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Abstract 

This paper is devoted to elucidate the effect of flowing orientation on the flow and heat transfer 
characteristics of supercritical pressure water in the large specific heat region (LSHR) where 
significant thermo-physical property variations occur and may cause heat transfer enhancement or 
deterioration. In order to get insight into the mechanism governing heat transfer enhancement or heat 
transfer deterioration, experimental results of flow and heat transfer of supercritical pressure water in 
inclined upward smooth tube of sb25x2.5mm and 41:032x3mm with an angle of a =20° are compared to 
that in horizontal smooth tubes with a diameter of 41032 x3mm over a wide range of parameters such as 
pressures ranging from 23 to 28MPa, average heat fluxes up to 600kW/m2, and mass fluxes in the 
range of 200 to 1000 kg/m2• s, and emphasis is placed on the effect of flowing orientation on the flow 
and heat transfer characteristics of supercritical pressure water, especially in the LSHR. It is found that 
there exists distinct difference in heat transfer processes between the horizontal tubes and the inclined 
tubes, strikingly illustrated by the difference in both the temperature distribution and heat transfer 
coefficients distribution on the top and bottom surface of the tubes. In the enthalpy region which far 
away from the LSHR, the temperature on the top wall of the horizontal tube and the inclined tube 
slightly exceeds the temperature on the bottom wall of the corresponding tubes; while in the LSHR , 
there exist huge differences in temperature on the top wall and the bottom wall of the horizontal tubes 
under moderate and high heat fluxes, and the temperature difference between the top wall and bottom 
wall of the inclined tubes is small in comparison to that of the horizontal tubes. Difference in heat 
transfer coefficients between the horizontal tube and the inclined tube exhibits a trend similar to that of 
the wall temperature of the corresponding tubes. The reasons that cause such differences are analyzed. 
Results obtained in this study may be useful for the design of boilers and nuclear reactors operated at 
supercritical pressures. 
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1. Introduction 

With the fast development of economy in the world and the successive progress in human society, 
there exist increasing demands for electricity, and supercritical water-cooled reactors (SCWRS) and 
supercritical (ultra-supercritical) pressure boilers may play more and more important roles in electricity 
supplying due to their distinct advantages, such as high efficiency, relatively low energy cost, low 
pollutant emission and the large capacity. As a result, the flow and heat transfer characteristics of 
supercritical pressure water flowing in passages with different cross sections and different orientations 
has become one of the most important research topics in the power and energy fields. 
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Early studies [1] on the heat transfer of supercritical water have shown that for supercritical water, 
there is a so-called large specific heat region (LSHR), which is generally defined as a region with the 
specific heat of water at constant pressure being greater than 8.4 kJ/(kg.K). Fig. 1 typically shows the 
variation of thermo-physical properties of water with temperature at pressures of 23MPa and 25MPa, 
respectively. It is seen from Figure 1 that although the supercritical pressure water does not experience 
any distinct phase change, its thermo-physical properties, including specific heat, density, dynamic 
viscosity, kinematic viscosity, volumetric expansivity, Prantal number and thermal conductivity etc., 
however exhibit drastic and fast changes with the temperatures in the LSHR. Such thermo-physical 
property changes are quite similar to, but obviously different from, that of the phase change of 
subcritical water, and may have great influence on the flow and heat transfer of supercritical pressure 
water, making the flow and heat transfer of supercritical pressure water substantially different from that 
at subcritical pressures. 

Investigations on the flow and heat 
transfer characteristics of supercritical 
pressure fluids can be traced back to 
about seventy years ago [2], and has 
been carried out by scholars all over the 
world in order to find more and more 
applications of the supercritical 
pressure fluids in various industries and 
engineering [3]. Unfortunately, because 
of the complexity in flow and heat 
transfer of supercritical pressure fluids, 350 355 360 365 370 375 380 385 390 395 400 

