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Abstract 

In the framework of the the Collaborative Project on European Sodium Fast Reactor (CP-ESFR) two 
core designs that are currently being proposed for the 3600 MWth sodium-cooled reactor concept: one 
is based on oxide fuel and the other on carbide fuel. 
Using the European Safety Assessment Platform (ESAP), JRC-IE has conducted static calculation on 
neutronics (incl. reactivity coefficients) and thermal-hydraulic characteristics for both oxide and carbide 
reference cores. The quantities evaluated include: keff, coolant heat-up, void, and Doppler reactivity 
coefficients, axial and radial expansion reactivity coefficients, pin-by-pin calculated power profiles, 
average and peak channel temperatures. This paper presents the ESAP models applied in the study 
together with the relevant results for the oxide and carbide core. 

Introduction 

Fast Reactors have a unique capability as sustainable energy source; the closed fuel cycle allows 
significantly improving the usage of natural resources and the minimisation of volume and heat load of 
high-level waste. Among the fast reactor systems, the sodium-cooled fast reactor has the most 
comprehensive technological basis, thanks to the experience gained internationally from operating 
experimental, prototype and commercial size reactors. Therefore, a proposal for a large integrated 
Collaborative Project on European Sodium Fast Reactor (CP ESFR) was proposed to be realized under 
the aegis of the 7th FP to answer the EURATOM Work programme 2008 [1]. 
In frame of the ESFR project two core designs are currently being proposed for the 3600 MWth 
sodium-cooled reactor concept: the first is based on the oxide fuel and the second on the carbide fuel. 
Starting from these 'working horses' cores, different options will be proposed and evaluated within the 
ESFR project with respect to the following goals: 

• Enhancement of nominal core performances (average discharged burn-up, plutonium mass to be 
loaded, cycle length etc.) 

• Enhancement of the core safety by means of reduction of the sodium void coefficient and/or 
optimization leading to gain significant margins on the behaviour of these cores in the frame of 
unprotected transients. 

This paper focuses mainly on the open fuel cycle neutronic and thermal-hydraulic analyses for the 
basic oxide and carbide working horse cores. 

1. ESFR core geometries 

In this study the numerical codes were applied to the ESFR working horses. The cores geometry is 
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shown in Figure 1. 
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Figure 1 Cross-section of the oxide (left) and carbide (right) ESFR. 

The ESFR core is flat to provide good thermal-hydraulic properties and to enhance the leakage, which 
improves the sodium void effect. The main reactor parameters are summarized in Table 1. The core is 
characterized by large power density and in-pile fuel mass. The carbide core has lower volume and 
loaded mass of actinides, but it provides higher burn-up during shorter residence time. It has also higher 
relative but lower absolute Pu content. 

ESFR core version oxide carbide 
Thermal power 3600 MWth 3600 MWth
Volume 17.5 m3 10.5 m3
Lattice pitch 20.08 cm 18.32 cm 
Fuel type Pins / Pellets Pins / Pellets 
Nr. of fuel assemblies 453 414 
Diameter 4.72 m 4.10 m 
Height 1.00 m 0.80 m 
H/D ration 0.21 0.19 
Actinides 74.1 tons 39.5 tons 
Plutonium 11.6 tons (15.7%) 8.5 tons (21.5%) 
Core management 5 x 410 = 2050 

EFPD 
3 x 533 = 1600 

EFPD 
Average burn-up —10 % FTMA —15 % FTMA 

—100 GWd/tHM —150 GWd/tHM 
Inlet coolant temp. 395 °C 395 °C 
Outlet coolant temp. 545 °C 545 °C 

Table 1 ESFR core parameters 
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2. European Safety Assessment Platform (ESAP) 

The ESAP (European Safety Analysis Platform) is a computational platform that has the objective to 
perform an integrated core and safety analysis of nuclear reactor systems. The platform is based on 
existing well-qualified nuclear codes: MCNP5 for neutron transport calculations, COBRA for core and 
sub-channel analysis and FRETA-B for fuel thermal-mechanical behaviour studies. The ESAP platform 
is currently under development. The final structure of ESAP will consist of a static safety core analysis 
section, a fuel cycle analysis section and a dynamic safety system analysis section as shown in Figure 2. 
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Figure 2 The ESAP structure. 

