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Abstract 

Maanshan nuclear power plant (NPP) is the first PWR in Taiwan. Its reactor is made by 
Westinghouse Company and has the rated power of 2775 MWt. The Maanshan NPP TRACE 
model is developed by Institute of Nuclear Energy Research (INER), and National Tsing Hua 
University (NTHU). The Maanshan NPP TRACE model assessment is performed by Partial Loss 
of Flow (PLOF) and Complete Loss of Flow (CLOF) of FSAR data and large-load reduction of 
startup test data. In summary, TRACE analysis results are consistent with FSAR and startup test 
data. 

Introduction 

Maanshan NPP's reactor is made by Westinghouse Company and has the rated power of 
2775MWt (this value is the original rated power of Maanshan). The reactor coolant system has 
three loops and each loop has a reactor coolant pump (RCP) and a steam generator (S/G). 
Besides, the pressurizer is connected with the hot-leg piping in loop 2. 

The US NRC has developed an advanced thermal hydraulic code with some basic neutronic 
capablities named TRACE (TRAC/RELAP Advanced Computational Engine) for nuclear power 
plant safety analysis. The development of TRACE is based on TRAC, integrating RELAPS and 
other programs. According to the reference [1], it is the product of a long term effort to combine 
the capabilities of the NRC's four main systems codes (TRAC-P, TRAC-B, RELAPS and 
RAMONA) into one modernized computational tool. A graphic user interface program, SNAP, 
which processes inputs and outputs for TRACE as well as other analytical codes has also been 
developed. One of the features of TRACE is its capacity to model the reactor vessel with 3-D 
geometry. It can support a more accurate and detailed safety analysis of nuclear power plants. 
Taiwan and the United States have signed an agreement on CAMP ( Code Applications and 
Maintenance Program) which includes the development and maintenance of TRACE. INER is 
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the organization in Taiwan that is responsible for the application of TRACE in thermal hydraulic 
safety analysis, for recording users' experiences of it, and providing suggestions for its 
development. To meet this responsibility, it has built a TRACE model of TPC (Taiwan Power 
Company) Maanshan PWR NPP. In Maanshan NPP TRACE model, components or control 
systems such as pressurizer, steam generators, feedwater control system and steam dump control 
system, were developed. 

In this research, FSAR and startup test data of Maanshan NPP were utilized to confirm the 
accuracy the TRACE model. PLOF and CLOF of FSAR data were used to assess Maanshan NPP 
TRACE model. Additionally, large-load reduction of startup test data was also used to estimate 
the TRACE model. 

1. Methodology 

The code versions adopted in this research are SNAP v 1.1.8 and TRACE v 5.0p1, and the 
complete process is presented in Fig. 1. First, FSAR and startup tests data of Maanshan NPP [2]-
[7] were collected. Second, the Maanshan NPP TRACE model was developed. It is a three loop 
model, and every loop has a feedwater control system. The main structures of this model include 
the vessel, pressurizer, steam generators, steam piping in the secondary side (including four sets 
of steam dump and vent valves) and the steam dump system. The vessel is cylindrical, and is 
divided into 12 levels in the axial direction, two rings in the "r" direction (internal and external 
rings) and six equal azimuthal sectors in the "9" direction. The control rod conduit connects the 
12th and 7th layer of the vessel from end to end. The fuel region is between the third and sixth 
layer, heat conductors were added onto the structures to simulate the reactor core. Finally, FSAR 
and startup tests data of Maanshan were used to assess the accuracies of the TRACE model under 
the steady state and transient conditions. The TRACE model of Maanshan NPP was presented in 
Fig. 2. 