7-CC) 

the technical difficulties encountered in 
Fig. 1 Variations of properties of supercritical water with temperature at P=23, 25MPa 

related experiments, and the expensive 
cost of sophisticated equipment and 
measuring techniques necessary for the related studies, the mechanism in flow and heat transfer of 
supercritical pressure fluids, especially in the so called LSHR has not been fully understood yet. For 
example, more than twenty correlations have been proposed to correlate the experimental data of flow 
and heat transfer of supercritical fluids[4-5] and to furthermore predict the heat transfer performance of 
facilities with supercritical pressure fluids as the working medium, but large discrepancies have been 
observed among the prediction results of these correlations, probably owing to the obvious fact that 
these correlations were obtained based on limited experimental data under different conditions. For the 
time being, an existing fact is that none of these correlations can give generally satisfactory results 
under different conditions. Because of the particularity and complexity of heat transfer of fluid at 
supercritical pressures, it is of great significance to thoroughly study the mechanism of heat transfer, 
especially the abnormal heat transfer characteristics of the supercritical water in the LSHR. 
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It should be noted that the previous work on this subject was mainly done in the former USSR and in 
the USA in the 1950s-1980s along with the development of supercritical pressure boilers in these 
countries. A review of the experimental studies was reported by Pioro and Duffey [6]. It should also be 
noted that most of the previous experimental studies focus on the heat transfer characteristics of 
supercritical pressure fluids flowing axi-symmetrically (e.g., upward flow and downward flow) in 
relatively small diameter tube, and only a few were carried out in large diameter tubes (horizontal tube 
or inclined tube) with little experimental data obtained. In order to understanding the effect of flowing 
orientations on the flow and heat transfer characteristics of supercritical pressure water, a series of 
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Fig. 1 Variations of properties of supercritical water with temperature at P=23, 25MPa 
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experiments have been carried out by Xi' an Jiaotong University in Xi' an, China. Based on the 
experimental data obtained, a comparison of the heat transfer characteristics of supercritical pressures 
water in horizontal tubes is made to that in the inclined tubes which was done by Wang [7] and Li [8]. 

2. Experimental apparatus and procedure 

Fig. 2 shows the schematic diagram of the test loop used to carry out the large scale test on heat 
transfer of supercritical water in Xi'an Jiaotong University, Xi'an, China. Deionized water is used as 
the working fluid and is pumped into the circulation system from a water tank by a high pressure piston 
pump. The water gains some heat by passing through a regenerative heat exchanger, and is then 
introduced to a pre-heater to reach the specific test conditions, and then flows into the test section. 
Both the pre-heater and test section are electrically heated by alternative currents of 0-10,000A with 
however low voltages. The whole tubes are thermally insulated by glass wool to minimize the heat 
loss. The water from the exit of the test section flows through the regenerator and the condenser, and 
then returns back to the feed water tank. A mass flow meter is used to measure the mass flux of water. 
The water temperature is measured at different locations by NiCr—NiSi armored thermocouples. 

Fig. 3 shows a schematic diagram of the layout of wall temperature measuring points installed on the 
outer surface of the horizontal and inclined tubes. Two smooth tubes are used in the present study, with 
the parameter of one of them being (I)32 X 3mm and the parameter of another one being (I)25 X 2.5mm. 
Each test section is connected with an unheated tube with a length of 1.5 m to allow for the fully-
developed flow in the tube. Totally 76 NiCr—NiSi K-type thermocouples (00.3 mm) are welded on the 
outer surface of each tested tube to measure the outside wall temperatures. A series of (I)3 mm NiCr—
NiSi armored thermocouples are protruded into the inlet and outlet of the test section to measure the 
bulk temperature. The fluid pressure at the inlet of the test section is measured by a Rosemount 3051 
capacitance-type pressure transmitter, while the pressure drop of the test section is measured by a 3051 
capacitance-type differential pressure transducer. 
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Fig. 2. Schematic diagram of the test loop. 
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In the present study, the pressure P at the inlet of the test section ranges from 23.0 to 28.0MPa, and the 
mass flux G is from 400 to 1000 kg/(m2 s), and the average internal wall heat flux q varies from 200 to 
600 kW/m2. 
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In the present study, the pressure P at the inlet of the test section ranges from 23.0 to 28.0MPa, and the 
mass flux G is from 400 to 1000 kg/(m2 s), and the average internal wall heat flux q varies from 200 to 
600 kW/m2. 
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3. Experimental results and analysis 

Table 1 gives the starting enthalpy and end enthalpy of the large specific heat region (LSHR) of water 
at different pressures. Generally, the LSHR of supercritical water covers an enthalpy range from 
roughly 1700 kJ/kg to 2750 kJ/kg (IFC-67). In the present study, in order to simplify the analysis of the 
experimental results and to place the emphasis on the LSHR, the test section is divided into three parts 
according to the variation of enthalpy of water along the flowing direction, i.e., (1) the low enthalpy 
range (LER) (1000-1700kJ/kg), (2) the large specific heat region (LSHR) or Medium enthalpy range 
(1700-2750 kJ/kg), and (3) the high enthalpy range (HER) (>2750 kJ/kg). 

