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Abstract 

The analysis of thermal stratification in the upper plenum of the "Monju" reactor vessel is an 
IAEA Coordinated Research Program (CRP). In spite of many attempts to predict the height 
of the thermal stratification interface, all calculated results indicated a higher height at 
approximately 10 minutes after the transient than what was measured at "Monju". Hence, 
the present paper discusses the effect of chamfer of the flow-holes and heat capacity of the 
upper instrumental structure (UIS) on the height of the thermal stratification interface, using 
the 3D CFD code. The chamfer hypothesis stems from the engineer's intuition that the 
edges of the flow-holes should have a rounded edge or chamfer. A flow-hole with chamfer 
exhibits a much lower local friction loss coefficient of the sodium than a straight-edge flow-
hole, resulting in a flow increase from the flow-holes. The presence of chamfer is assumed 
although there is no direct information about them. Three cases were calculated, one case 
without chamfer and one case with chamfer on the flow-hole edge, to investigate the effect on 
the interface behavior. Third one is a calculation taking into account the chamfer on the 
edge and heat capacity of UIS. In the case of calculation taking into account flow-holes with 
chamfer and the heat capacity of UIS, the height of the thermal stratification interface is 
closer to the experimental result. 

Introduction 

The analysis of thermal stratification phenomenon in the upper plenum of the "Monju" reactor is 
one of coordinated research programs (CRP) organized by IAEA. Temperature distributions 
during this phenomenon in the upper plenum of the reactor vessel were measured at the "Monju" 
when the plant was scrammed from 40% power in electric (45% in thermal) as the turbine trip 
test. The primary heat transport system (HTS) and the secondary HTS were cooled by the 
forced circulation with small capacity motors during the transient. The flowrates in the HTSs 
were decreased to approximately 1/10 of the rated conditions. This result is summarized in the 
report by Yoshikawa and Minami [1] as a document of IAEA CRP. Organizations such as 
CEA in France, ANL in USA, IPPE in Russia, IGCAR in India, KAERI in Korea and CIAE in 
China are participating in the benchmark analysis. Although each organization calculated the 
phenomenon using 2D or 3D model of CFD codes, the calculated thermal stratification interface 
rose higher than the measured result at around 10 minutes after the transient. The participating 
organizations discussed the causes which effect on the interface rising velocity in the meeting 
held on 16 November 2010 at ANL in USA. The following possible causes are proposed. 
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Introduction 

The analysis of thermal stratification phenomenon in the upper plenum of the “Monju” reactor is 
one of coordinated research programs (CRP) organized by IAEA.  Temperature distributions 
during this phenomenon in the upper plenum of the reactor vessel were measured at the “Monju” 
when the plant was scrammed from 40% power in electric (45% in thermal) as the turbine trip 
test.  The primary heat transport system (HTS) and the secondary HTS were cooled by the 
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organizations discussed the causes which effect on the interface rising velocity in the meeting 
held on 16 November 2010 at ANL in USA.  The following possible causes are proposed. 
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(1) Asymmetric configuration in the upper plenum 
(2) Heat transfer between outer sodium and inner sodium via the inner shroud with flow holes 
(3) Upper instrumental structure (UIS) modelling 
(4) Calculation models of turbulent or laminar flows 
(5) Configuration of flow-holes 

In spite of our precise calculation models of the upper plenum including items (1), (2), and (3), 
all calculated results were almost the same and calculated results predicted the thermal 
stratification interface higher than that of the test result according to the calculation in advance. 
The effect of the item (4) was confirmed as negligible small after several minutes from the start 
of the transient by the several organizations participating in the IAEA CRP. Therefore, the 
remaining cause is discussed in the present paper. The effect of the heat capacity relating the 
item (3) is also confirmed in the present study. ANL proposed to check the effect of the flow 
hole with a rounded edge rather than a straight-edge. When an engineer designs the hole, it is 
the engineer's intuition that the edges of the flow-holes should have a rounded edge or a 
chamfer. It is well known that the loss coefficient of the pipe inlet with the rounded edge 
becomes drastically smaller than that with the straight-edge as shown in 
Fig. 1[2]. The smaller local loss coefficient will help to suppress the 
interface rising velocity by discharging a larger amount of sodium from 
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=0.4 — 0.45 