In Maanshan NPP TRACE model, there are two methods to simulate or calculate power in 
Maanshan NPP TRACE model. One is to use "point kinetics" data (e.g., the delay neutron 
fraction, Doppler reactivity coefficient, and moderator temperature reactivity coefficient) in the 
Maanshan NPP TRACE model and let TRACE calculate the power for the transient analysis. . 
Another is to input the power curve by "power table" into the TRACE model of Maanshan NPP. 
The first method is used in PLOF and CLOF transients and the second method in large-load 
reduction transient. 
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Figure 1 The flow chart of establishing and verifying the TRACE model of Maanshan NPP. 
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Figure 2 The TRACE model of Maanshan NPP. 
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2. Results and discussions 

Before any transient analysis can begin in Maanshan NPP TRACE model, a consistent set of 
parameters used in TRACE must be obtained in the process of steady-state initialization. The 
steady-state initialization of the TRACE model was performed. The resultant calculated 
parameters such as the feedwater and steam flows of the steam generators, the water level of the 
steam generators and the pressurizer, the pressure of the pressurizer, and the hot-leg temperatures 
were compared with data from FSAR and startup tests data [2]-[7]. Comparison of several 
parameters shows TRACE results to be consistent with FSAR and startup tests data. 

Following the steady state initialization, the TRACE model of Maanshan NPP was verified using 
three cases —PLOF, CLOF, and large-load reduction. Table 1-3 present the Maanshan NPP 
sequence of transients and those predicted by TRACE. The above results indicate that they are 
approximately the same. 

2.1 Partial Loss of Flow (PLOF) 

Fig. 3 compares the power of FSAR and TRACE. In this case, TRACE used "point kinetics" to 
calculate the power and it displays that the power curve of TRACE is similar with FSAR data. 
One RCP coast down began in 0 sec. After the low flow scram setpoint was reached, the reactor 
was tripped in about 2.5 sec. So the power decreased after 2.5 sec. Fig.4 shows the core flow 
results of TRACE and FSAR. In TRACE's result, the core flow decreased after one RCP 
coastdown. It also shows that the core flow curve of TRACE approximately follows the trend of 
FSAR. The comparison of the pressurizer pressure of FSAR and TRACE is present in Fig. 5 and 
their trends are also similar. Furthermore, the animation of the TRACE model is presented using 
the animation function of SNAP/TRACE interface with the above model and analysis results. 
The animation model of Maanshan NPP is shown in Fig. 6. 

2.2 Complete Loss of Flow (CLOF) 

In this case, TRACE also used "point kinetics" to calculate the power and Fig. 7 shows the power 
plots of FSAR and TRACE. The TRACE power curve is roughly similar with FSAR's curve. All 
RCPs coastdown began in 0 sec and the scram was tripped in 1.5 sec. So the power decreased 
after 1.5 sec. In Fig. 8, it reveals that the core flow curve of TRACE is approximately the same 
with the curve of FSAR. Due to all RCPs coastdown, the core flow reduced little by little. Fig. 9 
compares the pressurizer pressures results of FSAR and TRACE. The pressure curve of TRACE 
generally follows the trend of FSAR. 

2. 3 Large-load reduction 
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In the large-load reduction transient, TRACE used a "power table" function to make simulated 
power match startup test data (shown in Fig. 10). The purpose of large-load reduction test is to 
demonstrate the response capability of the Maanshan NPP which is no trip in the reactor and 
turbine when the power reduces from 100% to 50%. In this case, the criteria are as follows: (1) 
no trip in the reactor and turbine; (2) the safety valves in the pressurizer and S/Gs do not open 
during the transient. The results of startup test data and TRACE for large-load reduction are 
present in Fig. 11-16. The above results indicate that they comply with the criteria of this test. 
Fig. 11 plots the result of S/G steam flow and their trends are consistent. The oscillation of the 
steam flow is caused by the oscillation of the power. So the oscillation of the steam flow curve is 
following the oscillation of the power curve. 

Feedwater flow is controlled by a three-element feedwater control system. The main function of 
the feedwater control system is to maintain a fixed water level of the S/G at the secondary side 
when it is operating normally. The feedwater control system controls the main feedwater control 
valve using three signals including the water level error signal, the steam flow signal, and the 
feedwater flow signal. The water level error signal is calculated as the difference between the 
actual water level and the preset water level (typically 50%). Another value is calculated as the 
difference between the steam flow and the feedwater flow. These two differences are taken as the 
control signals of feedwater valve. Therefore, the above oscillation of the S/G steam flow also 
has the influence in the feedwater flow and S/G water level (shown in Fig. 12 and 13). Fig. 12 
and 13 also show the trends of TRACE similar with the startup test data. 