Table 1 The large specific heat region corresponding different supercritical pressure 
P( a) Starting temperature 

(r) 
Starting enthalpy 

kJ/kg 
Corresponding c, 

kJ/(kg/t) 
End temperature 

(r) 
End enthalpy 

kJ/kg 
Corresponding cp 

kJ/(kg/t) 

23 358.6 1702.161276 8.399646 404.1 2728.474229 8.400625 
25 363.9 1732.506697 8.393465 414.1 2727.437081 8.392556 
28 369.8 1760.187330 8.399276 427.4 2721.883728 8.409070 

Fig.4a and Fig.4b show the typical results obtained in the present study. It can be seen from Fig.4a and 
Fig.4b that both heat transfer enhancement and heat transfer deterioration are observed under different 
conditions. Based on the experimental data, three heat transfer modes can be defined for supercritical 
pressure water, i.e. (1) normal heat transfer; (2) deteriorated heat transfer, with low values of the heat 
transfer coefficient (HTC) in some part of the test section, and (3) enhanced heat transfer, with high 
values of the HTC in comparison to the normal heat transfer. It should point out that it is difficult to 
provide exact definitions of the boundaries among the different heat transfer modes. Fig.5 shows a 
comparison of the HTC value predicted by the Dittus-Boelter correlation to the average HTC value 
obtained in experiments at different heat fluxes. As shown in the Fig.5 that the HTC values predicted 
by the Dittus-Boelter correlation are in very good agreement with the average HTC values obtained in 
the experiments at different heat fluxes in the low enthalpy range, with the HTC being a roughly 
constant of 7-9 kW/(m2 K), and this kind of heat transfer is considered as in the normal heat transfer 
mode in the present study. The HTC value of 7-9 kW/(m2 K) may be considered as the boundary of 
heat transfer deterioration, i.e., once the HTC value is lower than 7-9 kW/(m2 K), the heat transfer 
deterioration is considered to occur. It is also seen from Fig.5 that the HTC values predicted by the 
Dittus-Boelter correlation deviates greatly from the experimental data in the LSHR and the high 
enthalpy region. 

3.1 Effect of Heat Fluxes 

Fig. 4a shows the variation of the wall temperature of the test sections with the increasing of fluid 
enthalpy at various heat fluxes when the pressure is kept 25MPa and mass flux is 600kg/(m2 s). As 
seen in Fig. 4a, regardless of the difference in test section arrangements (horizontal tube, or inclined 
tube), the top surface temperature of the test section is always higher than that of the bottom surface 
temperature, and both the top surface temperature and the bottom surface temperature rise with the 
increasing of heat fluxes. It is seen in Fig.4a that heat transfer deterioration occurs on the top surface of 
horizontal tubes in the low enthalpy region (LER), and the top surface temperature of the horizontal 
tubes reaches a peak value at the early stage of the LSHR region, with the corresponding enthalpy 
being about 1700-1900 kJ/kg, and this peak value of the top surface temperature increases with the heat 
flux. Under the conditions of a heat flux of 300kW/m2, the peak value of the top wall temperature is 
about 476°C occurring at a position with a corresponding water enthalpy 1865 kJ/kg, while the peak 
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value of the top wall temperature is about 620 °C with a corresponding enthalpy 1779 kJ/kg when the 
heat flux is 400kW/m2. 