the flow holes. As a matter of fact, pressure loss of the flow-hole was 
already discussed by Doi & Muramatsu [3] to have the better calculated 
result to fit to the test result. Since they modelled 120-degree sector of 
the plenum with the cylindrical coordinate, they could not calculate 
directly the effect of the configuration of the flow-hole. They assumed 
the local loss coefficient of 1.6 at the flow-holes on second stage and 0 at 
the flow-holes on the first stage. When one thinks about the flow of a 
pipe with the straight edge, the loss coefficients at the inlet from the bulk 
and outlet to a bulk are approximately 0.5 and 1.0 respectively. They 
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obviously took into account the loss coefficient reduction due to rounded Figure 1 Local 
edge on the flow-hole. However, the difference of the loss coefficients loss coefficient 
between the stages is somewhat intentional. In the present analysis, the at the pipe inlet 
predictability is discussed whether the 3D-CFD code can calculate the 
difference between the straight edge and the edge with the chamfer. 
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1. General description about benchmark test 

1.1 Description about upper plenum of "Monju" 

The upper plenum of the "Monju" reactor is illustrated in Fig. 2. It consists of a reactor vessel 
of 7060 mm in inner diameter and 50 mm in thickness, an upper core structure (UCS) with flow 
guide tubes, a fuel handling machine, a plug for thermocouples, and an inner barrel of 6600 mm 
in outer diameter and 40 mm in thickness with two-stage flow-holes. Outer diameter of the 
plug is 200 mm. Since there are three loops for the primary HTS, three outlet nozzles are 
welded on the reactor vessel at the level of EL27050 mm. The driver region of the core is 
located beneath the UCS. Outer diameter of upper instrumental structure (UIS) is 1997 mm. 
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In spite of our precise calculation models of the upper plenum including items (1), (2), and (3), 
all calculated results were almost the same and calculated results predicted the thermal 
stratification interface higher than that of the test result according to the calculation in advance.  
The effect of the item (4) was confirmed as negligible small after several minutes from the start 
of the transient by the several organizations participating in the IAEA CRP.  Therefore, the 
remaining cause is discussed in the present paper.  The effect of the heat capacity relating the 
item (3) is also confirmed in the present study.  ANL proposed to check the effect of the flow 
hole with a rounded edge rather than a straight-edge.  When an engineer designs the hole, it is 
the engineer’s intuition that the edges of the flow-holes should have a rounded edge or a 
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becomes drastically smaller than that with the straight-edge as shown in 
Fig. 1[2].  The smaller local loss coefficient will help to suppress the 
interface rising velocity by discharging a larger amount of sodium from 
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1. General description about benchmark test 

1.1  Description about upper plenum of “Monju” 

The upper plenum of the “Monju” reactor is illustrated in Fig. 2.  It consists of a reactor vessel 
of 7060 mm in inner diameter and 50 mm in thickness, an upper core structure (UCS) with flow 
guide tubes, a fuel handling machine, a plug for thermocouples, and an inner barrel of 6600 mm 
in outer diameter and 40 mm in thickness with two-stage flow-holes.  Outer diameter of the 
plug is 200 mm.  Since there are three loops for the primary HTS, three outlet nozzles are 
welded on the reactor vessel at the level of EL27050 mm.  The driver region of the core is 
located beneath the UCS.  Outer diameter of upper instrumental structure (UIS) is 1997 mm.  
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Levels of the upper support plate, the core top surface and the liquid sodium are EL26120 mm, 
EL27050 mm and EL33050 mm, respectively. The sodium flow from the core is rectified by 
the flow guide tubes and collided on the 
honey comb structure which holds flow guide 
tubes and control rod guide tubes. A part of ppe 

TC plug instrumental 
sodium is flow out of flow-holes to the space structure 
between the reactor vessel and the inner 
barrel. Sodium going upward the upper 

tor plenum is overflowed from the inner barrel to barrel 
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stage is 48, and the diameter is 92 mm. Surface of 
These are provided at the level of EL27750 \ (upper support 
mm. Number of flow holes at the second Upper core 1/ 
stage is 24 with the same diameter as the first 

structure Core SA Flow guide tube 

one. These are provided at the level of Figure 2 Components inside the upper

EL28670 mm. Existence of chamfer or the plenum of "Monju" 

roundness on the edge is not clear. The 
vertical positions of thermocouples on the TC-plug are reported in the reference [1], and the 
peripheral location is mentioned by Doi et al. [4]. Three thermocouples are provided on the 
same height. One is facing to the direction of the core, i.e., 0 degree, and the other two are 
installed at rotated locations by 60 degrees in clockwise and counter-clockwise. 