The static and fuel cycle part of ESAP are instead fully operational tools. The methodology used in 
ESAP for static fast reactor design analysis is based upon Monte Carlo method for neutronics and sub-
channel code for thermal hydraulics. This approach provides several advantages such as a full three 
dimension treatment of the problem geometry, the use of continuous energy cross sections and sub-
channel geometry for thermal-hydraulics. 
On the other hand, the computational and modelling effort for the Monte Carlo method is higher than 
for most deterministic methods. The static core analysis section of ESAP is based on the nuclear data 
processing code NJOY [2] for generation of temperature dependent continuous energy cross section 
library, the Monte Carlo transport codes MCNP/MCNPX [3],[4] for neutronics calculations, the sub-
channel thermal-hydraulics code COBRA-IV-I [5] and the thermo-mechanic fuel code FRETA-B [6] 
supplemented by several pre/post processing codes. 

Basic nuclear data are taken from the Joint Evaluated Fission and Fusion File (JEFF-3.1). Temperature 
dependent, continuous energy nuclear data libraries based on JEFF-3.1 library were generated using the 
nuclear data processing code NJOY. 
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The Monte Carlo particle transport codes MCNP and MCNPX developed at Los Alamos National 
Laboratory are used for all neutron transport, criticality, and burnup calculations. Both MCNP and 
MCNPX perform stochastic neutron transport and criticality calculations in a fully resolved three-
dimension full core geometry using continuous energy cross sections. The geometry modelling in 
MCNP/MCNPX is based on combinatorial geometry where a geometrical structure can be repeated to 
generate more complex systems. The use of the repeated structure feature allows efficient core 
geometry set up. Burnup calculations were performed using MCNPX which is internally coupled with 
the depletion code CINDER90 [7]. MCNPX provides to the CINDER90 code reaction rates for major 
isotopes possessing transport cross sections and neutron spectra in 63 energy groups for each burnup 
zone. CINDER90 generates effective cross sections by collapsing the 63 group cross section with the 
provided neutron spectra and performs then the depletion calculation for the burnup interval assuming 
constant flux over the interval. It returns back to MCNPX the nuclide inventories at the end of the 
burnup interval. The nuclide inventories are calculated using the predictor/corrector method which 
requires two criticality calculations per burnup interval for prediction and correction steps. 

The COBRA-IV-I code belongs to the series of the COBRA (COolant Boiling in Rod Arrays) 
subchannel analysis computer programs which were originally developed by Pacific Northwest 
Laboratories (PNL). It is an extended version of the COBRA-BIC subchannel analysis code which 
computes the flow and enthalpy distributions in nuclear fuel rod bundles or cores for both steady state 
and transient conditions. 

The FRETA-B (Fuel Reliability Evaluation Code for Transients and Accidents — Bundle Geometry) is a 
computer code for analyzing the behaviour of fuel rods for nuclear reactors in nominal and accidental 
conditions. 
The heat conduction equation is solved by the method of weighted residuals and includes the Ross-
Stoute model [8] for gap conductance as well as a fuel relocation model. 
The use of FRETA-B code is targeted to compute the fuel rod temperature profiles. 

2.1 MCNP modeling 

Using the core compositions and the geometry specification of the ESFR, a detailed three-dimensional 
MCNP model for the oxide and carbide ESFR cores have been setup. The models reproduce the 
geometry fully resolved in radial and axial direction as given in the design specification. The repeated 
structure feature of MCNP has been used to set up the geometry model of the subassemblies and the 
full core models (Figure 3). 
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Figure 3 MCNP model of the oxide and carbide ESFR assemblies. 
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Figure 4 shows horizontal and vertical cuts of the three-dimensional full core geometry MCNP model 
of the oxide and carbide ESFR core. The different colours represent the radial reflectors, inner and 
outer fuel sub-assemblies, and the Control and Shutdown device (CSD) and the Diverse Shutdown 
Device (DSD) sub-assemblies. The vertical cuts depict the different axial regions including the lower 
and upper blankets and gas plena. Further, refinements of the models were performed for the burnup 
and power distribution calculations. 
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Figure 4 Horizontal and vertical cuts of the MCNP oxide and carbide core model of ESFR. 

2.2 COBRA Modelling 

With reference to the core geometry of ESFR and in full agreement with MCNP models a detailed 3D 
COBRA-IV-I model for oxide and carbide ESFR cores have been setup. The model represents the 
geometry fully resolved in radial and axial direction as given in the design specification. Based on the 
geometry data, a COBRA model for the oxide and carbide fuel assembly was prepared. 