As mentioned above in this paper, a HTC value of roughly 7-9 kW/(m2 K) is considered as the 
boundary between the normal heat transfer mode and the deteriorated heat transfer mode. It is seen 
from Fig.4a that the heat transfer on the bottom surface of both the horizontal tube and the inclined 
tube is deteriorated in the cases with heat flux of 300-400kW/m2, and, an obvious decrease in HTC is 
observed even on the bottom surface of the horizontal tube even in the low enthalpy region (LER) with 
the increasing in heat fluxes, indicating the heat transfer deterioration becoming worse. The reason of 
this phenomenon can be explained as follows. 
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As seen in Fig.1, there is a drastic and fast variation of the thermo-physical properties of water with the 
increasing of enthalpy in the LSHR region. Before entering into the LSHR region, i.e., in the LER 
region, the fluid near the top surface of the horizontal tube may first reach its pseudo-critical 
temperature, i.e., tom, due to heating from the tube surface, and its temperature may then become much 
higher than tic, but at the same time, the temperature of the fluid in the center of the tube may be still 
much lower than tom. In this case, differences in thermo-physical properties between the fluid near the 
heating surface and the fluid in the center of the tube may be very large, and buoyancy effect may 
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value of the top wall temperature is about 620 °C with a corresponding enthalpy 1779 kJ/kg when the 
heat flux is 400kW/m2. 

As mentioned above in this paper, a HTC value of roughly 7~9 kW/(m2 K) is considered as the 
boundary between the normal heat transfer mode and the deteriorated heat transfer mode. It is seen 
from Fig.4a that the heat transfer on the bottom surface of both the horizontal tube and the inclined 
tube is deteriorated in the cases with heat flux of 300~400kW/m2, and, an obvious decrease in HTC is 
observed even on the bottom surface of the horizontal tube even in the low enthalpy region (LER) with 
the increasing in heat fluxes, indicating the heat transfer deterioration becoming worse. The reason of 
this phenomenon can be explained as follows. 
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obtained from this study at different heat fluxes 

Fig. 6 Variation of the temperature difference with fluid enthalpy at 
different heat fluxes 

As seen in Fig.1, there is a drastic and fast variation of the thermo-physical properties of water with the 
increasing of enthalpy in the LSHR region. Before entering into the LSHR region, i.e., in the LER 
region, the fluid near the top surface of the horizontal tube may first reach its pseudo-critical 
temperature, i.e., tpc, due to heating from the tube surface, and its temperature may then become much 
higher than tpc, but at the same time, the temperature of the fluid in the center of the tube may be still 
much lower than tpc. In this case, differences in thermo-physical properties between the fluid near the 
heating surface and the fluid in the center of the tube may be very large, and buoyancy effect may 
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become significant, resulting in gathering of the low density fluid in the upper half of the tube. 
Meanwhile, the thermal conductivity of the near wall layer of fluid decreases rapidly due to on the one 
hand the fast variation of thermo-physical properties of water (see Fig.1) and on the other hand the 
gathering of low density fluid, leading to increased thermal resistance and weakened heat transfer in 
this layer. With the development of this process along the tube, the increasing in top wall temperature 
augments the density difference between the fluid near the top wall and the fluid in the tube center, 
causing an upward acceleration and inducing the secondary flow [1-2]. One of the characteristics of 
heat transfer deterioration of horizontal tube in the LER region is that the temperature difference 
between the top surface and the bottom surface, i.e., Othor, keeps increasing with the increase of the 
fluid bulk enthalpy, and reaches a maximum when the top surface temperature reaches to the peak 
value. The maximum of Athor is 83°C when the heat flux is 300kW/m2, while it is 221 °C when the heat 
flux is 400 kW/m2, as shown in Fig.6. 

It can be seen from Fig. 4b that there are significant differences in HTC between the top surface and 
bottom surface of the horizontal tubes in the LER region and the LSHR region, and similar 
phenomenon is observed in the inclined test sections. As shown in Fig.4b that the HTC at the bottom 
surface are much higher than that at the top surface, and heat transfer deterioration appears on the top 
surface, but the heat transfer is generally enhanced on the bottom surface in the LSHR region. 
Difference in HTC between the bottom surface and top surface in horizontal tubes is much larger than 
that in inclined tubes. The maximum value of the HTC corresponds to a bulk fluid enthalpy of 
2105kJ/kg, which is slightly less than the pseudocritical bulk fluid enthalpy. This phenomenon is 
similar to the results of Yamagata et al [11]. 

Under identical test conditions in the present study, in the LER and LSHR region, the distribution of 
HTC on the bottom surface of the horizontal tubes is generally similar to that of the inclined tube, but 
the magnitude of the HTC on the bottom surface of the horizontal tube is however larger than that of 
the inclined tube. On the contrary, the HTC on the top surface of the horizontal tubes is smaller than 
that of the inclined tube. Difference in HTC between the horizontal tube and the incline tube 
diminishes in the HER region. 