1.2 General description of turbine trip test 

Table 1 Initial major arameters at turbine trip test at "Monju" 
Items Measured 

Thermal power (MW/loop) 106 

Primary coolant flow rate (lcg/s/loop) 702.8 

Primary hot leg temperature CC) 485 

Primary cold leg temperature (°C) 362 

Secondary coolant flow rate for B (kg/s/loop) 394.4 

Secondary hot leg temperature for A&B CC) 485 

Secondary cold leg temperature for A&B CC) 285 
Temperatures at exit of subassemblies for 
channel 1 to 8 

512-513, 
499-511, 

509-511, 
483-509, 

510-515, 
483-509, 

500-513, 
427 

A turbine trip test at 45% thermal power of "Monju" was conducted in 1995 to investigate the 
overall functions of the plant and the capability of the air cooling system (ACS) in an actual 
situation. Table 1 shows important parameters of the plant before the transient. In this test, 
an abnormal situation of the turbine was assumed. The reactor was scrammed by the signal of 
turbine trip, and then pumps in primary and secondary loops were tripped. Pony motors took 
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Levels of the upper support plate, the core top surface and the liquid sodium are EL26120 mm, 
EL27050 mm and EL33050 mm, respectively.  The sodium flow from the core is rectified by 
the flow guide tubes and collided on the 
honey comb structure which holds flow guide 
tubes and control rod guide tubes.  A part of 
sodium is flow out of flow-holes to the space 
between the reactor vessel and the inner 
barrel.  Sodium going upward the upper 
plenum is overflowed from the inner barrel to 
the above mentioned space.  

Number of flow holes provided at the first 
stage is 48, and the diameter is 92 mm.  
These are provided at the level of EL27750 
mm.  Number of flow holes at the second 
stage is 24 with the same diameter as the first 
one.  These are provided at the level of 
EL28670 mm.  Existence of chamfer or the 
roundness on the edge is not clear.  The 
vertical positions of thermocouples on the TC-plug are reported in the reference [1], and the 
peripheral location is mentioned by Doi et al. [4].  Three thermocouples are provided on the 
same height.  One is facing to the direction of the core, i.e., 0 degree, and the other two are 
installed at rotated locations by 60 degrees in clockwise and counter-clockwise.   

1.2  General description of turbine trip test 

Table 1  Initial major parameters at turbine trip test at “Monju” 
Items Measured 

Thermal power (MW/loop) 106 

Primary coolant flow rate (kg/s/loop) 702.8 

Primary hot leg temperature (ºC) 485 

Primary cold leg temperature (ºC) 362 

Secondary coolant flow rate for B (kg/s/loop) 394.4 

Secondary hot leg temperature for A&B (ºC) 485 

Secondary cold leg temperature for A&B (ºC) 285 
Temperatures at exit of subassemblies for 
channel 1 to 8 

512-513, 509-511, 510-515, 500-513, 
499-511, 483-509, 483-509, 427 

 
A turbine trip test at 45% thermal power of “Monju” was conducted in 1995 to investigate the 
overall functions of the plant and the capability of the air cooling system (ACS) in an actual 
situation.  Table 1 shows important parameters of the plant before the transient.  In this test, 
an abnormal situation of the turbine was assumed.  The reactor was scrammed by the signal of 
turbine trip, and then pumps in primary and secondary loops were tripped.  Pony motors took 
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over operation when flow rates in primary and secondary loops were approximately 10% and 
8%, respectively. This means that flow rates in the HTSs are kept at 10 % and 8 % of the rated 
ones respectively during the transient except the very beginning of the transient. 

Table 2 shows a time table of operation conditions according to the interlocks. During this test, 
thermal stratification appeared in the upper plenum as reported in reference [1]. 