Figure 5 COBRA model of the oxide and carbide ESFR fuel assembly. 
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The oxide model consists of 546 sub-assembly channels that surround the 271 fuel pins. The carbide 
model consists of 666 sub-assembly channels that surround 331 fuel pins. The wire-wrap model is 
included. Both assemblies are divided vertically into 30 axial nodes. Figure 5 shows the cross-sections 
of oxide and carbide fuel assembly. 

The cross-sections of COBRA full core geometry model of the oxide and carbide ESFR core is depicted 
in Figure 6. The COBRA model consists of parallel assembly channels that include the inner core 
region, the outer core region, and the control assemblies. The core is divided vertically into 30 axial 
nodes. 
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Figure 6 Cross-section of the COBRA models of oxide and carbide core of ESFR 

3. Results 

3.1 Neutronic results 

3.1.1 ESFR Oxide core 

Neutronics safety parameters were evaluated using MCNP by the direct perturbation method. The 
reactivity coefficients, the delayed neutron fraction and the prompt neutron life time were calculated at 
different burnup stages. For the oxide core, the reactivity coefficients deteriorate over the fuel residence 
time whereas the variation in the delayed neutron fraction and prompt neutron life time is relatively low 
(Table 2). 

Reactivity 
(pcm) 

BOL EOC 

Oxide core 
Sodium Void 1500 1968 
Doppler -1044 -845 

Peff 338 320 

Table 2 Neutromc Safety Parameters O-SFR 

The power distribution in initial oxide ESFR core is significantly determined by the two enrichment 
levels in the inner and outer core. At BOL, the power profile shows peak values in the outer core where 
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Sodium Void 1500 1968 

Doppler -1044 -845 
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Table 2 Neutronic Safety Parameters O-SFR 

 

The power distribution in initial oxide ESFR core is significantly determined by the two enrichment 

levels in the inner and outer core. At BOL, the power profile shows peak values in the outer core where 
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the fuel enrichment is high. The positioning of the primary CSD in this high power profile region may 
allow an effective power control. For the initial core at BOL, the core maximum power density is 
354.83 W/cm3, and the peak of the axially averaged power density is 287.44 W/cm3. Further, the 
maximal linear power density is 408.16 W/cm and the power peak factor is 1.4. At EOC, the peak of 
the power profile is shifted inwards to the inner core. The power profile shows peak values in the 
inner core. The core maximum value is about 321.34 W/cm3 and the peak of the axially averaged 
power density is 263.20 W/cm3. The maximal linear power density and the power peak factor are 
373.44 W/cm and 1.21, respectively. The radial power peaking and distribution at BOL and EOC are 
shown in Figure 7 and Figure 8 respectively. 
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Figure 7 Radial power peaking of the oxide ESFR core at BOL and EOC 
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3.1.2 ESFR Carbide core 
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Like for the oxide core, the reactivity coefficients, the delayed neutron fraction and the prompt neutron 
life time for the carbide core have been evaluated using MCNP by direct perturbation calculations. 
Only the sodium void reactivity shows significant change over fuel residence time. The variation in the 
delayed neutron fraction and prompt neutron life time is relatively low (Table 3). 
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the fuel enrichment is high. The positioning of the primary CSD in this high power profile region may 

allow an effective power control. For the initial core at BOL, the core maximum power density is 

354.83 W/cm
3
, and the peak of the axially averaged power density is 287.44 W/cm

3
. Further, the 

maximal linear power density is 408.16 W/cm and the power peak factor is 1.4. At EOC, the peak of 

the power profile is shifted inwards to the inner core. The power profile shows   peak values in the 

inner core. The core maximum value is about 321.34 W/cm3 and the peak of the axially averaged 

power density is 263.20 W/cm3. The maximal linear power density and the power peak factor are 

373.44 W/cm and 1.21, respectively. The radial power peaking and distribution at BOL and EOC are 

shown in Figure 7 and Figure 8 respectively. 
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3.1.2 ESFR Carbide core 

Like for the oxide core, the reactivity coefficients, the delayed neutron fraction and the prompt neutron 

life time for the carbide core have been evaluated using MCNP by direct perturbation calculations. 

Only the sodium void reactivity shows significant change over fuel residence time. The variation in the 

delayed neutron fraction and prompt neutron life time is relatively low (Table 3).  
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The power distribution in initial carbide ESFR core is characterized by the two enrichment levels in the 
inner and outer core. The power profile shows high values in the outer core where the fuel enrichment 
is high. The positioning of the primary CSD in this high power profile region may allow an effective 
power control. For the initial core at BOL, the core maximum power density is 681.55 W/cm3, and the 
peak of the axially averaged power density is 574.07 W/cm3. Further, the maximal linear power density 
is 504.1 W/cm and the power peak factor at BOL is 1.53. 