Fig. 14 compares the Tavg of startup test data and TRACE (Tavg = (Hot-leg temperature +Cold-leg 
temperature)/2). The temperatures calculated by TRACE roughly similar with the measured 
values in Maanshan NPP. The oscillation of Tavg is also following the oscillation of power. Fig. 
15 compares the pressures of pressurize of startup test data and TRACE. The pressure calculated 
using TRACE also has similar consistent trend with plant data. 

The steam dump control system of Maanshan NPP is composed of ten atmospheric venting 
valves, six turbine bypass valves and the associated piping control apparatus. The ten 
atmospheric venting valves and six turbine by-pass valves are grouped into four sets in this 
model. Three turbine bypass valves comprise the first set and the other three as the second set. 
Five atmospheric venting valves are considered as the third set and the rest as the fourth set. Fig. 
16 shows the steam dump system (first set) result of startup test data and TRACE. It is seen that 
the result of TRACE for steam dump system is consistent with startup test data. The other sets 
are also similar with startup test data. 
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Table 1 The sequences of PLOF in FSAR and TRACE 
FSAR TRACE 
time time 
(sec) (sec) 

One RCP coastdown begins 0 0 
Low flow scram setpoint reached 1.4 1.68 
Rods begin to drop (scram) 2.4 2.68 

Table 2 The sequences of CLOF in FSAR and TRACE 
FSAR TRACE 
time time 
(sec) (sec) 

All RCPs coastdown begins 0 0 
Undervoltage scram signal 0 0 
Rods begin to drop(scram) 1.5 1.5 

Table 3 The large load reduction sequences in TRACE model and Maanshan NPP 

Large load reduction * Plant data TRACE 

Time(sec) Time(sec) 

Initial load reduction to 50% 

T/B bypass valves fully open 

10.0 10.0 

20.0 19.2 

*On steady status at first 10sec 
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3. Conclusion 

By using SNAP/TRACE, this study developed a TRACE model of the Maanshan NPP. 
Effectiveness of the proposed model was verified with FSAR and startup test data. Analytical 
results indicate that the Maanshan NPP TRACE model predicts not only the behaviors of 
important plant parameters in consistent trends with FSAR and startup test data, but also their 
numerical values with respectable accuracy. The TRACE model of Maanshan NPP may be used 
in future safety analysis with confidence, such as applications for power uprating, life extensions, 
and design modifications. 
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3. Conclusion 

By using SNAP/TRACE, this study developed a TRACE model of the Maanshan NPP. 

Effectiveness of the proposed model was verified with FSAR and startup test data. Analytical 

results indicate that the Maanshan NPP TRACE model predicts not only the behaviors of 

important plant parameters in consistent trends with FSAR and startup test data, but also their 

numerical values with respectable accuracy. The TRACE model of Maanshan NPP may be used 

in future safety analysis with confidence, such as applications for power uprating, life extensions, 

and design modifications. 
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Figure 4 The core flow comparison between FSAR and TRACE for PLOF transient. 
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Figure 8 The core flow comparison between FSAR and TRACE for CLOF transient. 
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Figure 9 The pressurizer pressure comparison between FSAR and TRACE for CLOF 
transient. 
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Figure 10 The power of large load reduction transient. 
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Figure 11 The S/G steam flow comparison between startup test data and TRACE for large 
load reduction transient. 
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Figure 12 The SG liquid level comparison between startup test data and TRACE for large 
load reduction transient. 
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Figure 12 The SG liquid level comparison between startup test data and TRACE for large 

load reduction transient.  
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Figure 13 The feedwater flow comparison between startup test data and TRACE for large 
load reduction transient. 
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Figure 14 The Tavg comparison between startup test data and TRACE for large load 
reduction transient. 
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Figure 13 The feedwater flow comparison between startup test data and TRACE for large 

load reduction transient. 
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Figure 14 The Tavg comparison between startup test data and TRACE for large load 

reduction transient. 
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Figure 15 The pressurizer pressure comparison between startup test data and TRACE for 
large load reduction transient. 
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Figure 16 The steam dump 1 position comparison between startup test data and TRACE 
for large load reduction transient. 
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Figure 15 The pressurizer pressure comparison between startup test data and TRACE for 

large load reduction transient. 
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Figure 16 The steam dump 1 position comparison between startup test data and TRACE 

for large load reduction transient. 