Table 2 Major plant responses after turbine trip 
Time (sec) Event 

0 A signal input to cause turbine trip 
0.2 Reactor scram 

Trip of pumps in the primary and secondary HTSs and trip of feed water pumps 
1.0 Start-up of air coolers in the secondary HTS 
1.5 Start-up of pony motors in the primary and secondary HTSs and trip of generator 
26 Transfer to low flow rate forced circulation by pony motors in the primary HTS 
27 Rated air flow rate of the air cooler 
55 Closure of the inlet stop valve of the steam generators 
75 Transfer to low flow rate forced circulation by pony motors in the secondary HTS 

800 Zero flow rate of feed water 
6300 Operation mode change of the air coolers from high to low forced circulation 

2. Analysis 

2.1 Analytical model 

The upper plenum with the internals mentioned in the previous chapter was modelled with the 
CAD at first, then, a calculation model with 25 million tetrahedral meshes is created by the 
meshing software. Figure 3 shows the overall meshing configuration of the upper plenum 
when the plenum is cut by the line connecting between the center of the core and the center of 
the TC-plug. Inside of the upper plenum is meshed by the meshing software ANSYS 
"Meshing" on the basis of the 3D CAD data made by the ANSYS "DesignModeler". Honey 
comb structures for flow guide, inner barrel, the fuel handling machine, and other internals are 
modelled using the tetrahedral meshes. However, hexahedral meshes are used for the layers of 
the outer shroud. The UIS located at the center of the figure is treated as a body with heat 
capacity consisting of steel and sodium. In the heat transfer calculation, no sodium flow is 
assumed inside the UIS, and heat is conducted from the center to the surface, then is transferred 
to the sodium in the upper plenum by convection. The fuel handling machine which is not 
illustrated in the figure is treated as a body without heat capacity. A column illustrated at the 
center illustrates meshes for the control rod guide tube. Since the flow guide tube above the 
core are seemed to be important to rectify the flow, configurations are considered in the present 
analysis. However, the meshes for flow guide tubes are not clear in the figure. The TC-plug 
is situated on the left hand side of the figure. Since three temperatures were measured on the 
same level, these locations are modelled properly in order to calculate the different temperature. 
The inner barrel is modelled so as to calculate the heat transfer between sodium inside and 
outside the inner barrel. 
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over operation when flow rates in primary and secondary loops were approximately 10% and 
8%, respectively.  This means that flow rates in the HTSs are kept at 10 % and 8 % of the rated 
ones respectively during the transient except the very beginning of the transient. 

Table 2 shows a time table of operation conditions according to the interlocks.  During this test, 
thermal stratification appeared in the upper plenum as reported in reference [1]. 
 

Table 2  Major plant responses after turbine trip 
Time (sec) Event                                                              
 0 A signal input to cause turbine trip 
 0.2 Reactor scram 
 Trip of pumps in the primary and secondary HTSs and trip of feed water pumps 
 1.0 Start-up of air coolers in the secondary HTS 
 1.5 Start-up of pony motors in the primary and secondary HTSs and trip of generator 
 26 Transfer to low flow rate forced circulation by pony motors in the primary HTS 
 27 Rated air flow rate of the air cooler 
 55 Closure of the inlet stop valve of the steam generators 
 75 Transfer to low flow rate forced circulation by pony motors in the secondary HTS 
 800 Zero flow rate of feed water 
6300 Operation mode change of the air coolers from high to low forced circulation       

2. Analysis 

2.1  Analytical model 

The upper plenum with the internals mentioned in the previous chapter was modelled with the 
CAD at first, then, a calculation model with 25 million tetrahedral meshes is created by the 
meshing software.  Figure 3 shows the overall meshing configuration of the upper plenum 
when the plenum is cut by the line connecting between the center of the core and the center of 
the TC-plug.  Inside of the upper plenum is meshed by the meshing software ANSYS 
“Meshing” on the basis of the 3D CAD data made by the ANSYS “DesignModeler”.  Honey 
comb structures for flow guide, inner barrel, the fuel handling machine, and other internals are 
modelled using the tetrahedral meshes.  However, hexahedral meshes are used for the layers of 
the outer shroud.  The UIS located at the center of the figure is treated as a body with heat 
capacity consisting of steel and sodium.  In the heat transfer calculation, no sodium flow is 
assumed inside the UIS, and heat is conducted from the center to the surface, then is transferred 
to the sodium in the upper plenum by convection.  The fuel handling machine which is not 
illustrated in the figure is treated as a body without heat capacity.  A column illustrated at the 
center illustrates meshes for the control rod guide tube.  Since the flow guide tube above the 
core are seemed to be important to rectify the flow, configurations are considered in the present 
analysis.  However, the meshes for flow guide tubes are not clear in the figure.  The TC-plug 
is situated on the left hand side of the figure.  Since three temperatures were measured on the 
same level, these locations are modelled properly in order to calculate the different temperature.  
The inner barrel is modelled so as to calculate the heat transfer between sodium inside and 
outside the inner barrel. 
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Figure 3 Tetrahedral mesh configuration in the plenum 