Reactivity 
(pcm) 

BOL EOC 

Carbide core 
Sodium Void 1131 1991 
Doppler -582 -648 

Peff 349 319 
Table 3 Neutromc Safety Parameters C-SFR 

As the burnup progresses the power distribution keeps its profile and levels out only slightly. The core 
maximum value at EOC is about 531.32 W/cm3 and the peak of the axially averaged power density is 
492.02 W/cm3. The maximal linear power density and the power peak factor are 432.05 W/cm and 
1.31. The radial power peaking and distribution at BOL and EOC are shown in Figure 9 and Figure 10 
respectively. 
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The power distribution in initial carbide ESFR core is characterized by the two enrichment levels in the 

inner and outer core. The power profile shows high values in the outer core where the fuel enrichment 

is high. The positioning of the primary CSD in this high power profile region may allow an effective 

power control. For the initial core at BOL, the core maximum power density is 681.55 W/cm3, and the 

peak of the axially averaged power density is 574.07 W/cm3. Further, the maximal linear power density 

is 504.1 W/cm and the power peak factor at BOL is 1.53.   
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Figure 10 Average power distribution in the carbide ESFR core at BOL and EOC 

3.2 Thermal-hydraulic results 

The neutronics calculations (power distribution) provided the basis for the thermal-hydralic analysis. 
Calculations were performed for both the oxide and carbide core options (O-ESFR and C-ESFR) and 
included full core and sub-assembly studies. 

The COBRA-IV-I thermal-hydraulic core and sub-channel code and the FRETA-B thermo-mechanic 
code, used for these simulations, were improved to account for the specificities of a liquid-metal cooled 
core. The Ushakov correlation [9] is adopted to calculate the clad-to-coolant heat exchange. The Rehme 
correlation [10] is used to evaluate the wire-wrapped fuel bundle friction factor. 

3.2.1 ESFR oxide and carbide core 

The total flowrate for all SAs to provide the heating-up of 150°C was found to be —19550 kg/s and the 
corresponding flowrate for an average-power SA in oxide core is —43 kg/swhile in carbide core is — 47 
kg/s. 
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250 

The coolant temperature at the core inlet was specified to be 395°C. The average outlet coolant 
temperature for both oxide and carbide cores was calculated to be —545°C. The calculated outlet 
coolant temperature distribution is presented in Figure 11 and Figure 12. 
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3.2 Thermal-hydraulic results 

The neutronics calculations (power distribution) provided the basis for the thermal-hydralic analysis. 

Calculations were performed for both the oxide and carbide core options (O-ESFR and C-ESFR) and 

included full core and sub-assembly studies. 

The COBRA-IV-I thermal-hydraulic core and sub-channel code and the FRETA-B thermo-mechanic 

code, used for these simulations, were improved to account for the specificities of a liquid-metal cooled 

core. The Ushakov correlation [9] is adopted to calculate the clad-to-coolant heat exchange. The Rehme 

correlation [10] is used to evaluate the wire-wrapped fuel bundle friction factor. 

3.2.1 ESFR oxide and carbide core 

The total flowrate for all SAs to provide the heating-up of 150ºC was found to be ~19550 kg/s and the 

corresponding flowrate for an average-power SA in oxide core is ~43 kg/swhile in carbide core is ~ 47 

kg/s. 
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Figure 11 Outlet coolant temperature distribution in the oxide and carbide core 

The coolant temperature at the core inlet was specified to be 395ºC. The average outlet coolant 

temperature for both oxide and carbide cores was calculated to be ~545ºC. The calculated outlet 

coolant temperature distribution is presented in Figure 11 and Figure 12.  
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Figure 12 Outlet coolant temperature across the oxide and carbide core 

As expected the coolant temperature profile is similar to the power distribution profile with a flat 
distribution in the centre of the core and a strong gradient at the core outskirts for the oxide core while 
higher temperatures are at three quarter of the carbide core. The difference between the maximum and 
minimum coolant temperature at the core outlet is about 110°C for the oxide and 120°C for the carbide 
core. 