3.2 Effect of Pressures 
Fig. 7a and Fig. 7b shows the variation of the wall temperature and HTC with the increasing of fluid 
enthalpy at different pressures when heat flux is 300 kW/m2 and mass flux is 600 kg/(m1s). It is seen 
from Fig. 7a that in the LSHR region, temperature on the top surface of both the horizontal tube and 
the inclined tube rises with the increasing in pressure. As shown in Fig.7a and Fig.7b, heat transfer 
deterioration occurs at both 23Mpa and 25MPa pressures on the top surface of the horizontal tube in 
the LER (nearby the large specific heat region). When the pressure is 23Mpa, the peak temperature 
value on the top surface of the horizontal tube is 476°C at a axial position corresponding to a bulk 
enthalpy of 1865.4KJ/Kg, while when the pressure is 25Mpa, the peak wall temperature value on the 
top surface of the horizontal tube is 467.91°C at a axial position corresponding to a bulk enthalpy of 
1731.3KJ/Kg, indicating generally slight effect of pressure on the peak wall temperature value on the 
top surface of the horizontal tube. 

It is seen from Fig. 7b that the distribution curves of HTC on the bottom surface of the two above-
mentioned tubes (horizontal tube and inclined tube) are quite similar at different pressures except in the 
LSHR region, where the magnitude of the HTC on the bottom surface of the horizontal tube is however 
larger than that of the inclined tube. At a pressure of 25.0MPa, the peak of HTC on the bottom of the 
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become significant, resulting in gathering of the low density fluid in the upper half of the tube. 
Meanwhile, the thermal conductivity of the near wall layer of fluid decreases rapidly due to on the one 
hand the fast variation of thermo-physical properties of water (see Fig.1) and on the other hand the 
gathering of low density fluid, leading to increased thermal resistance and weakened heat transfer in 
this layer. With the development of this process along the tube, the increasing in top wall temperature 
augments the density difference between the fluid near the top wall and the fluid in the tube center, 
causing an upward acceleration and inducing the secondary flow [1-2]. One of the characteristics of 
heat transfer deterioration of horizontal tube in the LER region is that the temperature difference 
between the top surface and the bottom surface, i.e., Δthor, keeps increasing with the increase of the 
fluid bulk enthalpy, and reaches a maximum when the top surface temperature reaches to the peak 
value. The maximum of Δthor is 83°C when the heat flux is 300kW/m2, while it is 221 °C when the heat 
flux is 400 kW/m2, as shown in Fig.6.  

It can be seen from Fig. 4b that there are significant differences in HTC between the top surface and 
bottom surface of the horizontal tubes in the LER region and the LSHR region, and similar 
phenomenon is observed in the inclined test sections. As shown in Fig.4b that the HTC at the bottom 
surface are much higher than that at the top surface, and heat transfer deterioration appears on the top 
surface, but the heat transfer is generally enhanced on the bottom surface in the LSHR region. 
Difference in HTC between the bottom surface and top surface in horizontal tubes is much larger than 
that in inclined tubes. The maximum value of the HTC corresponds to a bulk fluid enthalpy of 
2105kJ/kg, which is slightly less than the pseudocritical bulk fluid enthalpy. This phenomenon is 
similar to the results of Yamagata et al [11]. 

Under identical test conditions in the present study, in the LER and LSHR region, the distribution of 
HTC on the bottom surface of the horizontal tubes is generally similar to that of the inclined tube, but 
the magnitude of the HTC on the bottom surface of the horizontal tube is however larger than that of 
the inclined tube. On the contrary, the HTC on the top surface of the horizontal tubes is smaller than 
that of the inclined tube. Difference in HTC between the horizontal tube and the incline tube 
diminishes in the HER region.  
 