Figure 4 shows the assumed configuration of the flow hole 
with chamfer. The original model is illustrated on the left 
hand side. Although there is no information on the 
configuration, 5 mm chamfer is assumed on the both sides 
of the flow-hole in the present analysis. According to the 
discussion by Doi and Muramatsu [3], the shape of the 
edge should be rounded one. However, the edge with 
chamfer is selected because of easiness of meshing and 
also no-information about the radius of curvature. Even 
if the configuration is not correct, the effect of the chamfer 
on the rising velocity of the thermal stratification can be 
confirmed by the present calculation. 
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hole for both cases. The inner barrel is illustrated at the 
center of the figure and the reactor vessel is situated on the end of right hand side. Since the 
mesh size is not very small due to a lot of holes, the shape is somewhat rough. However, 
difference of meshes between the two cases can be recognized from the figures. 
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Figure 4 shows the assumed configuration of the flow hole 
with chamfer.  The original model is illustrated on the left 
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2.2 Analytical conditions 

The core configuration in the test is illustrated in Figure 6. Temperatures from the 
subassemblies near the center of the core are higher that from the peripheral subassemblies, and 
flowrates are larger too. Appropriate result cannot be obtained if the proper boundary 
conditions are not given to the code. Outlet mass flowrates and temperatures for each array of 
subassemblies are given in the reference [1] as time tables. Figure 7 illustrates the example of 
trends of boundary conditions for the representative channels of the inner driver core, outer 
driver core and the blanket subassemblies. Therefore, mass flowrates are converted to 
velocities from the subassemblies with circular outlet of 80 mm. These initial flowrates are 
approximately 98 % of the flowrates reported by Doi et al. [4] Hence, the flowrates in the IAEA 
benchmark calculated by 1D code are lower than the measured result at "Monju". Outlet 
temperatures from each sub-assembly groups are basically measured one. Another boundary 
condition in terms of pressure is provided at the outlet of the hot legs. The length of hot leg 
with 790.6 mm in inner diameter is approximately 4 m. 

The ANSYS Fluent-12.0 is used to solve the 3D thermal-hydraulics. In the analysis, the 
standard k-c model, standard wall function and SIMPLE method are applied to solve the 
momentum equation coupled with the equation of continuity. The accuracy of the turbulence in 
energy equation is 2nd order upwind. 
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2.3 Analytical results 
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After the initial steady state calculation, the transient calculation is conducted with the time step 
of 1 second. Based on common sense, although this is a very large time step, the sensitivity of 
the time mesh was checked beforehand. The time step is lather large for this sort of calculation. 
However, since the major objective of the present calculation is to confirm the effect of chamfer 
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2.2 Analytical conditions 

The core configuration in the test is illustrated in Figure 6.  Temperatures from the 
subassemblies near the center of the core are higher that from the peripheral subassemblies, and 
flowrates are larger too.  Appropriate result cannot be obtained if the proper boundary 
conditions are not given to the code.  Outlet mass flowrates and temperatures for each array of 
subassemblies are given in the reference [1] as time tables.  Figure 7 illustrates the example of 
trends of boundary conditions for the representative channels of the inner driver core, outer 
driver core and the blanket subassemblies.  Therefore, mass flowrates are converted to 
velocities from the subassemblies with circular outlet of 80 mm.  These initial flowrates are 
approximately 98 % of the flowrates reported by Doi et al.[4]  Hence, the flowrates in the IAEA 
benchmark calculated by 1D code are lower than the measured result at “Monju”.  Outlet 
temperatures from each sub-assembly groups are basically measured one.  Another boundary 
condition in terms of pressure is provided at the outlet of the hot legs.  The length of hot leg 
with 790.6 mm in inner diameter is approximately 4 m. 

The ANSYS Fluent-12.0 is used to solve the 3D thermal-hydraulics.  In the analysis, the 
standard k- model, standard wall function and SIMPLE method are applied to solve the 
momentum equation coupled with the equation of continuity.  The accuracy of the turbulence in 
energy equation is 2nd order upwind. 
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on the flow-hole edge, it obliged to keep eyes closed to degradation of the accuracy because of 
the calculation time. 