3.2.2 Fuel rod temperature 

The fuel rod temperature was evaluated for the average- and peak-power fuel rods using the power 
distribution from neutronic analysis (axial and radial power peaking factors) and the coolant flowrate 
distribution from the thermal-hydraulic analysis. 

As part of the ESAP, The FRETA-B code was used for this analysis. The ODS steel is supposed to be 
the ESFR cladding material. 

The heat exchange coefficient was calculated by the Ushakov correlation, the fuel thermal conductivity 
was evaluated according to the Phillipponneau model [11] and the gas gap conductance was evaluated 
by the FRETA-B code using the Ross-Stoute model with the use of the modified fuel relocation model. 

The axial profiles of the fuel, cladding and coolant temperatures in the average-power pin are shown 
in Figure 13. The fuel peak temperature in the oxide is —1950°C while in the carbide average-power 
pin is —1000 °C. The difference is due to the higher carbide conductivity (k( ,u)02=1.64 W/mK, 
kuc=9.35 W/mK). 
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As expected the coolant temperature profile is similar to the power distribution profile with a flat 

distribution in the centre of the core and a strong gradient at the core outskirts for the oxide core while 

higher temperatures are at three quarter of the carbide core. The difference between the maximum and 

minimum coolant temperature at the core outlet is about 110ºC for the oxide and 120ºC for the carbide 

core. 

3.2.2 Fuel rod temperature 

The fuel rod temperature was evaluated for the average- and peak-power fuel rods using the power 

distribution from neutronic analysis (axial and radial power peaking factors) and the coolant flowrate 

distribution from the thermal-hydraulic analysis. 

As part of the ESAP, The FRETA-B code was used for this analysis. The ODS steel is supposed to be 

the ESFR cladding material. 

The heat exchange coefficient was calculated by the Ushakov correlation, the fuel thermal conductivity 

was evaluated according to the Phillipponneau model [11] and the gas gap conductance was evaluated 

by the FRETA-B code using the Ross-Stoute model with the use of the modified fuel relocation model. 

The axial profiles of the fuel, cladding and coolant temperatures in the average-power pin are shown 

in Figure 13. The fuel peak temperature in the oxide is ~1950ºC while in the carbide average-power 

pin is ~1000 ºC. The difference is due to the higher carbide conductivity (k(Pu,U)O2=1.64 W/mK, 

kUC=9.35 W/mK). 
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Figure 13 Axial temperature profiles in the oxide and carbide average-power pin 

The total pressure drop is —0.13 MPa in the oxide and —0.20 MPa in the carbide assembly. 

4. Conclusions 

The European Safety Analysis Platform, being developed at JRC Institute of Energy, has the objective 
to develop a generic computational platform able to perform a static and dynamic integrated core and 
system safety analysis of nuclear reactors with particular emphasis to innovative concepts. 

The static core design part of ESAP has been successfully applied in the framework of the FP7 CP-
ESFR project. The results have shown the reliability of the platform to perform a full core design safety 
analysis with predictions that are in agreement with other consolidated code systems [12]. 

Though the results are still preliminary as they are based on the starting "working horses" core designs 
defined in the CP-ESFR project, some first conclusions can be made on the two core configurations. 

In particular, while the oxide core design is quite mature, this seems not to be the case for the carbide 
core design. The advantages in using carbide fuel rely on a better fuel-sodium compatibility and thanks 
to the higher thermal conductivity (k(pii,u)02=1.64 W/mK against kuc=9.35 W/mK) on the possibility to 
have a de-rated design with a reduced power density (165 W/cm3), lower fuel centreline temperature, 
lower reactivity control requirement and longer cycle length enhancing safety. This is currently not the 
case in the current design, where the carbide core is still too compact to be fully exploited in this sense. 
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The total pressure drop is ~0.13 MPa in the oxide and ~0.20 MPa in the carbide assembly. 
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to the higher thermal conductivity (k(Pu,U)O2=1.64 W/mK against kUC=9.35 W/mK) on the possibility to 

have a de-rated design with a reduced power density (165 W/cm3), lower fuel centreline temperature, 

lower reactivity control requirement and longer cycle length enhancing safety. This is currently not the 

case in the current design, where the carbide core is still too compact to be fully exploited in this sense. 
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Future work will focus on the optimization of the different options with a view to enhance the core 
performance (average discharged burn-up, plutonium mass to be loaded, cycle length) and the safety by 
means of reduction of the sodium void coefficient and/or optimization leading to gain significant 
margins on the behaviour of these cores in the frame of unprotected transients. 
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