In the HPLWR reactor the thermal properties show steep variation near the pseudocritical point. The 
coupled neutronic-thermohydraulic calculation is essential for determining the proper criticality and 
power distribution data. For thermohydraulic calculations the modified SPROD code [7] of the Tokyo 
University using the Watt and Jackson-Hall heat transfer correlations [8,9] was applied. In the parallel 
channel SPROD code the IAPWS-IF97 water property functions are used. To control the maximum 
cladding temperatures cluster orifices were applied to tune the mass flow distributions in the three flow 
regions of the core. As a consequence of the application of burnable absorbers considerable power 
distribution change can be observed in the HPLWR core which results in the mass flow redistribution 
among the assemblies affecting the cladding temperatures. To take into account this redistribution the 
pressure drop calculation of the coolant in the core was implemented which includes the local pressure 
losses and the distributed pressure loss along the core. The distributed pressure loss of Rehme [10] was 
applied for the assembly with wire spacers. During the equilibrium core calculations at full power 
conditions equilibrium Xe was reached. 

The main parameters of the calculation: 
• Nominal pressure=25. MPa 
• Total power=2.3 GW 
• Flow fraction to downcomer=0.50 
• Flow fraction to moderator=0.50 
• Total mass flow=1179. kg/s 
• Pressure vessel inlet temperature=280. C 
• Core outlet temperature=502. C 

Starting from the first loading of the HPLWR, equilibrium cycle was reached, which contains 
assemblies with Gd integrated poison. Applying 6.7 % average enrichment and reloading one third of 
the fuel clusters, 355 day cycle length was achieved. The following main considerations were taken 
into account in the equilibrium cycle design at normal operation conditions: 
• Keeping the linear power limit of 390 W/cm 
• Keeping well below the fuel centerline temperature under the melting point 
• Keeping the maximum cladding temperature below 630 C 
• Achieving as high discharge burnup as possible 
• Compensation of excess reactivity mainly by Gd burnable poison 
• Burnup of Gd burnable poison of 1st cycle fuel clusters for achieving longer cycle length 

The definition of cluster types and the age of clusters used in the equilibrium cycle calculations is 
presented in [11]. On the basis of previous calculations with flat axial enrichment distribution resulting 
in bottom peaked power, axial enrichment profile has been introduced. Concerning the assembly-wise 
radial burnup distribution at the core mid-plane in EOC state, it is worth recognizing the orientation of 
the clusters: the fuel assemblies in superheater 1 and 2 near to the flow region boundaries with higher 
water densities have the highest burnup in their clusters [11]. The assembly-wise radial power 
distributions normalized to the entire core show considerable power redistribution between BOC and 
EOC states. In spite of the advantageous burnup orientation of the clusters mentioned earlier, the 
assembly-wise peaking factors normalized to flow regions in BOC and EOC states are quite high for 
superheater 1 and 2, exceeding the design expectations [1]. 
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To reduce the maximum cladding temperatures in the hot spots of superheaters 1 and 2 cluster orifices 
were applied at the inlet of some clusters. With the application of this by far not optimized orifice 
distribution a 20 C degree of node average cladding temperature reduction was achieved, but according 
to an estimation based on additional subchannel analyses, taking into account fuel assembly bending, 
not perfect mixing in mixing chambers, assigning uncertainties to subchannel codes and heat transfer, 
the cladding temperature limit can not be kept yet [11]. The average linear power generation axial 
redistribution from BOC to EOC state in the flow regions can be seen in Figure 10. 
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Figure 10 Average linear power generation in the flow regions. Axial redistribution from BOC to EOC. 

The average discharge burnup of the core is rather low, 32.5 [MWd/kgU] , which can be accounted for 
the use of more absorbing steel materials instead of the zircalloy and for the application of more 
structural materials than in conventional water cooled reactors. Table 5 summarizes the linear power 
hot spot data at BOC and EOC conditions. 

Table 5 
Equilibrium core calculational results. 

BOC EOC 
k, 2.8186 2.3546 
kk 1.22 1.22 
Film" [Wlcm] 97.5 97.5 
f 

cn.5icit 
1.09 1.09 

Phi, =Phnav-kv-kk-fcng [Wlcm] 365.4 3053 

Tfuaccntgiinchat [K] 2390. 2156. 
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The denominations in the table are as follows: 
BOC Beginning of cycle 
EOC End of cycle 
kv Volumetric peaking factor 
kk Pin-wise peaking factor 
Plinav Average linear power density 
feng Engineering factor of linear power density 
Tfuel,centerline

hot
 Fuel centerline temperature in the hot spot 

The BOC maximum pin power Plinav• kv• kk' feng value is 365.4 [W/cm], which is rather close to the 390 
W/cm limit. Only 6% margin for normal transients is reserved. 

5. Conclusions 

Fine mesh calculations are necessary to follow up the fuel rod linear power evolution during the whole 
cycle. At the studied cases the cladding temperatures are determined only for the most loaded fuel 
nodes. Taking into account the intra assembly power peaking, the maximum cladding temperature 
would be higher, but the applied spiral wrap enhances mixing, which alleviates the consequences, so 
subchannel analysis is also needed for further assessments. By introducing newer assembly types and 
applying self-consistent assemblywise orificing more optimal core loading can be potentially achieved 
for reducing the calculated clad surface temperatures and linear powers. 
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