Figure 8 shows the comparison between two calculations under the different flow-hole 
configurations. The height 0 stands for the liquid sodium surface. The parameter in the 
legend shows time after the transient. The character "S" stands for flow-hole with straight 
edge, and "C" stands for flow-hole with chamfer. Since three calculated results at the same 
height where three thermocouples are installed are plotted in the same figure, the calculated 
results have widths. It is obvious from the comparison that the analysis with chamfer results in 
a lower thermal stratification interface. The interface is lowered by approximately 300 mm at 
600 seconds after the start of the test. If the edge has curvature, height of the thermal 
stratification interface will be much lower. Therefore, much precise meshing around the flow-
hole is required to trace the height of the thermal stratification if the flow-hole has the round 
edge. 
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on the flow-hole edge, it obliged to keep eyes closed to degradation of the accuracy because of 
the calculation time.   

Figure 8 shows the comparison between two calculations under the different flow-hole 
configurations.  The height 0 stands for the liquid sodium surface.  The parameter in the 
legend shows time after the transient.  The character “S” stands for flow-hole with straight 
edge, and “C” stands for flow-hole with chamfer.  Since three calculated results at the same 
height where three thermocouples are installed are plotted in the same figure, the calculated 
results have widths.  It is obvious from the comparison that the analysis with chamfer results in 
a lower thermal stratification interface.  The interface is lowered by approximately 300 mm at 
600 seconds after the start of the test.  If the edge has curvature, height of the thermal 
stratification interface will be much lower.  Therefore, much precise meshing around the flow-
hole is required to trace the height of the thermal stratification if the flow-hole has the round 
edge. 
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Figure 9 shows the comparison of calculations between the basic case and the result taking into 
account chamfer and heat capacity of the UIS. The character "C+HC" stands for flow-hole 
with chamfer and heat capacity of the UIS. It is assumed that the UIS consists of steel and 
sodium with no flow. As shown in the figure, the interface at 600 seconds is lowered by 500 
mm compared with the basic case. Therefore, the effect of the heat capacity of the UIS on the 
interface cannot be neglected. 

A comparison between the test result and the simulation is illustrated in Fig. 10 when the above 
mentioned effects are reflected in the analysis. The calculated results trace the rising of the 
thermal stratification interface in general. However, the height of the thermal stratification 
interface is calculated lower before 240 seconds, and the thermal stratification interface is 
calculated higher than the test result after 420 seconds. Especially, the thermal stratification 
interface is higher than the experimental result by approximately 1.0 m at 600 seconds. 
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Figure 10 Comparison between measured results and calculation taking into 
account the flow-hole with chamfer and heat capacity of UIS 

3. Discussion 

450 500 

It is clarified that the calculated total flowrate from each subassembly groups in the IAEA 
benchmark calculation are approximately 98 % of the measured flowrate at the "Monju" plant, 
when the reference [4] is investigated. Outlet temperatures from each subassembly groups are 
measured results except that for shielding. Therefore, the boundary conditions for the IAEA 
benchmark are somewhat hybrid. In this case, amount of energy input into the upper plenum 
has an error when the flowrate is not accurately calculated. When one checks the temperature 
distribution near the surface of liquid sodium, calculated result underestimates the measured 
temperature by approximately 8 °C in Fig. 10. There is a possibility that this may be caused by 
the boundary conditions of flowrate and temperature, which is different from the actual test. 
Another factor that may effect on the temperature distribution is the bypass flow. This flow of 
"Monju" is supposed to be less than 1% of the total flow. It may have a little effect on the 
temperature distribution close to the core outlet at time 0. However, the bypass flow has almost 

K:ISECRETIPapersWURETH14-2011WURETH-14_Paper _431 (Mochizula). doe 

The 14th International Topical Meeting on Nuclear Reactor Thermalhydraulics, NURETH-14  
Toronto, Ontario, Canada, September 25-30, 2011 

K:\SECRET\Papers\NURETH14-2011\NURETH-14_Paper_431(Mochizuki).doc 

Figure 9 shows the comparison of calculations between the basic case and the result taking into 
account chamfer and heat capacity of the UIS.  The character “C+HC” stands for flow-hole 
with chamfer and heat capacity of the UIS.  It is assumed that the UIS consists of steel and 
sodium with no flow.  As shown in the figure, the interface at 600 seconds is lowered by 500 
mm compared with the basic case.  Therefore, the effect of the heat capacity of the UIS on the 
interface cannot be neglected. 