3.2 Effect of Pressures 
Fig. 7a and Fig. 7b shows the variation of the wall temperature and HTC with the increasing of fluid 
enthalpy at different pressures when heat flux is 300 kW/m2 and mass flux is 600 kg/(m2⋅s). It is seen 
from Fig. 7a that in the LSHR region, temperature on the top surface of both the horizontal tube and 
the inclined tube rises with the increasing in pressure. As shown in Fig.7a and Fig.7b, heat transfer 
deterioration occurs at both 23Mpa and 25MPa pressures on the top surface of the horizontal tube in 
the LER (nearby the large specific heat region). When the pressure is 23Mpa, the peak temperature 
value on the top surface of the horizontal tube is 476℃ at a axial position corresponding to a bulk 
enthalpy of 1865.4KJ/Kg, while when the pressure is 25Mpa, the peak wall temperature value on the 
top surface of the horizontal tube is 467.91°C at a axial position corresponding to a bulk enthalpy of 
1731.3KJ/Kg, indicating generally slight effect of pressure on the peak wall temperature value on the 
top surface of the horizontal tube. 

It is seen from Fig. 7b that the distribution curves of HTC on the bottom surface of the two above-
mentioned tubes (horizontal tube and inclined tube) are quite similar at different pressures except in the 
LSHR region, where the magnitude of the HTC on the bottom surface of the horizontal tube is however 
larger than that of the inclined tube. At a pressure of 25.0MPa, the peak of HTC on the bottom of the 
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horizontal tube is about 20 kW/(m2 K), but that of the inclined tube is about 18.4 kW/(m2 K). It is seen 
in Fig.7 that with the pressure increasing, the peak HTCs on the bottom surface of both the two tubes 
decrease, and the bulk fluid enthalpy corresponding to the peak HTC value however increases. 

It is also seen from Fig.7b that heat transfer deterioration occurs on the top surface of the horizontal 
tube and inclined tubes in the LSHR region. With the increasing of pressure, heat transfer improvement 
on the top surface of the horizontal tube appears even late on the tube and in a even little magnitude. 

Fig. 8 shows the variation of At, i.e. the temperature difference between the top surface and bottom surface of each 
tube. It is seen in Fig.8 that in the LSHR, the Atli°, of the horizontal tube at pressure of 25MPa is generally higher, but 
varies slower, than that at pressure of 23MPa. 
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horizontal tube is about 20 kW/(m2 K), but that of the inclined tube is about 18.4 kW/(m2 K). It is seen 
in Fig.7 that with the pressure increasing, the peak HTCs on the bottom surface of both the two tubes 
decrease, and the bulk fluid enthalpy corresponding to the peak HTC value however increases.  

It is also seen from Fig.7b that heat transfer deterioration occurs on the top surface of the horizontal 
tube and inclined tubes in the LSHR region. With the increasing of pressure, heat transfer improvement 
on the top surface of the horizontal tube appears even late on the tube and in a even little magnitude.  

Fig. 8 shows the variation of Δt, i.e. the temperature difference between the top surface and bottom surface of each 
tube. It is seen in Fig.8 that in the LSHR, the Δthor of the horizontal tube at pressure of 25MPa is generally higher, but 
varies slower, than that at pressure of 23MPa. 

1200 1400 1600 1800 2000 2200 2400 2600 2800 3000

260

280

300

320

340

360

380

400

420

440

460

480

500

520

540

LSHR

 

 

In
si

de
 w

al
l t

em
pe

ra
tu

re
,t w

(o C
)

In
si

de
 w

al
l t

em
pe

ra
tu

re
,t w

(o C
)

Bulk enthaply H(kJ/kg)

G=600kg/m2s, q=300kW/m2

Φ32X3mm, Horizontal
Φ25X2.5mm, Inclined

LER HER

260

280

300

320

340

360

380

400

420

440

460

480

500

520

540

260

280

300

320

340

360

380

400

420

440

460

480

500

520

540

260

280

300

320

340

360

380

400

420

440

460

480

500

520

540

 
P=23MPa P=25MPa 

 Horizontal, top  Horizontal, top 
 Horizontal, bottom  Horizontal, bottom 
 Inclined, top  Inclined, top 
 Inclined, bottom  Inclined, bottom 

 

1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000
-2
0
2
4
6
8

10
12
14
16
18
20
22
24
26
28
30

 

 