A comparison between the test result and the simulation is illustrated in Fig. 10 when the above 
mentioned effects are reflected in the analysis.  The calculated results trace the rising of the 
thermal stratification interface in general.  However, the height of the thermal stratification 
interface is calculated lower before 240 seconds, and the thermal stratification interface is 
calculated higher than the test result after 420 seconds.  Especially, the thermal stratification 
interface is higher than the experimental result by approximately 1.0 m at 600 seconds. 
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no effect on the temperature distribution after the main primary pumps are tripped because the 
driving force to circulate the bypass channel is very small. In some case, the direction of the 
driving force may be reversed for the bypass channel. 
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Figure 12 Comparison between measured results and calculation taking into 
account the flow-hole with chamfer, heat capacity of UIS and boundary 
conditions at the outlet of the subassemblies 
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no effect on the temperature distribution after the main primary pumps are tripped because the 
driving force to circulate the bypass channel is very small.  In some case, the direction of the 
driving force may be reversed for the bypass channel. 

In order to keep the consistency 
of the boundary conditions from 
the stand point of energy put in 
the upper plenum, 1D analysis 
has been conducted using the 
NETFLOW++ code [5] that is 
validated using the plant data 
measured at “Monju”.  The 
calculated flowrates and 
temperatures at the outlet of the 
subassemblies shown in Fig. 11 
are given to the CFD code as the 
boundary conditions.  The 
Comparison between the 
calculated results and the 
measured results are shown in 
Fig. 12.  Almost perfect 
agreement is obtained for the 
temperature distribution before 3 
minutes.  The thermal stratification interfaces beyond three minutes are also predicted with 
better accuracy than before.  However, further discussion is necessary in order to get the perfect 
coincidence.  This may be possible if precise configuration of the flow-hole is informed. 
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Figure 12  Comparison between measured results and calculation taking into 
account the flow-hole with chamfer, heat capacity of UIS and boundary 
conditions at the outlet of the subassemblies 
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As far as the thermal stratification in the upper plenum is concerned, the accurate modelling of 
the internals in the upper plenum has only a small effect on the thermal stratification problem. 
However, modelling of the configuration of the flow-hole and heat capacity of the UIS has a 
possibility to predict the temperature distributions in the upper plenum during the transient as 
indicated in the present analysis. A real configuration should be obtained in order to 
investigate precisely the thermal stratification phenomenon. 

4. Conclusion 

The thermal stratification in the reactor vessel of "Monju" is calculated using the 3D CFD code. 
In the present analysis, the full sector of the upper plenum of "Monju" reactor is modeled. Two 
kinds of meshes have been generated to compare the effect of the chamfer on the flow-hole edge. 
One is the flow hole with the straight edge, the other one is the flow-hole with chamfer. The 
configuration of the chamfer on the both edges is assumed in the analysis. Other calculation 
conditions for the two models are quite same. 
(1) The difference of flow-hole configurations can be calculated with the CFD code. 
(2) The analysis with chamfer results in a slow rising velocity of the thermal stratification 

interface, which is closer to the experimental result. However, the calculated rising velocity 
is still faster than the experimental result. 

(3) The comparison shows that the real configuration of the flow-hole should be reflected to the 
meshing. 

(4) Heat capacity of the upper instrumental structure also has an effect on decreasing the rising 
velocity of the thermal stratification interface. 

(5) Good agreement is obtained when the boundary conditions are calculated by the validated 
1D code. 
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As far as the thermal stratification in the upper plenum is concerned, the accurate modelling of 
the internals in the upper plenum has only a small effect on the thermal stratification problem.  
However, modelling of the configuration of the flow-hole and heat capacity of the UIS has a 
possibility to predict the temperature distributions in the upper plenum during the transient as 
indicated in the present analysis.  A real configuration should be obtained in order to 
investigate precisely the thermal stratification phenomenon. 

4. Conclusion 

The thermal stratification in the reactor vessel of “Monju” is calculated using the 3D CFD code.  
In the present analysis, the full sector of the upper plenum of “Monju” reactor is modeled.  Two 
kinds of meshes have been generated to compare the effect of the chamfer on the flow-hole edge.  
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configuration of the chamfer on the both edges is assumed in the analysis.  Other calculation 
conditions for the two models are quite same. 
(1) The difference of flow-hole configurations can be calculated with the CFD code. 
(2) The analysis with chamfer results in a slow rising velocity of the thermal stratification 

interface, which is closer to the experimental result.  However, the calculated rising velocity 
is still faster than the experimental result. 
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