H
ea

t t
ra

ns
fe

r c
oe

ffi
ci

en
t,k

W
/m

2 K

H
ea

t t
ra

ns
fe

r c
oe

ffi
ci

en
t,k

W
/m

2 K
Bulk enthaply H(kJ/kg)

Φ25X2.5mm, InclinedΦ32X3mm, Horizontal

LSHRLER HER

Normal heat transfer

-2
0
2
4
6
8
10
12
14
16
18
20
22
24
26
28
30G=600kg/m2s, q=300kW/m2

-2
0
2
4
6
8
10
12
14
16
18
20
22
24
26
28
30

-2
0
2
4
6
8
10
12
14
16
18
20
22
24
26
28
30

 
P=23MPa P=25MPa 

Horizontal, top  Horizontal, top 
Horizontal, bottom  Horizontal, bottom 
Inclined, top  Inclined, top 
Inclined, bottom  Inclined, bottom 
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Fig. 7b. Variation of the heat transfer coefficient with fluid enthalpy at 
different pressures  

 

3.3.     Effect of Mass Fluxes 
Fig. 9a and Fig. 9b shows the variations 
of the wall temperature and HTC of the 
tubes with the bulk enthalpy at different 
mass fluxes at a pressure of 26 MPa and 
an inner wall heat flux of 400kW/m2. It 
is shown in Fig.9a and Fig.9b that the 
increasing in mass fluxes can improve 
the heat transfer on both the top and the 
bottom surface of the tube (horizontal 
tube and inclined tube). It is seen from 
Fig.9a and Fig.9b that when the mass 
flux is 700kW/m2, heat transfer 
deterioration occurs on the top surface of 
the horizontal tube, but does not occur 
on the top surface of the inclined tube. 
When the mass flux is increased to 1000 kW/m2, heat transfer enhancement occurs on the top and 
bottom surface of both two tubes. The reason for this result is that when the mass flux is increased, the 
turbulent diffusivity of the bulk fluid is enhanced and effect of the buoyancy force on the heat transfer 
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Fig. 10 shows the variation of At, i.e. the temperature difference between the top surface and bottom 
surface of each tube with the increasing of fluid enthalpy at different mass fluxes. As shown in Fig. 10, 
when the mass flux is 700 kW/m2, the maximum of Athor is 104°C and maximum of Atmc is 52°C, but 
when mass flux is increased to 1000kW/m2, the maximum of Athor decreases to 33°C and maximum of 
At  is reduced to 35°C. In general, at low heat fluxes, HTC at both the top and bottom surfaces is 
effectively improved by increasing in mass fluxes. 

It is worth noting that as shown in Fig. 9b, the value of HTC of both the horizontal tube and the 
inclined tube rises obviously with the increasing of mass fluxes. For example, when the mass flux is 
increased from 700 to 1000 kg/(m2 s), the maximum HTC on the bottom surface of the horizontal tube 
raises from 29.5 to 41.7 kW/(m2 K), while the corresponding HTC for inclined tube raises from 28.9 to 
41.6 kW/(m2 K). Obviously, the difference in HTC between the horizontal tube and inclined tube tends 
to diminish with the increasing in mass fluxes. 
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roughly in a region of 1700-1900kJ/kg. 

3) The temperature on the top surface of the tube will increase with increasing in heat flux, but 
heat flux has relatively small effect on the temperature on the bottom surface of the tube. 
Increasing in heat flux has greater influence on the non-uniform distributions of temperature and 
HTC on the horizontal tube than that on the inclined tube. 

4) With the increasing in pressure, the peak HTCs on the bottom surface of both the two tubes 
decrease, and pressure has generally slight effect on the peak wall temperature on the top 
surface of the horizontal tube. 

5) Increasing in mass fluxes may greatly reduce and even diminish the difference in the surface 
temperature distributions and HTC distributions between the horizontal tube and the inclined 
tube. 

Nomenclature 
P pressure/ MPa C, Specific heat at constant pressure/ kJ•kg-1

T temperature/ 'C h Heat transfer coefficient/ kW•m-2•K-1

G Mass flux/ kg•m2.s-1 q Heat flux/ kWm2

Greek letters 

A, Thermal conductivity/ Wm1•K-1 Ft viscosity/ µ,Pa*s 

P density/ kg•m-3 a Inclined angle 

Subscripts 

Hor, 

pc 

Horizontal tube 

pseudocritical 

Inc. Inclined tube 

Abbreviation 

LER Low enthalpy range HER High enthalpy range 

LSHR Large specific heat range SCWRS Supercritical water-cooled reactors 

At Temperature difference between the top and bottom surfaces 
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